
How to Tell if Your Cloud Files
Are Vulnerable to Drive Crashes

Kevin D. Bowers
RSA Laboratories

Cambridge, MA, USA
kbowers@rsa.com

Marten van Dijk
RSA Laboratories

Cambridge, MA, USA
marten.vandijk@rsa.com

Ari Juels
RSA Laboratories

Cambridge, MA, USA
ajuels@rsa.com

Alina Oprea
RSA Laboratories

Cambridge, MA, USA
aoprea@rsa.com

Ronald L. Rivest
MIT CSAIL

Cambridge, MA, USA
rivest@mit.edu

ABSTRACT
This paper presents a new challenge—verifying that a remote server
is storing a file in a fault-tolerant manner, i.e., such that it can sur-
vive hard-drive failures. We describe an approach called theRe-
mote Assessment of Fault Tolerance(RAFT). The key technique in
a RAFT is to measure thetime takenfor a server to respond to a
read request for a collection of file blocks. The larger the number
of hard drives across which a file is distributed, the faster the read-
request response. Erasure codes also play an important role in our
solution. We describe a theoretical framework for RAFTs and offer
experimental evidence that RAFTs can work in practice in several
settings of interest.

Categories and Subject Descriptors
E.3 [Data]: [Data Encryption]

General Terms
Security

Keywords
Cloud storage, auditing, fault tolerance, erasure codes

1. INTRODUCTION
Cloud storage offers clients a unified view of a file as a single,

integral object. This abstraction is appealingly simple. In reality,
though, cloud providers generally store files/objects with redun-
dancy or error correction to protect against data loss. Amazon, for
example, claims that its S3 service stores three replicas of each ob-
ject1. Additionally, cloud providers often spread files across mul-
tiple storage devices. Such distribution provides resilience against

1Amazon has also recently introduced reduced redundancy storage
that promises less fault tolerance at lower cost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11,October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

hardware failures, e.g., drive crashes (and can also lower latency
across disparate geographies).

The single-copy file abstraction in cloud storage, however, con-
ceals file-layout information from clients. It therefore deprives
them of insight into the true degree of fault-tolerance their files
enjoy. Even when cloud providers specify a storage policy (e.g.,
even given Amazon’s claim of triplicate storage), clients have no
technical means ofverifying that their files aren’t vulnerable, for
instance, to drive crashes. In light of clients’ increasingly critical
reliance on cloud storage for file retention, and the massive cloud-
storage failures that have come to light, e.g., [9], it is our belief that
remote testing of fault tolerance is a vital complement to contrac-
tual assurances and service-level specifications.

In this paper we develop a protocol for remote testing of fault-
tolerance for stored files. We call our approach theRemote Assess-
ment of Fault Tolerance(RAFT). A RAFT enables a client to obtain
proof that a given fileF is distributed across physical storage de-
vices to achieve a certain desired level of fault tolerance. We refer
to storage units asdrivesfor concreteness. For protocol parameter
t, our techniques enable a cloud provider to prove to a client that
the fileF can be reconstructed from surviving data given failure
of any set oft drives. For example, if Amazon were to prove that
it stores a fileF fully in triplicate, i.e., one copy on three distinct
drives, this would imply thatF is resilient tot = 2 drive crashes.

At first glance, proving that file data is stored redundantly, and
thus proving fault-tolerance, might seem an impossible task. It is
straightforward for storage serviceS to prove knowledge of a file
F , and hence that it has stored at least one copy.S can just transmit
F . But how canS prove, for instance, that it hasthree distinct
copiesof F? TransmittingF three times clearly doesn’t do the
trick! Even proving storage of three copies doesn’t prove fault-
tolerance: the three copies could all be stored on the same disk!

To show thatF isn’t vulnerable to drive crashes, it is necessary
to show that it is spread across multiple drives. Our approach, the
Remote Assessment of Fault Tolerance, proves the use of multiple
drives by exploiting drives’ performance constraints—in particular
bounds on thetime required for drives to perform challenge tasks.
A RAFT is structured as a timed challenge-response protocol. A
short story gives the intuition. Here, the aim is to ensure that a
pizza order can toleratet = 1 oven failures.

