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My research focuses on two interconnected problems: provably correct and secure compilation and
safe language interoperability. Despite tremendous progress in compiler verification, verified compilers
are still proved correct under impractical assumptions about what the compiled code will be linked with.
These assumptions range from no linking at all—i.e., that compilation units are whole programs—to link-
ing only with code compiled by the same compiler or from the same source language. Such assumptions
contradict the reality of how we use compilers in today’s world where most software systems are comprised
of components written in different languages compiled by different compilers to a common target, as well
as runtime-library routines handwritten in the target language. When real-world linking/interoperability
needs do not match the assumptions made by compiler correctness or secure compilation theorems, such
linking may invalidate proofs establishing correctness of compiler transformations or proofs establishing
security properties of compiled code. The situation is made worse by the fact that the foreign-function in-
terfaces (FFIs), provided by most programming languages to support language interoperability, come with
no assurance that interoperability does not violate source-language type-safety guarantees.

My research has led to new formal methods—including proof techniques for program equivalence,
multi-language semantics, advanced type systems for reasoning about memory usage and low-level code,
type-preserving compiler transformations that enable secure compilation, and semantics for gradual typing
(which mixes static and dynamic type-checking)—and shown how to leverage them in a proof architecture
for building verified correct and secure compilers for realistic, statically-typed languages (with features like
mutable memory, control effects, abstract data types, and dependent types).

My long-term vision is to have verified compilers from languages as different as C, ML, Rust, Clojure,
and Gallina—the specification language of the Coq proof assistant—to a common low-level, gradually typed
WebAssembly or LLVM-like intermediate language that enforces safe interoperability between components
compiled from more precisely typed, less precisely typed, and untyped source languages. In pursuit of this
vision, I have made progress on nontrivial problems in a number of areas. Below I highlight my recent
contributions and ongoing work, and explain why it is essential for correct and secure compilation in the
setting of multi-language software. (Note: ”recent work” throughout indicates work since tenure.)

1 Compositional Compiler Correctness

Compositional compiler correctness refers to verifying correct compilation of components, not just whole
programs, which means the compiler correctness theorem must support linking with (some) target code.
In recent work at ICFP’19 [53], Daniel Patterson and I identified that recent compositional compiler
correctness results support a spectrum on linking options—linking with code (1) produced by the same
compiler [37], (2) produced by a different compiler for the same source language [44], (3) compiled from a
different language with the same expressive power [31, 63, 69], to (4) compiled from another language with
greater expressive power [56]. We gave a formal CCC framework—essentially a Compositional Compiler
Correctness theorem with pluggable parameters (including source and target languages, a linking set spec-
ifying what we can link with, etc.)—and showed how existing compositional compiler correctness results
instantiate our CCC theorem. These instantiations shed light on the benefits and drawbacks of recent re-
sults, and provide reviewers and the compiler-verification community with a framework for understanding
and comparing existing and future compositional compiler correctness theorems.
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In earlier work on compositional compiler correctness for multi-language software [3,56], we proposed
a novel specification for compositional compiler correctness: if a source component s compiles to a target
component t, then t linked with some arbitrary target code t ′ should behave the same as s interoperating with
t ′. To express the latter, we developed a formal semantics of interoperability between (high-level) source
components and (low-level) target code as a multi-language system [43] that allows source components to be
placed in target contexts and vice versa. Jamie Perconti and I showed that this source-target multi-language
semantics approach can be used to verify multi-pass compilers by defining interoperability between the
source and target of each compiler pass [56], and that the correctness proofs for passes easily compose,
giving us end-to-end compiler correctness. We have used source-target multi-languages for the verification
of several compiler transformations [6, 47, 56], and showed that our approach supports reasoning about
linking that is outside the scope of other proof architectures, namely linking with (1) code whose behavior
could not be expressed in the compiler’s source language and (2) code that might be better implemented in
a different language—e.g. more efficiently, or with handling of exceptional behavior.

