
SSA and CPS

CS4410: Spring 2013

Monadic Form vs CFGs
Consider CFG available exp. analysis:
statement gen's kill's
x:=v1 p v2 x:=v1 p v2 {y:=e | x=y or x in e}

When variables are immutable, simplifies to:
statement gen's kill's
x:=v1 p v2 x:=v1 p v2 {}

(Assumes variables are unique.)

Monadic Form vs CFGs
Almost all data flow analyses simplify when

variables are defined once.
– no kills in dataflow analysis
– can interpret as either functional or imperative

Our monadic form had this property, which
made many of the optimizations simpler.

– e.g., just keep around a set of available
definitions that we keep adding to.

On the other hand…
CFGs have their own advantages over

monadic form.
– support control-flow graphs not just trees.

if b < c then if b >= c goto L1
 let x1 = e1 x1 := e1
 x2 = e2 x2 := e2
 x3 = x1 + x2 goto L2
 in x3 L1: x1 := e4
else x2 := e5
 let x1 = e4 L2: x3 := x1 + x2
 x2 = e5
 x3 = x1 + x2
 in x3

Best of both worlds…
Static Single Assignment (SSA)

– CFGs but with functional variables
– A slight “hack” to make graphs work out
– Now widely used (e.g., LLVM).
–  Intra-procedural representation only.

Continuation Passing Style (CPS)
–  Inter-procedural representation.
– So slightly more general.
– Used by FP compilers (e.g., SML/NJ).

The idea behind SSA
Start with CFG code and give each

definition a fresh name, and propagate
the fresh name to subsequent uses.

x := n x0 := n
y := m y0 := m
x := x + y x1 := x0 + y0
return x return x1

The problem…
What do we do with this?

x := n!
y := m!
if x < y !

x := x+1!
y := y-1!

y := x+2 !

z := x * y!
return z!

The problem…
In particular, what happens at join points?

x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

z0 := x? * y?!
return z0!

The solution: “phony” nodes
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

The solution: “phony” nodes
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

A phi-node is a
phony “use” of a
variable.

From an analysis
standpoint, it’s as
if an oracle chooses
to set x2 to either
x1 or x0 based on
how control got
here.

Variant: gated SSA
x0 := n!
y0 := m!
c0 := x0 < y0!
if c0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(c0 ? x1 : x0)!
y3 := φ (c0 ? y1 : y2)!
z0 := x2 * y3!
return z0!

Use a functional
“if” based on the
tests that brought
you here.

Back to normal SSA
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

Compilers often build
an overlay graph that
connects definitions
to uses (“def-use”
chains.)

Then information
really flows along
these SSA def-use
edges (e.g., constant
propagation.)

Some practical
benefits to SSA def-
use over CFG…
(see Appel, Ex. 19.8)

Two Remaining Issues
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

How do we
generate SSA
from the CFG
representation?

How do we
generate CFG
(or MIPS) from
the SSA?

SSA back to CFG
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!

y2 := x0+2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

Just realize the
assignments
corresponding to
the phi nodes on
the edges.

SSA back to CFG
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!
x2 := x1!
y3 := y1!

y2 := x0+2!
x2 := x0!
y3 := y2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

Just realize the
assignments
corresponding to
the phi nodes on
the edges.

SSA back to CFG
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!
x2 := x1!
y3 := y1!

y2 := x0+2!
x2 := x0!
y3 := y2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

You can always rely
upon either a copy
propagation pass or a
coalescing register
allocator to get rid of
all of these copies.

But this can blow up
the size of the code
considerably, so there
are better algorithms
that try to avoid this.

Naïve Conversion to SSA
•  Insert phi nodes in each basic block except the

start node.
•  Calculate the dominator tree.
•  Then, traversing the dominator tree in a

breadth-first fashion:
–  give each definition of x a fresh index
–  propagate that index to all of the uses

•  each use of x that’s not killed by a subsequent definition.
•  propagate the last definition of x to the successors’ phi

nodes.

Example:

B1 x := n!
y := m!
a := 0!

a := a + y!
x := x – 1 !

if x > 0!

z := a + y!
return z!

Insert phi
B1
x := n!
y := m!
a := 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
a := a + y!
x := x – 1 !

x := φ(x,x)!
y := φ(y)!
a := φ(a,a)!
if x > 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
z := a+y!
return z!

Dominators
B1
x := n!
y := m!
a := 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
a := a + y!
x := x – 1 !

x := φ(x,x)!
y := φ(y)!
a := φ(a,a)!
if x > 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
z := a+y!
return z!