A fraternity (“Eeta Pizza Pi”) regularly orders pizza
from a local pizza shop, “Cheapskate Pizza.” Recently
Cheapskate failed to deliver pizzas for the big pregame
party, claiming that their only pizza oven had suffered

a catastrophic failure. They are currently replacing it
with two new BakesALot ovens, for increased capacity
and reliability in case one should fail.

Aim O’Bese, president of Eeta Pizza Pi, wants to
verify that Cheapskate has indeed installed redundant
pizza ovens, without having to visit the Cheapskate
premises himself. He devises the following clever ap-
proach. Knowing that each BakesALot oven can bake
two pizzas every ten minutes, he places an order for
two dozen pizzas, for delivery to the fraternity as soon
as possible. Such a large order should take an hour
of oven time in the two ovens, while a single oven
would take two hours. The order includes various un-
usual combinations of ingredients, such as pineapple,
anchovies, and garlic, to prevent Cheapskate from de-
livering warmed up pre-made pizzas.

Cheapskate is a fifteen minute drive from the fra-
ternity. When Cheapskate delivers the two dozen piz-
zas in an hour and twenty minutes, Aim decides, while
consuming the last slice of pineapple/anchovy/garlic
pizza, that Cheapskate must be telling the truth. He
gives them the fraternity’s next pregame party order.

Our RAFT for drive fault-tolerance testing follows the approach
illustrated in this story. The client challenges the server to retrieve
a set of random file blocks from fileF . By responding quickly
enough,S proves that it has distributedF across a certain, mini-
mum number of drives. Suppose, for example, thatS is challenged
to pull 100 random blocks fromF , and that this task takes one sec-
ond on a single drive. IfS can respond in only half a second2, it is
clear that it has distributedF across at least two drives.

Again, the goal of a RAFT is forS to prove to a client thatF is
recoverable in the face of at leastt drive failures for somet. Thus
S must actually do more than prove thatF is distributed across a
certain number of drives. It mustalsoprove thatF has been stored
with a certain amount ofredundancyand that the distribution ofF
across drives iswell balanced. To ensure these two additional prop-
erties, the client and server agree upon a particular mapping of file
blocks to drives. An underlying erasure code provides redundancy.
By randomly challenging the server to show that blocks ofF are
laid out on drives in the agreed-upon mapping, the client can then
verify resilience tot drive failures.

The real-world behavior of hard drives presents a protocol-design
challenge: The response time of a drive can vary considerably from
read to read. Our protocols rely in particular on timing measure-
ments of disk seeks, the operation of locating randomly accessed
blocks on a drive. Seek times exhibit high variance, with multiple
factors at play (including disk prefetching algorithms, disk internal
buffer sizes, physical layout of accessed blocks, etc.). To smooth
out this variance we craft our RAFTs to samplemultiplerandomly
selected file blocks per drive. Clients not only check the correct-
ness of the server’s responses, but also measure response times and
accept a proof only if the server replies within a certain time inter-
val.

We propose and experimentally validate on a local system a RAFT
that can, for example, distinguish between a three-drive system
2Of course,S can violate our assumed bounds on drive perfor-
mance by employing unexpectedly high-grade storage devices,
e.g., flash storage instead of rotational disks. As we explain below,
though, our techniques aim to protect against economically rational
adversariesS. Such anS might create substandard fault tolerance
to cut costs, but would not employ more expensive hardware just
to circumvent our protocols. (More expensive drives often mean
higher reliability anyway.)

with fault tolerancet = 1 and a two-drive system with no fault tol-
erance for files of size at least 100MB. Additionally, we explore the
feasibility of the RAFT protocol on the Mozy cloud backup system
and confirm that Mozy is resilient to at least one drive failure. We
conclude that RAFT protocols are most applicable to test fault tol-
erance for large files in an archival or backup setting in which files
are infrequently accessed and thus there is limited drive contention.

