Loops
or
Lather, Rinse, Repeat...

CS4410: Spring 2013

Program Loops
* Reading: Appel Ch. 18

* Loop = a computation repeatedly executed
until a terminating condition is reached

* High-level loop constructs:
— While loop: while (e) s;
— For loop: for(i=0; i<u; i+=c) s;

Program Loops

* Why are loops important?
— Most of the execution time is spent in loops
— Typically: 90/10 rule, 10% code is a loop

* Therefore, loops are important targets of
optimization

Loop Optimizations:
So we want techniques for improving them

* Low-level optimization:
— Moving around code in a single loop
— usually performed at 3-addr code stage or later

—e.g., loop invariant removal, induction variable
strength reduction & elimination, loop unrolling

* High-level optimization:
— Restructuring loops, often affects multiple loops
— e.g., loop fusion, loop interchange, loop tiling

Example: invariant removal

LO: t :=0

L1: 1 :=1 + 1
t ;= a + b
*1 := t

if i<N goto L1 else L2

Example: invariant removal

LO: t :=0

L1: 1 :=1 + 1
t :=a + b
*1 := t

if i<N goto L1 else L2

Example: invariant removal

LO: t :=0

t :=a + b
L1 i :=1 + 1
*1 := t

if i<N goto L1 else L2

Example: Induction variable

LO:

L1:

L2:
L3:

i =0 /* s=0; */
s :=0 /* for(i=0,i<100,i++)*/
jump L2 /* s += af[i]; */
tl := i*4

t2 := a+tl

t3 = *t2

s :=s + t3

i = i+l

if i < 100 goto L1 else goto L3

Example: Induction variable

LO: i :=0 /* s=0; */
s : =0 /* for(i=0,i<100,i++)*/
jump L2 /* s += a[i]; */

Ll: tl1 := i*4 Note: t1 ==1*4
t2 := a+tl at each point in loop
t3 = *t2
s :=s + t3
i = i+l

L2: if i < 100 goto L1 else goto L3
L3:

Example: Induction variable

LO: 1 :=0
s :=0
tl (=0
jump L2
Ll1: t2 := a+tl
t3 = *t2
s :=s + t3
i = i+l
tl := tl1+4

L2: 1if i < 100 goto L1 else goto L3
L3:

Example: Induction variable

LO: 1 :=0
s :=0
tl (=0
jump L2
Ll: t2 := a+tl ; 2 == a+tl == a+i*4
t3 = *t2
s :=s + t3
i = i+l
tl = tl+4

L2: if i < 100 goto L1 else goto L3
L3:

Example: Induction variable

LO: 1 :=0
s :=0
tl =0
t2 := a
jump L2
Ll: 3 := *t2 Notice t1 no longer used!
s :=s + t3
i = i+l
tl = tl+4
t2 := t2+4 ; 2 == a+tl == a+i*4

L2: if i < 100 goto L1 else goto L3
L3:

Example: Induction variable

LO: 1 :=0
s :=0
t2 = a
jump L2
Ll1: t3 := *t2
= s + t3
= i+l
t2 = t2+44

L2: if i < 100 goto L1 else goto L3
L3:

Example: Induction variable

LO: i :=0
s :=0
t2 = a
t5 := t2+400
jump L2
Ll1: t3 := *t2
s :=s + t3
i = i+l
t2 = t2+44

L2: if t2 < t5 goto L1l else goto L3
L3:

Example: Induction variable

LO: i :=0
:= 0
t2 = a
t5 := t2+400
jump L2
Ll1: t3 := *t2
s :=s + t3
i = i+l
t2 = t2+44

L2: if t2 < t5 goto L1 else goto L3
L3:

Example: Induction variable

LO: s :=0
t2 = a
t5 := t2+4400
jump L2

Ll1: t3 := *t2
s :=s + t3
t2 = t2+4

L2: if t2 < t5 goto L1 else goto L3
L3:

Gotta find loops first:

What is a loop?
— can't just "look" at graphs
— we're going to assume some additional structure

Defn: a/oop is a subset S of nodes where:
 there is a distinguished header node h

* you can get from h to any node in S

« you can get from any node in Sto h

 there's no edge from a node outside S to any
other node than h.