Successors
B1
x0 := n!
y0 := m!
a0 := 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
a := a + y!
x := x – 1 !

x := φ(x0,x)!
y := φ(y0)!
a := φ(a0,a)!
if x > 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
z := a+y!
return a!

Next Block
B1
x0 := n!
y0 := m!
a0 := 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
a := a + y!
x := x – 1 !

x1 := φ(x0,x)!
y1 := φ(y0)!
a1 := φ(a0,a)!
if x1 > 0!

x := φ(x)!
y := φ(y)!
a := φ(a)!
z := a+y!
return z!

Successors
B1
x0 := n!
y0 := m!
a0 := 0!

x := φ(x1)!
y := φ(y1)!
a := φ(a1)!
a := a + y!
x := x – 1 !

x1 := φ(x0,x)!
y1 := φ(y0)!
a1 := φ(a0,a)!
if x1 > 0!

x := φ(x1)!
y := φ(y1)!
a := φ(a1)!
z := a+y!
return z!

Next Block
B1
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x)!
y1 := φ(y0)!
a1 := φ(a0,a)!
if x1 > 0!

x := φ(x1)!
y := φ(y1)!
a := φ(a1)!
z := a+y!
return z!

Successors
B1
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x3)!
y1 := φ(y0)!
a1 := φ(a0,a3)!
if x1 > 0!

x := φ(x1)!
y := φ(y1)!
a := φ(a1)!
z := a+y!
return z!

Last Block
B1
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x3)!
y1 := φ(y0)!
a1 := φ(a0,a3)!
if x1 > 0!

x4 := φ(x1)!
y4 := φ(y1)!
a4 := φ(a1)!
z0 := a4+y4!
return z0!

Key Problem
B1
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x3)!
y1 := φ(y0)!
a1 := φ(a0,a3)!
if x1 > 0!

x4 := φ(x1)!
y4 := φ(y1)!
a4 := φ(a1)!
z0 := a4+y4!
return z0!

Quadratic in
the size of the
original graph!

Key Problem
B1
x0 := n!
y0 := m!
a0 := 0!

x2 := φ(x1)!
y2 := φ(y1)!
a2 := φ(a1)!
a3 := a2 + y2!
x3 := x2 – 1 !

x1 := φ(x0,x3)!
y1 := φ(y0)!
a1 := φ(a0,a3)!
if x1 > 0!

x4 := φ(x1)!
y4 := φ(y1)!
a4 := φ(a1)!
z0 := a4+y4!
return z0!

Could clean up
using copy
propagation and
dead code
elimination.

Key Problem
B1
x0 := n!
y0 := m!
a0 := 0!

a3 := a1 + y0!
x3 := x1 – 1 !

x1 := φ(x0,x3)!
a1 := φ(a0,a3)!
if x1 > 0!

z0 := a1+y0!
return z0!

Could clean up
using copy
propagation and
dead code
elimination.

Smarter Algorithm
•  Compute the dominance frontier.
•  Use dominance frontier to place the phi

nodes.
–  If a block B defines x then put a phi node in

every block in the dominance frontier of B.
•  Do renaming pass using dominator tree.

This isn’t optimal but in practice, produces
code that’s linear in the size of the input and
is efficient to compute.

Dominance Frontiers
Defn: d dominates n if every path from the
start node to n must go through d.

Defn: If d dominates n and d ≠ n, we say d
strictly dominates n.

Defn: the dominance frontier of x is the set
of all nodes w such that:
1. x dominates a predecessor of w
2. x does not strictly dominate w.

Example (Fig 19.5)

1

2

3

4

5

6 7

8

13

9

10 11

12

5 dominates 5,6,7,8

Example (Fig 19.5)

1

2

3

4

5

6 7

8

13

9

10 11

12

These are edges that
cross from the frontier
of 5’s dominator tree.

Example (Fig 19.5)

1

2

3

4

5

6 7

8

13

9

10 11

12

This identifies nodes
that satisfy the first
condition: nodes that
have some predecessor
dominated by 5.

Example (Fig 19.5)

1

2

3

4

5

6 7

8

13

9

10 11

12

5 does not strictly
dominate any of the
targets of these edges.

Computing Dominance Frontiers
local[n]: successors of n not strictly
dominated by n.

up[n]: nodes in dominance frontier of n that
are not strictly dominated by n’s immediate
dominator.