In recent work at PPDP’19 [42], we extended our source-target multi-language approach to an ML-
style imperative source language, a nontrivial challenge due to the mix of mutable references and polymor-
phism in both interoperating languages. We verified a typed closure conversion pass from this source, with
no control effects, to an imperative target language with first-class continuations (call/cc). Our compiler
correctness theorem allows compiled code (from a language without control effects) to be linked with code
that can use call/cc to manipulate control flow of the compiled component. We showed a useful example of
this: linking with a library for cooperative multi-threading (an implementation of “green threads”).

This line of work has been recognized through invitations for keynote addresses (Mathematical Founda-
tions of Programming Semantics Conference (MFPS 2019), Asian Symposium on Programming Languages
(APLAS 2018), International Conference on Formal Structures of Computation and Deduction (FSCD
2016)), invited talks (Programming Languages Mentoring Workshop (PLMW at PLDI 2020, PLMW at
ICFP 2017), and the 2019 launch of the Purdue Center for Programming Principles and Software Systems
(PURPL)), tutorial lectures (Oregon Programming Languages Summer School (2016, 2017) and the Ph.D.
School at CIRM (2014)). I have received an NSF CAREER Award (2015-2020) and a Google Faculty
Research Award (2014) to support this line of work.

I have also worked on correctness of speculative optimizations, which are key to just-in-time optimiza-
tion of dynamic languages. These optimizations depend on predicates about the program state, so the lan-
guage implementation must monitor the validity of predicates and deoptimize the program if a predicate is
invalidated. While many modern compilers rely on this approach, the interplay between optimization and
deoptimization often remains opaque. In recent work at POPL’18 [25], we designed sourir, an interme-
diate representation (IR) that explicitly captures the predicates and the actions required to deoptimize the
program, making it easy to define correct speculative optimizations that are deoptimization aware. We show
equivalence (bisimulation) of multiple versions of the same function optimized under different assumptions,
proving correctness of some standard compiler optimizations, as well as three that deal with deoptimization.

Ongoing and Future Work Michael Fitzgibbons (undergraduate), Zoe Paraskevopoulou (postdoc) and I
have designed RichWasm, a richly typed variant of WebAssembly (Wasm) that extends Wasm with a sub-
structural capability-based type system for type-safe shared memory interoperability between Wasm mod-
ules. Notably, it also supports safe sharing of manually managed and garbage-collected memory between
languages. We have developed type-preserving compilers to RichWasm from core ML and from L3 [8]
(whose type system leverages linear capability types to safely support strong updates and manual memory
management), and support safe interoperability between them. In the future, we plan to enrich RichWasm
so we can perform type-preserving compilation from Rust and design a safe FFI between ML and Rust.

My postdoc Zoe Paraskevopoulou (funded by the CI Fellows 2020 program) has begun work on a plat-
form for safe language interoperabilty based on capability-enhanced WebAssembly built on top of CHERI.
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ARM recently announced support for the CHERI architecture which ensures safe memory usage by check-
ing, in hardware, that each memory access is accompanied by a capability. We are designing CapWasm, a
Wasm variant with runtime capability checking for memory accesses, which we will implement by compil-
ing to CHERI to keep performance overhead low by doing checks in hardware. Thus, any Wasm program
can be run with CapWasm, which will ensure memory safety. Next, we plan to design safe interoperability
(sound gradual typing) between our RichWasm (with rich type system and static capability checking) and
CapWasm (with dynamic, hardware-based capability checking), giving us a path to memory-safe interoper-
ability between strongly typed languages (e.g., Rust or ML, compiled to RichWasm), and untyped or unsafe
languages (e.g., C, compiled to Wasm/CapWasm).