Our RAFT protocol presented in this paper is designed for tra-
ditional storage architectures that employ disk-level replication of
files and use hard disk drives (HDDs) as the storage medium. While
these architectures are still prevalent today, there are many settings
in which our current protocol design is not directly applicable. For
instance, the characteristics of HDD’s sequential and random ac-
cess do not hold for SSD drives or RAM memory, which could po-
tentially be used for performance-sensitive workloads in systems
employing multi-tier storage (e.g., [2, 28]). Systems with data lay-
out done at the block level (as opposed to file-level layout) are
also not amenable to our current design, as in that setting timing
information in our challenge-response protocol does not directly
translate into fault tolerance. Examples of architectures with block-
level data layout are chunk-based file systems [1, 15], and systems
with block-level de-duplication [8]. Other features such as spinning
disks down for power savings, or replicating data across different
geographical locations complicate the design of a RAFT-like proto-
col. Nevertheless, we believe that our techniques can be adapted to
some of these emerging architectures and we plan to evaluate this
further in future work.

RAFTs aim primarily to protect against “economically rational”
service providers/adversaries, which we define formally below. Our
adversarial model is thus a mild one. We envision scenarios in
which a service provider agrees to furnish a certain degree of fault
tolerance, but cuts corners. To reduce operating costs, the provider
might maintain equipment poorly, resulting in unremediated data
loss, enforce less file redundancy than promised, or use fewer drives
than needed to achieve the promised level of fault tolerance. (The
provider might even use too few drives accidentally, as virtualiza-
tion of devices causes unintended consolidation of physical drives.)
An economically rational service provider, though,only provides
substandard fault tolerance when doing so reduces costs. The provider
does not otherwise, i.e., maliciously, introduce drive-failure vulner-
abilities. We explain later, in fact, why protection against malicious
providers is technically infeasible.

1.1 Related work
Proofs of Data Possession (PDPs) [3] and Proofs of Retrievabil-

ity (PORs) [10, 11, 21, 31] are challenge-response protocols that
verify the integrity and completeness of a remotely storedF . They
share with our work the idea of combining error-coding with ran-
dom sampling to achieve a low-bandwidth proof of storage of a file
F . This technique was first advanced in a theoretical framework
in [27]. Both [23] and [5] remotely verify fault tolerance at a logi-
cal level by using multiple independent cloud storage providers. A
RAFT includes the extra dimension of verifying physical layout of
F and tolerance to a number of drive failures at a single provider.

Cryptographic challenge-response protocols prove knowledge of
a secret—or, in the case of PDPs and PORs, knowledge of a file.
The idea of timing a response to measure remote physical resources
arises in cryptographicpuzzleconstructions [12]. For instance,
a challenge-response protocol based on a moderately hard com-
putational problems can measure the computational resources of
clients submitting service requests and mitigate denial-of-service
attacks by proportionately scaling service fulfilment [20]. Our pro-
tocols here measure not computational resources, but the storage

resources devoted to a file. (Less directly related is physical dis-
tance bounding, introduced in a cryptographic setting in [7]. There,
packet time-of-flight gives an upper bound on distance.)

We focus on non-Byzantine, i.e., non-malicious, adversarial mod-
els. We presume that malicious behavior in cloud storage providers
is rare. As we explain, such behavior is largely irremediable any-
way. Instead, we focus on an adversarial model (“cheap-and-lazy”)
that captures the behavior of a basic, cost-cutting or sloppy storage
provider. We also consider an economically rational model for the
provider. Most study of economically rational players in cryptogra-
phy is in the multiplayer setting, but economical rationality is also
implicit in some protocols for storage integrity. For example, [3,16]
verify that a provider has dedicated a certain amount of storage to
a fileF , but don’t strongly assure file integrity. We formalize the
concept of self-interested storage providers in our work here.

