
Loops
or

Lather, Rinse, Repeat…
CS4410: Spring 2013

Program Loops
•  Reading: Appel Ch. 18

•  Loop = a computation repeatedly executed
until a terminating condition is reached

•  High-level loop constructs:
– While loop: while (e) s;
– For loop: for(i=0; i<u; i+=c) s;

Program Loops
•  Why are loops important?

– Most of the execution time is spent in loops
– Typically: 90/10 rule, 10% code is a loop

•  Therefore, loops are important targets of
optimization

Loop Optimizations:
So we want techniques for improving them

•  Low-level optimization:
– Moving around code in a single loop
– usually performed at 3-addr code stage or later
– e.g., loop invariant removal, induction variable

strength reduction & elimination, loop unrolling

•  High-level optimization:
– Restructuring loops, often affects multiple loops
– e.g., loop fusion, loop interchange, loop tiling

Example: invariant removal
L0: t := 0

L1: i := i + 1
 t := a + b
 *i := t
 if i<N goto L1 else L2

L2: x := t

Example: invariant removal
L0: t := 0

L1: i := i + 1
 t := a + b
 *i := t
 if i<N goto L1 else L2

L2: x := t

Example: invariant removal
L0: t := 0
 t := a + b

L1: i := i + 1
 *i := t
 if i<N goto L1 else L2

L2: x := t

Example: induction variable
L0: i := 0 /* s=0; */
 s := 0 /* for(i=0;i<100;i++)*/
 jump L2 /* s += a[i]; */
L1: t1 := i*4
 t2 := a+t1
 t3 := *t2
 s := s + t3
 i := i+1
L2: if i < 100 goto L1 else goto L3
L3: ...

Example: induction variable
L0: i := 0 /* s=0; */
 s := 0 /* for(i=0;i<100;i++)*/
 jump L2 /* s += a[i]; */
L1: t1 := i*4 Note: t1 == i*4
 t2 := a+t1 at each point in loop
 t3 := *t2
 s := s + t3
 i := i+1
L2: if i < 100 goto L1 else goto L3
L3: ...

Example: induction variable
L0: i := 0
 s := 0
 t1 := 0
 jump L2
L1: t2 := a+t1
 t3 := *t2
 s := s + t3
 i := i+1
 t1 := t1+4
L2: if i < 100 goto L1 else goto L3

L3: ...

Example: induction variable
L0: i := 0
 s := 0
 t1 := 0
 jump L2
L1: t2 := a+t1 ; t2 == a+t1 == a+i*4
 t3 := *t2
 s := s + t3
 i := i+1
 t1 := t1+4
L2: if i < 100 goto L1 else goto L3

L3: ...

Example: induction variable
L0: i := 0
 s := 0
 t1 := 0
 t2 := a
 jump L2
L1: t3 := *t2
 s := s + t3
 i := i+1
 t1 := t1+4
 t2 := t2+4 ; t2 == a+t1 == a+i*4
L2: if i < 100 goto L1 else goto L3
L3: ...

Notice t1 no longer used!

Example: induction variable
L0: i := 0
 s := 0
 t2 := a
 jump L2
L1: t3 := *t2
 s := s + t3
 i := i+1
 t2 := t2+4
L2: if i < 100 goto L1 else goto L3
L3: ...

Example: induction variable
L0: i := 0
 s := 0
 t2 := a
 t5 := t2+400
 jump L2
L1: t3 := *t2
 s := s + t3
 i := i+1
 t2 := t2+4
L2: if t2 < t5 goto L1 else goto L3
L3: ...

Example: induction variable
L0: i := 0
 s := 0
 t2 := a
 t5 := t2+400
 jump L2
L1: t3 := *t2
 s := s + t3
 i := i+1
 t2 := t2+4
L2: if t2 < t5 goto L1 else goto L3
L3: ...

Example: induction variable
L0: s := 0
 t2 := a
 t5 := t2+400
 jump L2
L1: t3 := *t2
 s := s + t3
 t2 := t2+4
L2: if t2 < t5 goto L1 else goto L3
L3: ...

Gotta find loops first:
What is a loop?

–  can't just "look" at graphs
–  we're going to assume some additional structure

Defn: a loop is a subset S of nodes where:
•  there is a distinguished header node h
•  you can get from h to any node in S
•  you can get from any node in S to h
•  there's no edge from a node outside S to any

other node than h.

Examples:

Examples:

Examples:

Examples:

Examples:

Consider:

Does it have a "loop"?

a

b c

This graph is called irreducible

According to our definition, no loop.
But obviously, there's a cycle…

a

b c

•  a can't be header:
 no edge from c or b to it.

•  b can't be header:
 c has outside edge from a.

•  c can't be header:
 b has outside edge from a.