2 Secure Compilation

Many statically-typed programming languages provide strong information-hiding guarantees to the pro-
grammer. For instance, Java guarantees that information in a private field will remain hidden from all clients
of the object and security-typed languages guarantee that data tagged as high-security (confidential) will
remain hidden from low-security clients. For such languages, we want compilation to not only be correct,
but also preserve source-level security and abstraction guarantees—i.e., target clients (attackers) should not
be able to learn information from compiled components that source clients may not learn from the original
source component. Formally, the compiler should be fully abstract: it should guarantee that two source
components are contextually equivalent in the source language if and only if their compiled versions are
contextually equivalent in the target.

Unlike existing work, which achieves secure compilation using dynamic checks to guard interactions
between compiled components and target-level clients (attackers), my work has focused on devising type-
preserving compilers that translate source-language types appropriate target-language types, so we can lever-
age static checks to ensure that compiled code is only linked with target clients that respect source-level se-
curity and abstraction guarantees. Statically enforced secure compilation avoids the significant performance
overhead associated with dynamic enforcement, as long as low-level clients can be verified (type-checked).

A nontrivial challenge when building secure compilers is how to prove that compilation preserves
source-language abstractions. The proof requires showing that any target client that a compiled component
may be linked with can be back-translated to a behaviorally equivalent source client. Back-translation—
and, hence, secure compilation—was long considered impossible for realistic compilers since their target
languages usually contain features inexpressible in the source. In earlier work, I developed back-translation
techniques for increasingly challenging source and target language pairs, where the target contains features
unavailable in the source [5, 6, 13, 47]. The most recent of these results uses a technique called universal
embedding [47], which employs recursive types in the source to support back-translation of non-terminating
programs, target features that are untypeable in the source, and well-bracketed effects. This technique should
scale well to verification of realistic secure compilers.

In a recent Computing Surveys (2019) paper [51] with Marco Patrignani and Dave Clarke, we present
a survey of formal approaches to secure compilation from the existing literature. We focus on fully abstract
compilation, the secure compilation criterion adopted by most work until quite recently, discuss static versus
dynamic enforcement and the relationship with type-preserving and correct compilation. The survey fills an
important need in the rapidly growing secure compilation field and already has 52 citations.

My work on secure compilation has been recognized by invitations for a keynote address at the Sym-
posium on Computer Security Foundations (CSF 2020, talk titled Secure Compilation: Challenges for the
Next Decade), and tutorial lectures (Oregon Programming Languages Summer School (2017, 2019)). I
have also worked to build the community of researchers working on secure compilation. I co-organized the
first Secure Compilation Meeting (SCM 2017) co-located with POPL—renamed the Principles of Secure
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Compilation Workshop (PriSC) in 2018. I served on the PriSC PC in 2018 and 2021. I also co-organized the
first Dagstuhl Seminar on Secure Compilation in 2018 (with Deepak Garg, Catalin Hritcu, Frank Piessens).

3 Type-Preserving Compilation of Dependent Types

Dependently typed languages such as Gallina—the specification language of the Coq proof assistant—
are now widely used to specify and prove functional correctness of source programs. However, what we
ultimately need are guarantees about correctness of compiled code. By preserving dependent types through
each compiler pass, we can preserve source-level specifications and correctness proofs into the generated
target-language programs. Moreover, we can use these target-level types to ensure that compiled code can
never be linked with ill-behaved/insecure contexts.

Unfortunately, type-preserving compilation of dependent types is hard, in essence because dependent
types allow program terms to appear in types. Dependent type systems are designed around high-level
abstractions to decide the term/type equivalences needed for type checking, but compilation interferes with
the type-system rules for reasoning about run-time terms. In fact, there is a negative result: in 2002, Barthe
and Uustalu [11] showed that type-preserving CPS translation (continuation-passing style) is not possible
for the Calculus of Constructions (CC), a subset of Gallina.