A RAFT falls under the broad heading of cloud security assu-
rance. There have been many proposals to verify the security char-
acteristics and configuration of cloud systems by means of trusted
hardware, e.g., [14]. Our RAFT approach advantageously avoids
the complexity of trusted hardware. Drives typically don’t carry
trusted hardware in any case, and higher layers of a storage subsys-
tem can’t provide the physical-layer assurances we aim at here.

1.2 Organization
Section 2 gives an overview of key ideas and techniques in our

RAFT scheme. We present formal adversarial and system models
in Section 3. In Section 4, we introduce a basic RAFT in a sim-
ple system model. Drawing on experiments, we refine this system
model in Section 5, resulting in a more sophisticated RAFT which
we validate against the Mozy cloud backup service in Section 6. In
Section 7, we formalize an economically rational adversarial model
and sketch matching RAFT constructions. We conclude in Sec-
tion 8 with discussion of future directions.

2. OVERVIEW: BUILDING A RAFT
We now discuss in further detail the practical technical chal-

lenges in building a RAFT for hard drives, and the techniques we
use to address them. We view the fileF as a sequence ofm blocks
of fixed size (e.g., 64KB).

File redundancy / erasure coding. To tolerate drive failures, the
file F must be stored with redundancy. A RAFT thus includes an
initial step that expandsF into ann-block erasure-coded represen-
tationG. If the goal is to place file blocks evenly acrossc drives to
tolerate the failure of anyt drives, then we needn = mc/(c − t).
Our adversarial model, though, also allows the server to drop a por-
tion of blocks or place some blocks on the wrong drives. We show
how to parameterize our erasure coding at a still higher rate, i.e.,
choose a largern, to handle these possibilities.

Challenge structure. (“What order should Eeta Pizza Pie place to
challenge Cheapskate?”) We focus on a “layout specified” RAFT,
one in which the client and server agree upon an exact placement of
the blocks ofG onc drives, i.e., a mapping of each block to a given
drive. The client, then, challenges the server with a queryQ that
selects exactly one block per drive in the agreed-upon layout. An
honest server can respond by pulling exactly one block per drive
(in one “step”). A cheating server, e.g., one that uses fewer thanc
drives, will need at least one drive to servicetwo block requests to
fulfill Q, resulting in a slowdown.

Network latency. (“What if Cheapskate’s delivery truck runs into
traffic congestion?”) The network latency, i.e., roundtrip packet-
travel time, between the client and server, can vary due to changing
network congestion conditions. The client cannot tell how much a

response delay is due to network conditions and how much might
be due to cheating by the server. Based on the study by Lumezanu
et al [24] and our own small-scale experiments, we set an upper
bound threshold on the variability in latency between a challenging
client and a storage service. We consider that time to be “free time”
for the adversary, time in which the adversary can cheat, prefetch-
ing blocks from disk or perform any other action that increases his
success probability in the challenge-response protocol. We design
our protocol to be resilient to a bounded amount of “free time”
given to the adversary.

Drive read-time variance. (“What if the BakesALot ovens bake
at inconsistent rates?”) The read-response time for a drive varies
across reads. We perform experiments, though, showing that for
a carefully calibrated file-block size, the response time follows a
probability distribution that is stable across time and physical file
positioning on disk. (We show how to exploit the fact that a drive’s
“seek time” distribution is stable, even though its read bandwidth
isn’t.) We also show how to smooth out read-time variance by con-
structing RAFT queriesQ that consist ofmultipleblocks per drive.

Queries with multiple blocks per drive. (“How can Eeta Pizza
Pie place multiple, unpredictable orders without phoning Cheap-
skate multiple times?”) A naïve way to construct a challengeQ
consisting of multiple blocks per drive (say,q) is simply for the
client to specifycq random blocks inQ. The problem with this
approach is that the server can then schedule the set ofcq block ac-
cesses on its drives to reduce total access time (e.g., exploiting drive
efficiencies on sequential-order reads). Alternatively, the client
could issue challenges inq steps, waiting to receive a response be-
fore issuing a next, unpredictable challenge. But this would require
c rounds of interaction.