Reducible Flow Graphs
So why did we define loops this way?
•  header gives us a "handle" for the loop.

– e.g., a good spot for hoisting invariant
statements

•  structured control-flow only produces
reducible graphs.
– a graph where all cycles are loops according

to our definition.
– Java: only reducible graphs
– C/C++: goto can produce irreducible graph

•  many analyses & loop optimizations depend upon
having reducible graphs.

Finding Loops
Defn: node d dominates node n if every path from

the start node to n must go through d.

Defn: an edge from n to a dominator d is called a

back-edge.

Defn: a natural loop of a back edge n→d is the

set of nodes x such that d dominates x and
there is a path from x to n not including d.

So that's how we find loops!

Example:
a

c

b

d

e
f

g

h

a dominates a,b,c,d,e,f,g,h
b dominates b,c,d,e,f,g,h
c dominates c,e
d dominates d
e dominates e
f dominates f,g,h
g dominates g,h
h dominates h

back-edges?
 f->b, g->a

loops?

Calculating Dominators:
D[n] : the set of nodes that dominate n.
D[n0] = {n0}
D[n] = {n} ∪ (D[p1] ∩ D[p2] ∩ … ∩ D[pm])
 where pred[n] = {p1,p2,…,pn}

It's pretty easy to solve this equation.

–  start off assuming
•  D[n0] = {n0} (where n0 is start node, with no predecessors)
•  D[n] = all nodes (where n is not the start node)

–  iteratively update D[n] based on predecessors until
you reach a fixed point.

Representing Dominators
•  We don't actually need to keep around the

set of all dominators for each node.
•  Instead, we construct a dominator tree.

–  if both d and e dominate n, then either d
dominates e or vice versa.

–  that tells us there is a "closest" or immediate
dominator.

Example:
a

c

b

d

e
f

g

h

a

c

b

d

e
f

g

h

Immediate Dominator Tree

Nested Loops
•  If loops A & B have headers a & b s.t.

a != b and a dominates b, and all of the
nodes in B are a subset of nodes in A,
then we say B is nested within A.

•  We usually concentrate our attention on
nested loops first (since we spend more
time in them.)

Disjoint and Nested Loops
•  Property: for any two natural loops in a

flow graph, one of the following is true:
1.  They are disjoint
2.  They are nested
3.  They have the same header

•  Eliminate alternative 3: if two loops have
the same header and none is nested in
the other, combine all nodes into a single
loop.

Loop Preheader
•  Several optimizations add code before

header
•  Insert a new basic block (called preheader)

in the CFG to hold this code

Loop Optimizations
•  Now we know the loops

•  Next: optimize these loops
–  Loop invariant code motion
–  Strength reduction of induction variables
–  Induction variable elimination

Loop Invariant Computation
A definition x:=… reaches a control-flow point if

there is a path from the assignment to that point
that contains no other assignment to x.

An assignment x := v1 ⊕ v2 is invariant for a loop if

for both operands v1 & v2 either
–  they are constant, or
–  all of their definitions that reach the assignment are

outside the loop, or
–  only one definition reaches the assignment and it is

loop invariant.

Example:
L0: t := 0

L1: i := i + 1
 t := a + b
 *i := t
 if i<N goto L1 else L2

L2: x := t

Calculating Reaching Defn's:
Assign a unique id to each definition.
Define defs(x) to be the set of all definitions of the

temp x.
 Gen Kill
d : x := v1 ⊕ v2 {d} defs(x) - {d}
d : x := v {d} defs(x) - {d}
<everything else> { } { }

DefIn[n] = DefOut[p1] ∩ … ∩ DefOut[pn]

 where Pred[n] = {p1,…,pn}
DefOut[n] = Gen[n] ∪ (DefIn[n] - Kill[n])

Hoisting / Code Motion
We would like to hoist invariant

computations out of the loop.

But this is trickier than it sounds:
•  We have already dealt with problem of

where to place the hoisted statements by
introducing preheader nodes

•  Even then, we can run into trouble…

Valid Hoisting:
L0: t := 0

L1: i := i + 1
 t := a + b
 *i := t
 if i<N goto L1 else L2

L2: x := t

Valid Hoisting:
L0: t := 0
 t := a + b

L1: i := i + 1
 *i := t
 if i<N goto L1 else L2

L2: x := t

Invalid Hoisting:
L0: t := 0

L1: i := i + 1
 *i := t
 t := a + b
 if i<N goto L1 else L2

L2: x := t

t's definition is
loop invariant but
hoisting it conflicts
with this use of the
old t.

Conditions for Safe Hoisting:
An invariant assignment d:x:= v1⊕v2 is safe

to hoist if:
– d dominates all loop exits at which x is live-

out, and
–  there is only one definition of x in the loop,

and
– x is not live-out at the entry point for the loop

(the pre-header.)

