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Program Loops 
•  Reading: Appel Ch. 18 

•  Loop = a computation repeatedly executed 
until a terminating condition is reached 

•  High-level loop constructs:  
– While loop:    while (e) s; 
– For loop:     for(i=0; i<u; i+=c) s;  



Program Loops 
•  Why are loops important? 

– Most of the execution time is spent in loops 
– Typically: 90/10 rule, 10% code is a loop 

•  Therefore, loops are important targets of 
optimization 



Loop Optimizations: 
So we want techniques for improving them 
 

•  Low-level optimization: 
– Moving around code in a single loop  
– usually performed at 3-addr code stage or later 
– e.g., loop invariant removal, induction variable 

strength reduction & elimination, loop unrolling 
 

•  High-level optimization:  
– Restructuring loops, often affects multiple loops 
– e.g., loop fusion, loop interchange, loop tiling 



Example:  invariant removal 
L0:  t := 0 
 
L1:  i := i + 1 
     t := a + b 
     *i := t 
     if i<N goto L1 else L2 
 
L2:  x := t 



Example:  invariant removal 
L0:  t := 0 
 
L1:  i := i + 1 
     t := a + b 
     *i := t 
     if i<N goto L1 else L2 
 
L2:  x := t 



Example:  invariant removal 
L0:  t := 0 
     t := a + b 
 
L1:  i := i + 1      
     *i := t 
     if i<N goto L1 else L2 
 
L2:  x := t 



Example:  induction variable 
L0:  i := 0    /*  s=0;              */ 
     s := 0          /*  for(i=0;i<100;i++)*/ 
     jump L2         /*    s += a[i];      */ 
L1:  t1 := i*4 
     t2 := a+t1 
     t3 := *t2 
     s  := s + t3 
  i  := i+1  
L2:  if i < 100 goto L1 else goto L3 
L3:  ... 



Example:  induction variable 
L0:  i := 0    /*  s=0;              */ 
     s := 0          /*  for(i=0;i<100;i++)*/ 
     jump L2         /*    s += a[i];      */ 
L1:  t1 := i*4         Note:  t1 == i*4 
     t2 := a+t1        at each point in loop 
     t3 := *t2 
     s  := s + t3 
  i  := i+1  
L2:  if i < 100 goto L1 else goto L3 
L3:  ... 



Example:  induction variable 
L0:  i := 0 
     s := 0 
     t1 := 0 
     jump L2      
L1:  t2 := a+t1 
     t3 := *t2 
     s  := s + t3 
  i  := i+1 
     t1 := t1+4 
L2:  if i < 100 goto L1 else goto L3 

L3:  ... 



Example:  induction variable 
L0:  i := 0 
     s := 0 
     t1 := 0 
     jump L2      
L1:  t2 := a+t1    ; t2 == a+t1 == a+i*4 
     t3 := *t2 
     s  := s + t3 
  i  := i+1 
     t1 := t1+4 
L2:  if i < 100 goto L1 else goto L3 

L3:  ... 



Example:  induction variable 
L0:  i := 0 
     s := 0 
     t1 := 0 
     t2 := a 
     jump L2      
L1:  t3 := *t2 
     s  := s + t3 
  i  := i+1 
     t1 := t1+4 
     t2 := t2+4    ; t2 == a+t1 == a+i*4 
L2:  if i < 100 goto L1 else goto L3 
L3:  ... 

Notice t1 no longer used! 



Example:  induction variable 
L0:  i := 0 
     s := 0 
     t2 := a 
     jump L2      
L1:  t3 := *t2 
     s  := s + t3 
     i  := i+1 
     t2 := t2+4 
L2:  if i < 100 goto L1 else goto L3 
L3:  ... 



Example:  induction variable 
L0:  i := 0 
     s := 0 
     t2 := a 
     t5 := t2+400 
     jump L2      
L1:  t3 := *t2 
     s  := s + t3 
     i  := i+1 
     t2 := t2+4 
L2:  if t2 < t5 goto L1 else goto L3 
L3:  ... 



Example:  induction variable 
L0:  i := 0 
     s := 0 
     t2 := a 
     t5 := t2+400 
     jump L2      
L1:  t3 := *t2 
     s  := s + t3 
     i  := i+1 
     t2 := t2+4 
L2:  if t2 < t5 goto L1 else goto L3 
L3:  ... 