We instead introduce an approach that we calllock-stepchal-
lenge generation. The key idea is for the client to specify query
Q in an initial step consisting ofc random challenge blocks (one
per drive). For each subsequent step, the set ofc challenge blocks
depends on thecontentof the file blocks accessed in the last step.
The server can proceed to the next step only after fully completing
the last one. Our lock-step technique is a kind of repeated appli-
cation of a Fiat-Shamir-like heuristic [13] for generatingq inde-
pendent, unpredictable sets of challenges non-interactively. (File
blocks serve as a kind of “commitment.”) The server’s response to
Q is the aggregate (hash) of all of thecq file blocks it accesses.

3. FORMAL DEFINITIONS
A Remote Assessment of Fault ToleranceRAFT (t) aims to

enable a service provider to prove to a client that it has stored file
F with tolerance againstt drive failures. In our model, the file is
first encoded by adding some redundancy. This can be done by ei-
ther the client or the server. The encoded file is then stored by the
server using some number of drives. Periodically, the client issues
challenges to the server, consisting of a subset of file block indices.
If the server replies correctly and promptly to challenges (i.e., the
answer is consistent with the original fileF , and the timing of the
response is within an acceptable interval), the client is convinced
that the server stores the file with tolerance againstt drive failures.
The client can also reconstruct the file at any time from the encod-
ing stored by the server, assuming at mostt drive failures.

3.1 System definition
To define our system more formally, we start by introducing

some notation. A file block is an element inB = GF [2ℓ]. For

convenience we also treatℓ as a security parameter. We letfi de-
note theith block of a fileF for i ∈ {1, . . . , |F |}.

The RAFT system comprises these functions:

• Keygen(1ℓ)
R
→ κ: A key-generation function that outputs

keyκ. We denote a keyless system byκ = φ.

• Encode(κ, F = {fi}
m
i=1, t, c) → G = {gi}

n
i=1: An en-

coding function applied to anm-block fileF = {fi}
m
i=1; it

takes as additional input fault tolerancet and a number ofc
logical disks. It outputs encoded fileG = {gi}

n
i=1, where

n ≥ m. The functionEncode may be keyed, e.g., encrypt-
ing blocks underκ, in which case encoding is done by the
client, or unkeyed, e.g., applying an erasure code or keyless
cryptographic operation toF , which may be done by either
the client or server.

• Map(n, t, c)→ {Cj}
c
j=1: A function computed by both the

client and server that takes the encoded file sizen, fault tol-
erancet and a numberc of logical disks and outputs a logical
mapping of file blocks toc disks or⊥. To implementMap

the client and server can agree on a mapping which each can
compute, or the server may specify a mapping that the client
verifies as being tolerant tot drive failures. (A more general
definition might also includeG = {gi}

n
i=1 as input. Here

we only consider mappings that respect erasure-coding struc-
ture.) The output consists of setsCj ⊆ {1, 2, . . . , n} denot-
ing the block indices stored on drivej, for j ∈ {1, . . . , c}. If
the output is not⊥, then the placement is tolerant tot drive
failures.

• Challenge(n,G, t, c) → Q: A (stateful and probabilistic)
function computed by the client that takes as input the en-
coded file sizen, encoded fileG, fault tolerancet, and the
number of logical drivesc and generates a challengeQ con-
sisting of a set of block indices inG and a random nonceν.
The aim of the challenge is to verify disk-failure tolerance at
leastt.

• Response(Q) → (R, T): An algorithm that computes a
server’s responseR to challengeQ, using the encoded file
blocks stored on the server disks. The timing of the response
T is measured by the client as the time required to receive
the response from the server after sending a challenge.

• Verify(G,Q,R, T) → b ∈ {0, 1}: A verification function
for a server’s response(R, T) to a challengeQ, where 1 de-
notes “accept,” i.e., the client has successfully verified cor-
rect storage by the server. Conversely 0 denotes “reject.” In-
putG is optional in some systems.