Induction Variables
•  An induction variable is a variable in a loop,

whose value is a function of the loop
iteration number: v = f(i)

•  In compilers, this is a linear function:
 f(i) = c*i + d

•  Observation: linear combinations of linear
functions are linear functions
– Consequence: linear combinations of induction

variables are induction variables

Families of Induction Variables
•  Basic induction variable: a variable whose only definition

in the loop body is of the form i = i + c
(where c is loop invariant)

•  Derived induction variables: Each basic induction variable
i defines a family of induction variables Fam(i)
–  i in Fam(i)
–  k in Fam(i) if there is only one defn of k in the loop

body, and it has the form k = j*c or k = j+c, where
•  j in Fam(i)
•  c is loop invariant
•  The only defn of j that reaches defn of k is in the loop
•  There is no defn of I between the defns of j and k

Induction Variables
 s := 0
 i := 0
L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1
L2: ...

We can express j & k
as linear functions of i:

j = 4*i + 0
k = 4*i + a

where the coefficients
are either constants
or loop-invariant.

Induction Variables
 s := 0
 i := 0
L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1
L2: ...

So let's represent them as
triples of the form
(t, e0, e1):

j = (i, 0, 4)
k = (i, a, 4)
i = (i, 1, 1)

Induction Variables
 s := 0
 i := 0
L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1
L2: ...

Note that i only changes by
the same amount each
iteration of the loop.

We say that i is a linear
induction variable.

So it's easy to express the
change in j & k.

Induction Variables
 s := 0
 i := 0
L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1
L2: ...

If i changes by c, then since:

j = 4*i + 0
k = 4*i + a

we know that j & k change
by 4*c.

Finding Induction Variables
Scan loop body to find all basic induction variables
do

 Scan loop to find all variables k with one
assignment of form k = j*b, where j is an
induction variable <i,c,d>, and make k an
induction variable with triple <i,c*b,d>

 Scan loop to find all variables k with one
assignment of form k = j+/-b where j is an
induction variable with triple <i,c,d>, and make
k and induction variable with triple <i,c,d+/-b)

until no more induction variables found

Strength Reduction
For each derived induction variable j of the form

(i, e0, e1) make a fresh temp j'.

At the loop pre-header, initialize j' to e0.

After each i:=i+c, define j':=j'+(e1*c).

–  note that e1*c can be computed in the loop header
(i.e., it's loop invariant.)

Replace the unique assignment of j in the loop

with j := j'.

Example
 s := 0
 i := 0
 j' := 0
 k' := a
L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1
L2: ...

Example
 s := 0
 i := 0
 j' := 0
 k' := a
L1: if i >= n goto L2
 j := i*4
 k := j+a
 x := *k
 s := s+x
 i := i+1
 j' := j'+4
 k' := k'+4
L2: ...

Example
 s := 0
 i := 0
 j' := 0
 k' := a
L1: if i >= n goto L2
 j := j'
 k := k'
 x := *k
 s := s+x
 i := i+1
 j' := j'+4
 k' := k'+4
L2: ...

Copy-propagation or
coalescing will eliminate
the distinction between
 j/j' and k/k'.

Useless Variables
 s := 0
 i := 0
 j' := 0
 k' := a
L1: if i >= n goto L2
 x := *k'
 s := s+x
 i := i+1
 j' := j'+4
 k' := k'+4
L2: ...

A variable is useless for L
if it is not live out at all exits
from L and its only use is
in a definition of itself.

For example, j' is useless.

We can delete useless
variables from loops.

Useless Variables
 s := 0
 i := 0
 j' := 0
 k' := a
L1: if i >= n goto L2
 x := *k'
 s := s+x
 i := i+1
 k' := k'+4
L2: ...

DCE will pick up the
dead initialization in the
pre-header…

Almost Useless Variables
 s := 0
 i := 0
 k' := a
L1: if i >= n goto L2
 x := *k'
 s := s+x
 i := i+1
 k' := k'+4
L2: ...

The variable i is almost
useless. It would be if it
weren't used in the
comparison…

See Appel for how to
determine when/how it's
safe to rewrite this test
in terms of other
induction variables in
the family of i.