Example:  induction variable 
L0:  s := 0 
     t2 := a 
     t5 := t2+400 
     jump L2      
L1:  t3 := *t2 
     s  := s + t3 
     t2 := t2+4 
L2:  if t2 < t5 goto L1 else goto L3 
L3:  ... 



Gotta find loops first: 
What is a loop? 

–  can't just "look" at graphs 
–  we're going to assume some additional structure 

 
Defn:  a loop is a subset S of nodes where: 
•  there is a distinguished header node h 
•  you can get from h to any node in S 
•  you can get from any node in S to h 
•  there's no edge from a node outside S to any 

other node than h. 



Examples: 



Examples: 



Examples: 



Examples: 



Examples: 



Consider: 

Does it have a "loop"? 

a 

b c 



This graph is called irreducible 

According to our definition, no loop. 
But obviously, there's a cycle… 

a 

b c 

•  a can't be header: 
  no edge from c or b to it. 
 
•  b can't be header: 
   c has outside edge from a. 
 
•  c can't be header:  
 b has outside edge from a. 



Reducible Flow Graphs 
So why did we define loops this way? 
•  header gives us a "handle" for the loop. 

– e.g., a good spot for hoisting invariant 
statements 

•  structured control-flow only produces 
reducible graphs. 
– a graph where all cycles are loops according 

to our definition. 
– Java:  only reducible graphs 
– C/C++:  goto can produce irreducible graph 

•  many analyses & loop optimizations depend upon 
having reducible graphs. 



Finding Loops 
Defn:  node d dominates node n if every path from 

the start node to n must go through d. 
 
Defn:  an edge from n to a dominator d is called a 

back-edge.   
 
Defn:  a natural loop of a back edge n→d is the 

set of nodes x such that d dominates x and 
there is a path from x to n not including d. 

 
So that's how we find loops! 



Example: 
a 

c 

b 

d 

e 
f 

g 

h 

a dominates a,b,c,d,e,f,g,h 
b dominates b,c,d,e,f,g,h 
c dominates c,e 
d dominates d 
e dominates e 
f dominates  f,g,h 
g dominates g,h 
h dominates h 
 
back-edges? 
  f->b, g->a 
 
loops? 



Calculating Dominators: 
D[n] :  the set of nodes that dominate n. 
D[n0] = {n0} 
D[n] = {n} ∪ (D[p1] ∩ D[p2] ∩ … ∩ D[pm]) 
   where pred[n] = {p1,p2,…,pn} 
 
It's pretty easy to solve this equation. 

–  start off assuming  
•  D[n0] = {n0}   (where n0 is start node, with no predecessors) 
•  D[n] = all nodes   (where n is not the start node) 

–  iteratively update D[n] based on predecessors until 
you reach a fixed point. 



Representing Dominators 
•  We don't actually need to keep around the 

set of all dominators for each node. 
•  Instead, we construct a dominator tree. 

–  if both d and e dominate n, then either d 
dominates e or vice versa. 

–  that tells us there is a "closest" or immediate 
dominator.   



Example: 
a 

c 

b 

d 

e 
f 

g 

h 

a 

c 

b 

d 

e 
f 

g 

h 

Immediate Dominator Tree 



Nested Loops 
•  If loops A & B have headers a & b  s.t.    

a != b and a dominates b, and all of the 
nodes in B are a subset of nodes in A, 
then we say B is nested within A.   

•  We usually concentrate our attention on 
nested loops first (since we spend more 
time in them.) 

 



Disjoint and Nested Loops 
•  Property: for any two natural loops in a 

flow graph, one of the following is true:  
1.  They are disjoint 
2.  They are nested 
3.  They have the same header 

•  Eliminate alternative 3: if two loops have 
the same header and none is nested in 
the other, combine all nodes into a single 
loop. 



Loop Preheader 
•  Several optimizations add code before 

header 
•  Insert a new basic block (called preheader) 

in the CFG to hold this code 



Loop Optimizations 
•  Now we know the loops 

•  Next: optimize these loops 
–  Loop invariant code motion 
–  Strength reduction of induction variables 
–  Induction variable elimination 

  
 



Loop Invariant Computation 
A definition x:=…  reaches a control-flow point if 

there is a path from the assignment to that point 
that contains no other assignment to x. 

 
An assignment x := v1 ⊕ v2 is invariant for a loop if 

for both operands v1 & v2 either 
–  they are constant, or 
–  all of their definitions that reach the assignment are 

outside the loop, or 
–  only one definition reaches the assignment and it is 

loop invariant.   