• Reconstruct(κ, r, {g∗i }
r
i=1) → F ∗ = {f∗

i }
m
i=1: A recon-

struction function that takes a set ofr encoded file blocks and
either reconstructs anm-block file or outputs failure sym-
bol ⊥. We assume that the block indices in the encoded
file are also given to theReconstruct algorithm, but we omit
them here for simplicity of notation. The function is keyed if
Encode is keyed, and unkeyed otherwise.

Except in the case ofKeygen, which is always probabilistic, func-
tions may be probabilistic or deterministic. We defineRAFT (t) =
{Keygen,Encode,Map,Challenge,Response,Verify,Reconstruct}.

3.2 Client model
In some instances of our protocols calledkeyed protocols, the

client needs to store secret keys used for encoding and reconstruct-
ing the file. Unkeyed protocolsdo not make use of secret keys for
file encoding, but instead use public transforms.

If the Map function outputs a logical layout{Cj}
c
j=1 6=⊥, then

we call the modellayout-specified. We denote alayout-freemodel
one in which theMap function outputs⊥, i.e., the client does not
know a logical placement of the file onc disks. In this paper, we
only consider layout-specified protocols, although layout-free pro-
tocols are an interesting point in the RAFT design space.

For simplicity in designing theVerify protocol, we assume that
the client keeps a copy ofF locally. Our protocols can be extended
easily via standard block-authentication techniques, e.g., [25], to a
model in which the file is maintained only by the provider and the
client deletes the local copy after outsourcing the file.

3.3 Drive and network models
The response timeT of the server to a challengeQ as measured

by the client has two components: (1) Drive read-request delays
and (2) Network latency. We model these two protocol-timing com-
ponents as follows.

Modeling drives.
We model a server’s storage resources forF as a collection of

d independent hard drives. Each drive stores a collection of file
blocks. The drives are stateful: The timing of a read-request re-
sponse depends on the query history for the drive, reflecting block-
retrieval delays. For example, a drive’s response time is lower
for sequentially indexed queries than for randomly indexed ones,
which induce seek-time delays [30]. We do not consider other
forms of storage here, e.g., solid-state drives3.

We assume that all the drives belong to the same class, (e.g. en-
terprise class drives), but may differ in significant ways, including
seek time, latency, and even manufacturer. We will present disk
access time distributions for several enterprise class drive models.
We also assume that when retrieving disk blocks for responding to
client queries in the protocol, there is no other workload running
concurrently on the drive, i.e. the drive has been "reserved" for the
RAFT4. Alternatively, in many cases, drive contention can be over-
come by issuing more queries. We will demonstrate the feasibility
of both approaches through experimental results.

Modeling network latency.
We adapt our protocols to handle variations in network latency

between the client and cloud provider. Based on the results pre-
sented in [24] and our own small-scale experiments, we set an up-
per bound threshold on the variability in observed latency between
the vast majority of host pairs. We design our protocol so that the
difference in timing to reply successfully to a challenge between an

3At the time of this writing, SSDs are still considerably more ex-
pensive than rotational drives and have much lower capacities. A
typical rotational drive can be bought for roughly $0.07/GB in ca-
pacities up to 3 TBs, while most SSDs cost more than $2.00/GB are
are only a few hundred GBs in size. For an economically rational
adversary, the current cost difference makes SSDs impractical.
4Multiple concurrent workloads could skew disk-access times in
unexpected ways. This was actually seen in our own experiments
when the OS contended with our tests for access to a disk, causing
spikes in recorded read times.In a multi-tenant environment, users
are accustomed to delayed responses, so reserving a drive for 500
ms. to perform a RAFT test should not be an issue.

adversarial and an honest server is at least the maximum observed
variability in network latency.