In recent work at POPL’18 [15], we showed that type-preserving CPS translation for CC is, in fact,
possible. Barthe and Uustalu’s negative result applies to the standard typed CPS translation, where compu-
tations of type A are assigned type (A →⊥)→⊥ after translation, which disrupts the term/type equivalence
used during type-checking. Our key observation is to instead use a typed CPS translation that employs
answer-type polymorphism, where CPS’d computations are assigned the type ∀α.(A → α)→ α . This type
justifies, via a free theorem, a new equality rule and typing rule that we add to our CPS target language,
which allow us to recover the term/type equivalences that standard typed CPS disrupts.

In recent work at PLDI’18 [14], we developed a type-preserving closure conversion translation for CC.
Closure conversion translates functions with free variables into closures, which pair code with an environ-
ment that provides bindings for the free variables. The challenge again is to transform source-type-system
rules for reasoning about a high-level abstraction (functions) to target-type-system rules for reasoning about
a low-level abstraction (closures). We also prove correctness of separate compilation for both translations.

This line of work is part of my student William Bowman’s PhD dissertation [12]. William is now an
Assistant Professor at University of British Columbia (UBC).

Ongoing Work In a recent submission to POPL’22 [38], we give a type-preserving ANF translation with
join-point optimization for the Extended Calculus of Constructions (ECC), including higher universes as in
Gallina. ANF is a popular alternative to CPS translation in regular compilers and has benefits over CPS
when compiling dependent types.

4 Language Interoperability

In recent work at PLDI’17 (FunTAL) [55] and at FOSSACS’18 (FabULous) [59], we presented multi-
language systems that mix highly disparate languages. FunTAL [55] combines a high-level typed functional
language F and a stack-based typed assembly language T . This was challenging due to the lack of compo-
sitional structure at the assembly level: the natural unit of computation one can execute and reason about in
assembly is a single basic block, but an assembly component may be comprised of multiple basic blocks.
We addressed this by designing a compositional typed assembly language (TAL) T whose type system is
augmented to track where the return address for the currently executing component is stored—i.e., in which
register or at what stack index. A significant contribution of this work is a step-indexed Kripke logical
relation for the multi-language FT which can be used to prove equivalence of a high-level functional F
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component and an assembly-level imperative T component as well as of two TAL components comprised of
different numbers of basic blocks. This is the first result to guarantee safe interoperability between a high-
level functional language and low-level assembly. In “FabULous” [59], we present a multi-language UL that
mixes an Unrestricted language (ML) with a Linear language with linear state. UL supports in-place mem-
ory updates and safe resource handling. We prove that the embedding of ML into the multi-language is fully
abstract and advocate fully abstract embedding as a design criterion for multi-languages so equivalences
(and refactoring) of the embedded language remain valid even when programming in the multi-language.

In a recent paper at SNAPL’17 [52], Daniel Patterson and I proposed the idea of linking types to
address the problem of reasoning about single-language components in a multi-lingual setting. Large soft-
ware systems are often built using multiple languages with different expressive power, but a programmer
writing a component of that system in one language should be able to reason about their code—e.g., about
correctness of refactoring—in their language alone, without having to consider multi-language interactions.
Linking types allow programmers to annotate where in a program they wish to link with components in-
expressible in their unadulterated language. This enables developers to reason about (behavioral) equality
using only their own language and the annotations, even though their code may be linked with code written
in a language with more expressive power.

This line of work has been recognized by invitations for a keynote address at Strange Loop 2018 (talk
titled All the Languages Together) and an invited talk at SPLASH-I 2018. I have also received an NSF
Award (2018-2021) to investigate principled compiling and linking for multi-language software.