Example: 
L0:  t := 0 
 
L1:  i := i + 1 
     t := a + b 
     *i := t 
     if i<N goto L1 else L2 
 
L2:  x := t 



Calculating Reaching Defn's: 
Assign a unique id to each definition. 
Define defs(x) to be the set of all definitions of the 

temp x. 
                               Gen             Kill 
d : x := v1 ⊕ v2             {d}          defs(x) - {d} 
d : x := v                  {d}          defs(x) - {d} 
<everything else>   {  }                {  } 
 
DefIn[n] = DefOut[p1] ∩ … ∩ DefOut[pn] 

 where Pred[n] = {p1,…,pn} 
DefOut[n] = Gen[n] ∪ (DefIn[n] - Kill[n]) 



Hoisting / Code Motion 
We would like to hoist invariant 

computations out of the loop. 
 
But this is trickier than it sounds: 
•  We have already dealt with problem of 

where to place the hoisted statements by 
introducing preheader nodes  

•  Even then, we can run into trouble… 



Valid Hoisting: 
L0:  t := 0 
 
L1:  i := i + 1 
     t := a + b 
     *i := t 
     if i<N goto L1 else L2 
 
L2:  x := t 



Valid Hoisting: 
L0:  t := 0 
     t := a + b 
 
L1:  i := i + 1      
     *i := t 
     if i<N goto L1 else L2 
 
L2:  x := t 



Invalid Hoisting: 
L0:  t := 0 
      
L1:  i := i + 1      
     *i := t 
     t := a + b 
     if i<N goto L1 else L2 
 
L2:  x := t 

t's definition is 
loop invariant but 
hoisting it conflicts 
with this use of the  
old t. 



Conditions for Safe Hoisting: 
An invariant assignment d:x:= v1⊕v2 is safe 

to hoist if: 
– d dominates all loop exits at which x is live-

out, and 
–  there is only one definition of x in the loop, 

and 
– x is not live-out at the entry point for the loop 

(the pre-header.) 



Induction Variables 
•  An induction variable is a variable in a loop, 

whose value is a function of the loop 
iteration number:  v = f(i) 

•  In compilers, this is a linear function:  
  f(i) = c*i + d 
 

•  Observation: linear combinations of linear 
functions are linear functions 
– Consequence: linear combinations of induction 

variables are induction variables 



Families of Induction Variables 
•  Basic induction variable: a variable whose only definition 

in the loop body is of the form   i = i + c                        
(where c is loop invariant) 
 

•  Derived induction variables: Each basic induction variable 
i defines a family of induction variables Fam(i) 
–  i in Fam(i) 
–  k in Fam(i) if there is only one defn of k in the loop 

body, and it has the form k = j*c or k = j+c, where 
•  j in Fam(i)  
•  c is loop invariant 
•  The only defn of j that reaches defn of k is in the loop  
•  There is no defn of I between the defns of j and k 



Induction Variables 
  s := 0 
  i := 0 
L1:  if i >= n goto L2 
  j := i*4 
  k := j+a 
  x := *k 
  s := s+x 
  i := i+1 
L2:  ... 

We can express j & k  
as linear functions of i: 
 
j = 4*i + 0 
k = 4*i + a 
 
where the coefficients 
are either constants 
or loop-invariant. 



Induction Variables 
  s := 0 
  i := 0 
L1:  if i >= n goto L2 
  j := i*4 
  k := j+a 
  x := *k 
  s := s+x 
  i := i+1 
L2:  ... 

So let's represent them as 
triples of the form  
(t, e0, e1): 
 
j = (i, 0, 4)    
k = (i, a, 4) 
i = (i, 1, 1) 



Induction Variables 
  s := 0 
  i := 0 
L1:  if i >= n goto L2 
  j := i*4 
  k := j+a 
  x := *k 
  s := s+x 
  i := i+1 
L2:  ... 

Note that i only changes by 
the same amount each  
iteration of the loop. 
 
We say that i is a linear  
induction variable. 
 
So it's easy to express the 
change in j & k. 



Induction Variables 
  s := 0 
  i := 0 
L1:  if i >= n goto L2 
  j := i*4 
  k := j+a 
  x := *k 
  s := s+x 
  i := i+1 
L2:  ... 