Consider:

¥

Does it have a "loop"?

This graph is called irreducible

* a can't be header:
no edge from c or b to it.

* b can't be header:
¢ has outside edge from a.

e ¢ can't be header:

b has outside edge from a.
6

According to our definition, no loop.
But obviously, there's a cycle...

Reducible Flow Graphs

So why did we define loops this way?

* header gives us a "handle" for the loop.

— e.g., a good spot for hoisting invariant
statements

» structured control-flow only produces

reducible graphs.

— a graph where all cycles are loops according
to our definition.

— Java: only reducible graphs

— C/C++: goto can produce irreducible graph

« many analyses & loop optimizations depend upon
having reducible graphs.

Finding Loops

Defn: node d dominates node n if every path from
the start node to n must go through d.

Defn: an edge from n to a dominator d is called a
back-edge.

Defn: a natural loop of a back edge n—d is the
set of nodes x such that d dominates x and
there is a path from x to n not including d.

So that's how we find loops!

a dominates a,b,c,d,e,f,g,h
b dominates b,c,d,e,f,g,h

c dominates c,e

d dominates d

e dominates e

f dominates f,g,h

g dominates g,h

h dominates h

back-edges?
f->b, g->a

loops?

Calculating Dominators:

D[n] : the set of nodes that dominate n.
D[n0] = {n0}

DIn] = {n} U (D[p4] N D[p,] N ... N D[pg])
where pred[n] = {p4,Ps;---,Pn}

It's pretty easy to solve this equation.

— start off assuming
* D[n0] ={n0} (where nO is start node, with no predecessors)
* D[n] = all nodes (where n is not the start node)

— Iteratively update D[n] based on predecessors until
you reach a fixed point.

Representing Dominators

* We don't actually need to keep around the
set of all dominators for each node.

* |[nstead, we construct a dominator tree.

— if both d and e dominate n, then either d
dominates e or vice versa.

— that tells us there is a "closest" or immediate
dominator.

Nested Loops

* Ifloops A & B have headers a & b s.t.
a != b and a dominates b, and all of the
nodes in B are a subset of nodes in A,
then we say B is nested within A.

* We usually concentrate our attention on
nested loops first (since we spend more
time in them.)

Disjoint and Nested Loops

* Property: for any two natural loops in a
flow graph, one of the following is true:
1. They are disjoint
2. They are nested
3. They have the same header

* Eliminate alternative 3: if two loops have
the same header and none is nested In
the other, combine all nodes into a single

loop.

Loop Preheader

* Several optimizations add code before
header

 Insert a new basic block (called preheader)

In the CFG to hold this code
A Q
\

Loop Optimizations

 Now we know the loops

* Next: optimize these loops
— Loop invariant code motion
— Strength reduction of induction variables
— Induction variable elimination

Loop Invariant Computation

A definition x:=... reaches a control-flow point if
there is a path from the assignment to that point
that contains no other assignment to x.

An assignment x := v, ® Vv, is invariant for a loop if
for both operands v, & v, either
— they are constant, or

— all of their definitions that reach the assignment are
outside the loop, or

— only one definition reaches the assignment and it is
loop invariant.

L2:

=1 + 1

a+b
= t
i<N goto L1 else L2

= t

Calculating Reaching Defn's:

Assign a uniqgue id to each definition.

Define defs(x) to be the set of all definitions of the
temp x.

Gen Kill
d:x:=v,®Vv, {d} defs(x) - {d}
d:xX:=v {d} defs(x) - {d}
<everything else> { } { }

Defin[n] = DefOut[p,] N ... N DefOut[p,]
where Pred[n] = {p4,...,p,}

DefOut[n] = Gen[n] U (Defln[n] - Kill[n])

Hoisting / Code Motion

We would like to hoist invariant
computations out of the loop.

But this is trickier than it sounds:

* We have already dealt with problem of

where to place the hoisted statements by
introducing preheader nodes

 Even then, we can run into trouble...