Ongoing and Future Work Matthews-Findler-style multi-language systems [43] have been immensely
valuable for formalizing source-to-source interoperability, but they don’t reflect how foreign-function inter-
faces (FFIs) are implemented. In practice, interoperability takes place after compilation to a common target
and is mediated by “glue code” that handles conversions between the two languages. In a recent submis-
sion to POPL’22 [54], my students Daniel Patterson, Noble Mushtak (undergraduate), Andrew Wagner, and
I present a novel framework for the design and verification of sound language interoperability that follows an
interoperation-after-compilation strategy. We verify soundness of target-level conversions by giving a model
of source-language types as sets of target-language terms. We apply the framework to verify several case
studies: interoperability with (1) shared memory, (2) between a pure polymorphic language and one with
strong updates, and (3) between ML and an affine language, all compiled to untyped target languages. We
show how our approach helps language designers better take advantage of efficient enforcement mechanisms
and opportunities for sound sharing that may not be obvious in a setting divorced from implementations.

In future work, we plan to show that our framework scales to practical FFIs, by using it to verify We-
bAssembly Interface Types [29] and an OCaml-Rust FFI implemented via compilation to WebAssembly.

5 Semantic Foundations for Gradual Typing

Gradually typed languages allow intermingling of statically and dynamically typed code and support gradual
migration of dynamically typed code to a statically typed style. In a series of recent papers at ICFP’18 [46],
POPL’19 [49], and POPL’20 [48], we have focused on designing gradual languages that satisfy two impor-
tant criteria. The first is a stronger form of type soundness than what existing designs require: existing work
focuses on just type safety, but gradual type soundness should also ensure type-based equational reasoning
that justifies refactoring and compiler optimization of statically typed portions of a program. The second
is support for a smooth transition from untyped to typed code, known as the gradual guarantee [60], or
graduality, which says that making the types in a program more precise (changing from untyped to some
type) should only add runtime checks to catch type errors, and not otherwise change program behavior.

Specifically, we present a semantic framework for the design and metatheoretic analysis of gradually
typed languages based on the theory of embedding-projection pairs. We use two key ideas: (1) Design the
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semantics of the gradual language by translation into a typed language with runtime type errors, translating
the dynamic (i.e., unknown) type to a recursive tagged sum of all the possible types in the gradual language;
(2) Define the semantics of casts using embedding-projection (EP) pairs, i.e., a function for embedding each
values of type A into the dynamic type, and another function for projecting values from the dynamic type
to A, which may error at runtime if the type is violated. EP pairs have the property that (a) embedding then
projecting is the identity and (b) projecting then embedding errors more than the identity.

Although graduality has been considered an important property [60], it didn’t have a clean semantic
definition and was considered difficult to prove. A significant contribution of our ICFP 2018 paper [46]
is a novel method for proving graduality using logical relations and EP pairs, which we’ve successfully
employed in subsequent work.

Our POPL 2019 paper [49, 50] presents Gradual Type Theory (GTT), a powerful framework for the
systematic design of gradual languages. With GTT, we axiomatize desired properties of gradual languages,
such as graduality and type-based equational reasoning, and then derive the necessary cast (runtime) seman-
tics. Using GTT, we can study how much freedom one has in the design of gradual languages—e.g., we
have shown that if we want graduality and strong type soundness, then all casts must behave according to
what is dubbed the “natural” semantics of gradual typing (which is the one used in Typed Racket).

In work at ICFP’17 [9], we presented a gradual language with polymorphism/generics that ensures
parametricity (information hiding), a long-open problem. Subsequently, our POPL 2020 paper addresses
the problem of designing a polymorphic gradual language that satisfies both parametricity and graduality,
a significant open problem. In a POPL’19 Distinguished-Award-winning paper, Toro et al. [67] suggested
that parametricity and graduality are inherently incompatible, at least for a traditional polymorphic typed
language (System F) and opted to support only parametricity. Our POPL 2020 paper explained that the in-
compatibility was a result of System F syntax and showed how to devise a novel polymorphic-typing syntax
and gradual language that allows us to support both parametricity and graduality. Our gradual language
has a novel form of abstract types, inspired by Haskell’s newtype feature and static module systems. A
fundamental contribution is that we proved parametricity as a simple corollary of graduality, illustrating the
connection between the two properties. Our paper also gave a counterexample showing that Toro et al.’s
gradual language [67] actually violates parametricity, unless the program is fully statically typed.