DF[n] = local[n] U { up[c] | c in children[n] }

Algorithm
computeDF[n] =
 S := {}
 for each y in succ[n] (* compute local[n] *)
 if immediate_dominator(y) ≠ n
 S := S U {y}
 for each child c of n in dominator tree
 computeDF[c]
 for each w in DF[c] (* compute up[c] *)
 if n does not dominate w or n = w
 S := S U {w}
 DF[n] := S

A few notes
•  Algorithm does work proportional to number of

edges in control flow graph + size of the
dominance frontiers.
–  pathological cases can lead to quadratic behavior.
–  in practice, linear

•  All depends upon computing dominator tree.
–  iterative dataflow algorithm is cubic in worst case.
–  but Lengauer & Tarjan give an essentially linear time

algorithm.

Recall
x0 := n!
y0 := m!
if x0 < y0 !

x1 := x0+1!
y1 := y0-1!
x2 := x1!
y3 := y1!

y2 := x0+2!
x2 := x0!
y3 := y2 !

x2 := φ(x1,x0)!
y3 := φ (y1,y2)!
z0 := x2 * y3!
return z0!

Just realize the
assignments
corresponding to
the phi nodes on
the edges.

CPS
λn,m.!
let x0 = n!
let y0 = m in!
if x0 < y0 then  
f1(x0,y0) else f2(x0,y0) !

λx0,y0.!
let x1 := x0+1!
let y1 := y0-1!
f3(x1,y1)!

λx0,y0.!
let y2 := x0+2!
f3(x0,y2)!

λx2,y3.!
let z0 := x2 * y3!
return z0!

CPS less compact than SSA
•  Can always encode SSA.
•  But requires us to match up a block’s

output variables to its successor’s input
variables: f(v1,…x…,vn) à λ x1,…x…,xn.

•  It’s possible to avoid some of this
threading, but not as much as in SSA.
– Worst case is again quadratic in the size of

the code.
– CPS: tree-based scope for variables
– SSA: graph-based scope for variables

CPS more powerful than SSA
•  On the other hand, CPS supports

dynamic control flow graphs.
– e.g., “goto x” where x is a variable, not a

static label name.
•  That makes it possible to encode strictly

more than SSA can.
–  return addresses (no need for special return

instruction – just goto return address.)
– exceptions, function calls, loops, etc. all turn

into just “goto f(x1,…,xn)”.

Core CPS language
op ::= x | true | false | i | …!
!
v := op | λx1,…,xn.exp !
 | prim(op1,…,opn)!
!
exp ::= !
 op(op1,...,opn)!
| if cond(op1,op2) exp1 else exp2!
| let x = v in exp!
| letrec x1 = v1,…, xn = vn in exp!

CPS

let x0 = n in!
let y0 = m in!
if x0 < y0 then  
f1(x0,y0) else f2(x0,y0) !

let f1 = λx0,y0.!
 let x1 := x0+1 in!
 let y1 := y0-1 in!
 f3(x1,y1)!

let f2 = λx0,y0.!
 let y2 := x0+2 in!
 f3(x0,y2)!

let f3 = λx2,y3.!
 let z0 := x2 * y3 in!
 return z0!

Dataflow SSA/CFG vs CPS
•  To solve dataflow equations, for CFG or SSA,

we iterate over the control flow graph.

•  But for CPS, we don’t know what the graph is (in
general) at compile time.
–  our “successors” and “predecessors” depend upon

which values flow into the variables wt jump to.
–  To figure out which functions we might jump to, we

need to do dataflow analysis…
–  Oops!

Simultaneous Solution: CFA
•  In general, we must simultaneously solve for (an

approximation of) the dynamic control flow graph, and
the set of values that a variable might take on.

•  This is called control-flow analysis (CFA).

•  The good news: if you solve this, then you don’t need
lots of special cases in your dataflow analyses (e.g., for
function calls/returns, dynamic method resolution,
exceptions, threads, etc.)

•  The bad news: must use very coarse approximations to
scale.

Final Exam
•  Final: April 19th, 10:30-12:30, Snell Library 045
•  The final exam will be cumulative
•  You may be tested on anything covered in readings or

lectures, except for Typed Assembly Language.
•  Assigned reading from Appel:

–  Ch 1, 2, 3 (intro, lexing, parsing)
–  Ch 13 (garbage collection)
–  Ch 14 (OO languages)
–  Ch 8 (basic blocks)
–  Ch 17 (dataflow analysis)
–  Ch 11 (register allocation)
–  Ch 18 (loop optimizations)
–  Ch 19 (SSA), skip 19.2