High-Level Loop Optimizations
•  Require restructuring loops or sets of loops

– Combining two loops (loop fusion)
– Switching the order of a nested loop (loop

interchange)
– Completely changing the traversal order (loop

tiling)

•  These sorts of high level optimizations
usually take place at the AST level (where
loop structure is obvious)

Cache Behavior
Most loop transformations target cache behavior
•  Attempt to increase spatial or temporal locality
•  Locality can be exploited when there is reuse of

data (for temporal locality) or recent access of
nearby data (for spatial locality)

Loops are a good opportunity for this: many loops
iterate through matrices or arrays
•  Consider matrix-vector multiply example

Cache Behavior
Loops are a good
opportunity for this: many
loops iterate through
matrices or arrays
•  Consider matrix-vector

multiply example
–  Multiple traversals or

vector: opportunity for
spatial and temporal
locality

–  Regular access to array:
opportunity for spatial
locality

Cache behavior
• Most loop transformations target cache

performance

• Attempt to increase spatial or temporal
locality

• Locality can be exploited when there is
reuse of data (for temporal locality) or
recent access of nearby data (for spatial
locality)

• Loops are a good opportunity for this: many
loops iterate through matrices or arrays

• Consider matrix-vector multiply example

• Multiple traversals of vector:
opportunity for spatial and temporal
locality

• Regular access to array: opportunity for
spatial locality

y = Ax

x

y A

i

j

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011

Loop Fusion
Combine two loops together into a single loop
•  Why is this useful? Is it always legal?

for (i=1;i<=n;i++)	
 c[i] = a[i];	
for (i=1;i<=n;i++)	
 b[i] = a[i];	
	
	

Loop fusion

• Combine two loops
together into a single
loop

• Why is this useful?

• Is this always legal?

do I = 1, n

 c[i] = a[i]

end do

do I = 1, n

 b[i] = a[i]

end do

c[1:n]

a[1:n]

b[1:n]

a[1:n]

do I = 1, n

 c[i] = a[i]

 b[i] = a[i]

end do

c[1:n]

a[1:n]

b[1:n]

Thursday, April 14, 2011

for (i=1;i<=n;i++)	
 { c[i] = a[i];	
 b[i] = a[i]; }	
	
	

Loop fusion

• Combine two loops
together into a single
loop

• Why is this useful?

• Is this always legal?

do I = 1, n

 c[i] = a[i]

end do

do I = 1, n

 b[i] = a[i]

end do

c[1:n]

a[1:n]

b[1:n]

a[1:n]

do I = 1, n

 c[i] = a[i]

 b[i] = a[i]

end do

c[1:n]

a[1:n]

b[1:n]

Thursday, April 14, 2011

Loop Interchange
Change the order of a nested loop
•  This is not always legal: it changes the order in

which elements are accessed

Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

Loop interchange

• Change the order of a nested
loop

• This is not always legal – it
changes the order that
elements are accessed!

• Why is this useful?

• Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

x

y A

i

j

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011

Change the order of a nested loop
•  This is not always legal: it changes the order in

which elements are accessed

Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

y A

i

j

x

Loop interchange

• Change the order of a nested
loop

• This is not always legal – it
changes the order that
elements are accessed!

• Why is this useful?

• Consider matrix-matrix
multiply when A is stored
in column-major order
(i.e., each column is stored
in contiguous memory)

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011

Loop Interchange

Loop tiling

• Also called “loop blocking”

• One of the more complex
loop transformations

• Goal: break loop up into
smaller pieces to get spatial
and temporal locality

• Create new inner loops
so that data accessed in
inner loops fit in cache

• Also changes iteration
order, so may not be legal

x

y A

i

j

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)

for (jj = 0; jj < N; jj += B)

for (i = ii; i < ii+B; i++)

for (j = jj; j < jj+B; j++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011

Also called “loop
blocking”
Goal: break up loop into
smaller pieces to get
spatial & temporal locality
•  One of the more complex

loop transformations
•  Create new inner loops so

data accessed in inner
loops fit in cache

•  Also changes iteration
order so may not be legal

Loop Tiling

x

y A

i

j

B

B

Loop tiling

• Also called “loop blocking”

• One of the more complex
loop transformations

• Goal: break loop up into
smaller pieces to get spatial
and temporal locality

• Create new inner loops
so that data accessed in
inner loops fit in cache

• Also changes iteration
order, so may not be legal

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j]

for (ii = 0; ii < N; ii += B)

for (jj = 0; jj < N; jj += B)

for (i = ii; i < ii+B; i++)

for (j = jj; j < jj+B; j++)

y[i] += A[i][j] * x[j]

Thursday, April 14, 2011

Also called “loop
blocking”
Goal: break up loop into
smaller pieces to get
spatial & temporal locality
•  One of the more complex

loop transformations
•  Create new inner loops so

data accessed in inner
loops fit in cache

•  Also changes iteration
order so may not be legal

Loop Tiling

Loop Optimizations
•  Loop transformations can have dramatic

effects on performance
•  Transforming loops correctly and

automatically is very difficult!
•  Researchers have developed many

techniques to determine legality of loop
transformations and automatically
transform loops.