This line of work is part of my student Max New’s PhD dissertation [45]. Max will start as an Assistant
Professor at University of Michigan, Ann Arbor this fall. This work has been recognized by an invitation
for a keynote address (International Symposium on Principles and Practice of Declarative Programming
(PPDP 2019)). I have also received an NSF Award (2019-2022, with Daniel Licata) to extend our GTT
approach to gradual typing for effects and dependent types.

6 Ongoing and Future Work
Oxide: The Essence of Rust In a recent submission to POPL’22 [70] my students Aaron Weiss, Olek
Gierczak, Daniel Patterson, and I present Oxide, a formal, proved sound, semantics of Rust that faithfully
captures its complex borrow-checking semantics. Oxide takes a novel view of Rust lifetimes as sets of loca-
tions called regions which approximate the origins of references. We devise a type system for region-based
alias management that tracks origin information via a control-flow-based substructural typing judgment.
We hope Oxide will provide a much needed formal foundation that PL researchers can build on when de-
veloping verification tools for Rust and exploring language extensions. The only existing model for Rust
is λRust [35], which uses continuation-passing style and models the Middle IR (MIR) in the Rust com-
piler, and thus is too low-level to build on for projects concerned with source-level Rust. Instead of λRust’s
semantic approach to type soundness, Oxide is proved sound using progress and preservation.
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Cryptis: Compositional Verification of Tagged Protocols Modern verification tools can analyze sophis-
ticated protocols in isolation, but provide few guarantees when a protocol is composed with components
that were not included in the original analysis. In a recent submission to POPL’22 [21], Arthur Azevedo
de Amorim, Marco Gaboardi, and I present a new logic, Cryptis, for symbolic verification of protocols with
tagged messages. Cryptis provides composition through tag invariants — assertions that guarantee that
every message tagged in a certain way satisfies some property. Taking inspiration from separation logic,
we show that if different protocols use disjoint tags, they can safely execute in parallel, even if they share
private keys or other secrets. Cryptis is implemented in Coq with the Iris framework. We have used it to
verify several case studies and to show that a composite system can be verified modularly.

Languages for Verifying and Implementing UC-Secure Protocols Cryptographers design a protocol
specification and prove it secure— e.g., showing that it satisfies Universal Composability (UC) [16–18],
a high standard for security since UC-secure protocols can be easily composed. Systems cryptographers
then implement the protocol in an actual programming language, but with no way of formally connecting
the protocol implementation and its specification. We are designing a specification language based on
multi-party session types (MPST) [33] for writing protocols and their ideal functionalities and formally
proving them UC-secure via the kinds of hybrid arguments that cryptographers typically do on paper. We
are also working on an implementation language suited to implementing and optimizing protocols that, more
importantly, integrates the specification language so one can easily ensure that the protocol implementation
satisfies its UC spec. This is joint work with abhi shelat, originally funded by an IARPA HECTOR award,
led by my student Andrew Wagner and abhi’s student Jack Doerner.

Intermediate Language for Semantically Sensible Language Composition We are designing an in-
termediate language (IL) that is based on Call By Push Value (CBPV) [41] but comes with a low-level
CompCert memory model [40]. We wish to perform type-preserving compilation from a variety of DSLs
to this IL and benefit from the advanced type-based reasoning (about pure and effectful computation) that
CBPV provides so we can compose code from different DSLs in a semantically sensible way. We also want
to be able to lift LLVM IR into this IL and allow it to interoperate with the code compiled from DSLs. This
work is funded by a DARPA V-SPELLS award whose goal is to lift parts of a legacy codebase into DSLs
and do verified compilation, potentially to modern hardware that offers higher performance or security.