If i changes by c, then since: 
 
j = 4*i + 0 
k = 4*i + a 
 
we know that j & k change 
by 4*c. 



Finding Induction Variables 
Scan loop body to find all basic induction variables 
do 

 Scan loop to find all variables k with one 
assignment of form k = j*b, where j is an 
induction variable <i,c,d>, and make k an 
induction variable with triple <i,c*b,d> 

 

 Scan loop to find all variables k with one 
assignment of form k = j+/-b where j is an 
induction variable with triple <i,c,d>, and make 
k and induction variable with triple <i,c,d+/-b) 

 

until no more induction variables found  
 



Strength Reduction 
For each derived induction variable j of the form  

(i, e0, e1) make a fresh temp j'. 
 
At the loop pre-header, initialize j' to e0. 
 
After each i:=i+c, define j':=j'+(e1*c). 

–  note that e1*c can be computed in the loop header 
(i.e., it's loop invariant.) 

 
Replace the unique assignment of j in the loop 

with j := j'. 



Example 
  s := 0 
  i := 0 
     j' := 0 
     k' := a 
L1:  if i >= n goto L2 
  j := i*4 
  k := j+a 
  x := *k 
  s := s+x 
  i := i+1 
L2:  ... 



Example 
  s := 0 
  i := 0 
  j' := 0 
  k' := a 
L1:  if i >= n goto L2 
  j := i*4 
  k := j+a 
  x := *k 
  s := s+x 
  i := i+1 
  j' := j'+4 
  k' := k'+4 
L2:  ... 



Example 
  s := 0 
  i := 0 
  j' := 0 
  k' := a 
L1:  if i >= n goto L2 
  j := j' 
  k := k' 
  x := *k 
  s := s+x 
  i := i+1 
  j' := j'+4 
  k' := k'+4 
L2:  ... 

Copy-propagation or 
coalescing will eliminate 
the distinction between 
 j/j' and k/k'. 



Useless Variables 
  s := 0 
  i := 0 
  j' := 0 
  k' := a 
L1:  if i >= n goto L2 
  x := *k' 
  s := s+x 
  i := i+1 
  j' := j'+4 
  k' := k'+4 
L2:  ... 

A variable is useless for L 
if it is not live out at all exits 
from L and its only use is 
in a definition of itself. 
 
For example, j' is useless. 
 
We can delete useless 
variables from loops. 



Useless Variables 
  s := 0 
  i := 0 
  j' := 0 
  k' := a 
L1:  if i >= n goto L2 
  x := *k' 
  s := s+x 
  i := i+1 
  k' := k'+4 
L2:  ... 

DCE will pick up the 
dead initialization in the 
pre-header… 



Almost Useless Variables 
  s := 0 
  i := 0 
  k' := a 
L1:  if i >= n goto L2 
  x := *k' 
  s := s+x 
  i := i+1 
  k' := k'+4 
L2:  ... 

The variable i is almost 
useless.  It would be if it 
weren't used in the 
comparison… 
 
See Appel for how to 
determine when/how it's 
safe to rewrite this test 
in terms of other  
induction variables in 
the family of i. 



High-Level Loop Optimizations 
•  Require restructuring loops or sets of loops 

– Combining two loops (loop fusion) 
– Switching the order of a nested loop (loop 

interchange) 
– Completely changing the traversal order (loop 

tiling) 

•  These sorts of high level optimizations 
usually take place at the AST level (where 
loop structure is obvious) 



Cache Behavior 
Most loop transformations target cache behavior 
•  Attempt to increase spatial or temporal locality 
•  Locality can be exploited when there is reuse of 

data (for temporal locality) or recent access of 
nearby data (for spatial locality) 

 

Loops are a good opportunity for this: many loops 
iterate through matrices or arrays 
•  Consider matrix-vector multiply example 
 



Cache Behavior 
Loops are a good 
opportunity for this: many 
loops iterate through 
matrices or arrays 
•  Consider matrix-vector 

multiply example 
–  Multiple traversals or 

vector: opportunity for 
spatial and temporal 
locality 

–  Regular access to array: 
opportunity for spatial 
locality 

 

Cache behavior
• Most loop transformations target cache 

performance

• Attempt to increase spatial or temporal 
locality

• Locality can be exploited when there is 
reuse of data (for temporal locality) or 
recent access of nearby data (for spatial 
locality)

• Loops are a good opportunity for this: many 
loops iterate through matrices or arrays

• Consider matrix-vector multiply example

• Multiple traversals of vector: 
opportunity for spatial and temporal 
locality

• Regular access to array: opportunity for 
spatial locality

y = Ax

x

y A

i

j

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011



Loop Fusion 
Combine two loops together into a single loop 
•  Why is this useful?   Is it always legal? 

for (i=1;i<=n;i++)	
  c[i] = a[i];	
for (i=1;i<=n;i++)	
  b[i] = a[i];	
	
	

Loop fusion

• Combine two loops 
together into a single 
loop

• Why is this useful?