Valid Hoisting:

LO: t :=0

L1: 1 :=1 + 1
t :=a + b
*1 := t

if i<N goto L1 else L2

L.2: x := t

Valid Hoisting:

LO: t :=0

t :=a + b
L1 i :=1 + 1
*1 := t

if i<N goto L1 else L2

L.2: x := t

Invalid Hoisting:

LO: t :=0

t's definition 1s

Ll i =1+ 1 loon invar
oop 1nvariant but
*1 = t “ hoisting 1t conflicts
with this use of the
t:=a+b old t.

if i<N goto L1 else L2

L.2: x := t

Conditions for Safe Hoisting:

An invariant assignment d:x:= v,®v, Is safe
to hoist if:

— d dominates all loop exits at which x is live-
out, and

— there is only one definition of x in the loop,
and

— X is not live-out at the entry point for the loop
(the pre-header.)

Induction Variables

* An induction variable is a variable in a loop,
whose value is a function of the loop
iteration number: v = (i)

* In compilers, this is a linear function:

f(i) = c*i + d

« Observation: linear combinations of linear
functions are linear functions

— Consequence: linear combinations of induction
variables are induction variables

Families of Induction Variables

« Basic induction variable: a variable whose only definition
in the loop body is of the form i=i+c

(where c is loop invariant)

* Derived induction variables: Each basic induction variable
| defines a family of induction variables Fam(i)
— 1 in Fam(i)
— k in Fam(i) if there is only one defn of k in the loop
body, and it has the form k = j*c or k = j+c, where
* jin Fam(i)
e cis loop invariant

* The only defn of j that reaches defn of k is in the loop
» There is no defn of | between the defns of j and k

Induction Variables

Ll1:

L2:

T

We can express j & k
as linear functions of i:

4*i + O
4*1 + a

J
k

where the coefficients
are either constants
or loop-invariant.

Induction Variables

Ll1:

L2:

P X R u

sS+XxX
i+l

So let's represent them as
triples of the form

(t, ey, €1):

j = (i, 0, 4)
k = (1, a, 4)
i= (i, 1, 1)

Induction Variables

Ll1:

L2:

T

sS+XxX
i+l

Note that 1 only changes by
the same amount each
iteration of the loop.

We say that i is a linear
induction variable.

So it's easy to express the
change in j & k.

Induction Variables

Ll1:

L2:

T

sS+XxX
i+l

If 1 changes by c, then since:

j = 4*i + 0
k = 4*i + a

we know that j & k change
by 4*c.

Finding Induction Variables

Scan loop body to find all basic induction variables
do

Scan loop to find all variables k with one

assignment of form k = j*b, where j is an

Induction variable <i,c,d>, and make k an
induction variable with triple <i,c*b,d>

Scan loop to find all variables k with one
assignment of form k = j+/-b where j is an
iInduction variable with triple <i,c,d>, and make
k and induction variable with triple <i,c,d+/-b)

until no more induction variables found

Strength Reduction

For each derived induction variable j of the form
(1, €, €1) make a fresh temp |J'.

At the loop pre-header, initialize j' to e,.

After each i:=i+c, define |":=)'+(e *C).
— note that e,*c can be computed in the loop header
(i.e., it's loop invariant.)

Replace the unique assignment of j in the loop
with | ;="

Example

L1:

L2:

k'

H-» X &~ W

o

o

>= n goto L2

i*x4

*k
sS+x
i+l

Example

L1:

L2:

0
0

i >= n goto L2

= 1%*4

L1:

L2:

Copy-propagation or
coalescing will eliminate
the distinction between
j/5' and k/k'.

Useless Variables

L1:

L2:

:= 0
:= 0
j' =0
k' = a
if i >= n goto L2
X := *k'
S = s+x
i1 := i+l
J' = J'+4
k' := k'+4

A variable is useless for L
if it is not live out at all exits
from L and its only use is

in a definition of itself.

For example, j' is useless.

We can delete useless
variables from loops.

Useless Variables

s :=0

i:=0

j' =0

k' := a

Ll1: if i >= n goto L2

= *k'

S = s+Xx

i := i+l

k' := k'+4

L2:

DCE will pick up the
dead initialization in the
pre-header...