7 Impact of Earlier Work on Logical Relations

Logical relations are a well-known method for proving equivalence of program components and type sound-
ness of languages, but for decades they could not be scaled to features found in practical programming lan-
guages. My dissertation and early-career work on step-indexed Kripke logical relations has shown how to
scale the method to realistic (typed and untyped) languages with features such as ML- and Java-style mutable
references, recursive types, polymorphism, and concurrency [1, 2, 4, 7, 10, 23, 24, 68]. More recently, I have
extended the technique to multi-languages, correct/secure compilation, gradual typing as discussed above.

This work continues to have tremendous impact: step-indexed logical relations are now a de facto proof
technique, used extensively by PL researchers in a wide variety of contexts, and regularly employed in
results published at top-tier venues. Here I cite only a few recent examples: they have been used for
proving soundness or security properties of advanced type systems [19, 20, 28, 30, 32, 35, 57, 58, 66]; for
proofs of compiler correctness and secure compilation [22,34,44,65]; for soundness of logics for concurrent
reasoning [36] and verification of concurrent code [26, 39, 64]; and for soundness of program reasoning on
capability machines [27, 61, 62].

I have been invited to give tutorial lectures on logical relations at the Oregon Programming Languages
Summer School (OPLSS 2011, 2012, 2013, 2015, 2016, 2017). The lecture videos available online have
played an important role in helping the PL community learn to use logical relations.

7



References
[1] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-adjusting computation. In ACM Symposium on Principles

of Programming Languages (POPL), San Francisco, California, pages 309–322, January 2008.

[2] Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In European Symposium on
Programming (ESOP), pages 69–83, March 2006.

[3] Amal Ahmed. Verified Compilers for a Multi-Language World. In Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi,
Benjamin S. Lerner, and Greg Morrisett, editors, 1st Summit on Advances in Programming Languages (SNAPL 2015), vol-
ume 32 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15–31, 2015.

[4] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. Semantic
foundations for typed assembly languages. ACM Transactions on Programming Languages and Systems, 32(3):1–67, March
2010.

[5] Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equivalence. In International Confer-
ence on Functional Programming (ICFP), Victoria, British Columbia, Canada, pages 157–168, September 2008.

[6] Amal Ahmed and Matthias Blume. An equivalence-preserving CPS translation via multi-language semantics. In Interna-
tional Conference on Functional Programming (ICFP), Tokyo, Japan, pages 431–444, September 2011.

[7] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation independence. In ACM Symposium on
Principles of Programming Languages (POPL), Savannah, Georgia, January 2009.

[8] Amal Ahmed, Matthew Fluet, and Greg Morrisett. L3 : A linear language with locations. Fundamenta Informaticae,
77(4):397–449, June 2007.

[9] Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. Theorems for free for free: Parametricity, with and without
types. In International Conference on Functional Programming (ICFP), Oxford, England, 2017.

[10] Amal Jamil Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University, November 2004.

[11] Gilles Barthe and Tarmo Uustalu. CPS translating inductive and coinductive types. In Proceedings of the 2002 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-based Program Manipulation, PEPM ’02, pages 131–142, 2002.

[12] William J. Bowman. Compiling with Dependent Types. PhD thesis, Northeastern University, November 2018.

[13] William J. Bowman and Amal Ahmed. Noninterference for free. In International Conference on Functional Programming
(ICFP), Vancouver, British Columbia, Canada, September 2015.

[14] William J. Bowman and Amal Ahmed. Typed closure conversion for the calculus of constructions. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Philadelphia, Pennsylvania, 2018.

[15] William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. Type-preserving cps translation of σ and π types is not
not possible. In ACM Symposium on Principles of Programming Languages (POPL), Los Angeles, California, 2018.

[16] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive.
Report 2000/067.

[17] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages 136–145, 2001.

[18] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable security for standard multiparty
computation. Cryptology ePrint Archive. Report 2014/553.
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