• Is this always legal?

do I = 1, n

   c[i] = a[i]

end do

do I = 1, n

   b[i] = a[i]

end do

c[1:n]

a[1:n]

b[1:n]

a[1:n]

do I = 1, n

   c[i] = a[i]

   b[i] = a[i]

end do

c[1:n]

a[1:n]

b[1:n]

Thursday, April 14, 2011

for (i=1;i<=n;i++)	
  { c[i] = a[i];	
    b[i] = a[i]; }	
	
	

Loop fusion

• Combine two loops 
together into a single 
loop

• Why is this useful?

• Is this always legal?

do I = 1, n

   c[i] = a[i]

end do

do I = 1, n

   b[i] = a[i]

end do

c[1:n]

a[1:n]

b[1:n]

a[1:n]

do I = 1, n

   c[i] = a[i]

   b[i] = a[i]

end do

c[1:n]

a[1:n]

b[1:n]

Thursday, April 14, 2011



Loop Interchange 
Change the order of a nested loop 
•  This is not always legal: it changes the order in 

which elements are accessed 
 
Consider matrix-matrix  
multiply when A is stored 
in column-major order 
(i.e., each column is stored 
in contiguous memory) 

Loop interchange

• Change the order of a nested 
loop

• This is not always legal – it 
changes the order that 
elements are accessed!

• Why is this useful?

• Consider matrix-matrix 
multiply when A is stored 
in column-major order 
(i.e., each column is stored 
in contiguous memory)

x

y A

i

j

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011



Change the order of a nested loop 
•  This is not always legal: it changes the order in 

which elements are accessed 
 
Consider matrix-matrix  
multiply when A is stored 
in column-major order 
(i.e., each column is stored 
in contiguous memory) 

y A

i

j

x

Loop interchange

• Change the order of a nested 
loop

• This is not always legal – it 
changes the order that 
elements are accessed!

• Why is this useful?

• Consider matrix-matrix 
multiply when A is stored 
in column-major order 
(i.e., each column is stored 
in contiguous memory)

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011

Loop Interchange 



Loop tiling

• Also called “loop blocking”

• One of the more complex 
loop transformations

• Goal: break loop up into 
smaller pieces to get spatial 
and temporal locality

• Create new inner loops 
so that data accessed in 
inner loops fit in cache

• Also changes iteration 
order, so may not be legal

x

y A

i

j

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)

for (jj = 0; jj < N; jj += B)

for (i = ii; i < ii+B; i++)

for (j = jj; j < jj+B; j++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011

Also called “loop 
blocking”  
Goal: break up loop into 
smaller pieces to get 
spatial & temporal locality 
•  One of the more complex 

loop transformations 
•  Create new inner loops so 

data accessed in inner 
loops fit in cache  

•  Also changes iteration 
order so may not be legal   

Loop Tiling 



x

y A

i

j

B

B

Loop tiling

• Also called “loop blocking”

• One of the more complex 
loop transformations

• Goal: break loop up into 
smaller pieces to get spatial 
and temporal locality

• Create new inner loops 
so that data accessed in 
inner loops fit in cache

• Also changes iteration 
order, so may not be legal

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)

for (jj = 0; jj < N; jj += B)

for (i = ii; i < ii+B; i++)

for (j = jj; j < jj+B; j++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011

Also called “loop 
blocking” 
Goal: break up loop into 
smaller pieces to get 
spatial & temporal locality 
•  One of the more complex 

loop transformations 
•  Create new inner loops so 

data accessed in inner 
loops fit in cache  

•  Also changes iteration 
order so may not be legal   

Loop Tiling 



Loop Optimizations   
•  Loop transformations can have dramatic 

effects on performance 
•  Transforming loops correctly and 

automatically is very difficult! 
•  Researchers have developed many 

techniques to determine legality of loop 
transformations and automatically 
transform loops. 