Almost Useless Variables

s := 0
i =0 The variable i Is almost
useless. It would be if it
k' := a \ .
weren't used in the
Ll1: if i >= n goto L2 comparison. ..
X := *k'
1= s+x See Appel for how to
= i+1 determine when/how it's
safe to rewrite this test
k' := k'+4

in terms of other
induction variables in
the family of i .

L2:

High-Level Loop Optimizations

* Require restructuring loops or sets of loops
— Combining two loops (loop fusion)

— Switching the order of a nested loop (loop
interchange)

— Completely changing the traversal order (loop
tiling)

* These sorts of high level optimizations
usually take place at the AST level (where
loop structure is obvious)

Cache Behavior

Most loop transformations target cache behavior
« Attempt to increase spatial or temporal locality

 Locality can be exploited when there is reuse of
data (for temporal locality) or recent access of
nearby data (for spatial locality)

Loops are a good opportunity for this: many loops
iterate through matrices or arrays

« Consider matrix-vector multiply example

Cache Behavior

Loops are a good
opportunity for this: many
loops iterate through
matrices or arrays

 Consider matrix-vector
multiply example

— Multiple traversals or
vector: opportunity for
spatial and temporal
locality

— Regular access to array:

opportunity for spatial
locality

< [T
>

for (1 =0; i < N; i++)
for (3 = 0; J < N; j++)
y[i] += A[1][3] * x[7]

Loop Fusion

Combine two loops together into a single loop
 Why is this useful? Is it always legal?

for (1=1;1<=n;1++) for (1=1;1<=n;1++)
c[i] = a[1i]; { c[i] = a[1];
for (i=l;i<=n;i++) b[i] = a[i]; }
b[1] = a[1];
(S — —— c[1:n] (S — — — c[1:n]
S — — — a[1:n]
| a1
e e e e LB
EHE | blim]
= | altn]

Loop Interchange

Change the order of a nested loop

* This is not always legal: it changes the order in
which elements are accessed

Consider matrix-matrix

multiply when A is stored
in column-major order l
(i.e., each column is stored

In contiguous memory) for (i = 0; i < N; i++)
for (3 = 0; 7 < N; J++)
y[i]l += A[1]1[3] * x[]]

< LTI T[]
>

Loop Interchange

Change the order of a nested loop

* This is not always legal: it changes the order in
which elements are accessed
j
HENEEED

Consider matrix-matrix

multiply when A is stored
in column-major order N
(i.e., each column is stored y A

In contiguous memory) for (J =0; 3 <N; J++)
for (1 =0; 1 < N; 1++)

ylil += A[1][J] * x[3]

Loop Tiling

Also called “loop
blocking”

for (i = 0; i < N; i+
for (j = 0; J < N; J++)
y[i]l += A[1]1[J] * x[3]]

Goal: break up loop into
smaller pieces to get ~ for (ii = 0; ii < N; ii += B)
spatial & temporal locality for (31 =0; 33 <N; 33 +=B)

for (1 = 11; 1 < 11+B; 1++)
One of the more complex for (§ = jj; j < jj+B; j++

loop transfor.matlons y[il += ALi105] * x[3]
Create new inner loops so
data accessed in inner !

| | X

loops fit in cache

Also changes iteration
order so may not be legal i

< L[]
>

Loop Tiling
for (1 =0; 1 < N; 1++)
for (J = 0; 7 <N; Jj++)

Also called “loop VI1] += ALLIEIT * x5

blocking”

Goal: break up loop into
smaller pieces to get for (ii = @; ii < N; ii += B)
spatial & temporal locality for (11 =0; 33 < N; 33 +=B)
* One of the more complex f";oﬁlcj LIJJI ; E;?iBF;L)
loop transformations y[i] 4= AFi] (9] * xEj]
« Create new inner loops so |
data accessed in inner L
loops fit in cache

» Also changes iteration
order so may not be legal

| 1]

p—
ve)

< [
>

Loop Optimizations

Loop transformations can have dramatic
effects on performance

Transforming loops correctly and
automatically is very difficult!

Researchers have developed many
techniques to determine legality of loop
transformations and automatically

transform loops.