3.4 Adversarial model
We now describe our adversarial model, i.e., the range of behav-

iors of S. In our model, them-block file F is chosen uniformly
at random. This reflects our assumption that file blocks are already
compressed by the client, for storage and transmission efficiency,
and also because our RAFT constructions benefit from random-
looking file blocks.Encode is applied toF , yielding an encoded
file G of sizen, which is stored withS.

Both the client and server compute the logical placement{Cj}
c
j=1

by applying theMap function. The server then distributes the
blocks ofG acrossd real disks. The number of actual disksd used
by S might be different than the number of agreed-upon drivesc.
The actual file placement{Dj}

d
j=1 performed by the server might

also deviate arbitrarily from the placement specified by theMap

function. (As we discuss later, sophisticated adversaries might even
store something other than unmodified blocks ofG.)

At the beginning of a protocol execution, we assume that no
blocks ofG are stored in the high-speed (non-disk) memory ofS.
Therefore, to respond to a challengeQ, S must query its disks to
retrieve file blocks. The variableT denotes the time required for
the client, after transmitting its challenge, to receive a responseR
from S. Time T includes both network latency and drive access
time (as well as any delay introduced byS cheating).

The goal of the client is to establish whether the file placement
implemented by the server is resilient to at leastt drive failures.

Our adversarial model is validated by the design and implemen-
tation of the Mozy online backup system, which we will discuss
further in Section 6.2. We expect Mozy to be representative of
many cloud storage infrastructures.

Cheap-and-lazy server model.
For simplicity and realism, we focus first on a restricted adver-

saryS that we callcheap-and-lazy. The objective of a cheap-and-
lazy adversary is to reduce its resource costs; in that sense it is
“cheap.” It is “lazy” in the sense that it does not modify file con-
tents. The adversary instead cuts corners by storing less redundant
data on a smaller number of disks or mapping file blocks unevenly
across disks, i.e., it may ignore the output ofMap. A cheap-and-
lazy adversary captures the behavior of a typical cost-cutting or
negligent storage service provider.

To be precise, we specify a cheap-and-lazy serverS by the fol-
lowing assumptions on the blocks of fileF :

• Block obliviousness: The behavior ofS i.e., its choice of
internal file-block placement(d, {Dj}

d
j=1) is independent

of the content of blocks inG. Intuitively, this means that
S doesn’t inspect block contents when placing encoded file
blocks on drives.

• Block atomicity: The server handles file blocks as atomic
data elements, i.e., it doesn’t partition blocks across multiple
storage devices.

A cheap-and-lazy server may be viewed as selecting a mapping
from n encoded file blocks to positions ond drives without knowl-
edge ofG. Some of the encoded file blocks might not be stored to
drives at all (corresponding to dropping of file blocks), and some
might be duplicated onto multiple drives.S then applies this map-
ping to then blocks ofG.

General adversarial model.
It is also useful to consider a general adversarial model, cast in

an experimental framework. We define the security of our sys-
temRAFT (t) according to the experiment from Figure 1. We
letO(κ) = {Encode(κ, ·, ·, ·),Map(·, ·, ·),Challenge(·, ·, ·, ·),
Verify(·, ·, ·, ·),Reconstruct(κ, ·, ·)} denote a set of RAFT-function
oracles (some keyed) accessible toS.

ExperimentExpRAFT (t)
S (m, ℓ, t):

κ← Keygen(1ℓ);
F = {fi}

m
i=1 ←R Bm ;

G = {gi}
n
i=1 ← Encode(κ, F, t, c);

(d, {Dj}
d
j=1)← S

O(κ)(n,G, t, c, “store file”);
Q← Challenge(n,G, t, c);

(R, T)← S{Dj}
d
j=1(Q, “compute response”);

if AccS andNotFTS

then output 1,
else output 0

Figure 1: Security experiment

We denote byAccS the event thatVerify(G,Q,R, T) = 1 in
a given run ofExpRAFT (t)

S (m, ℓ, t), i.e., that the client / verifier
accepts the response ofS. We denote byNotFTS the event that
there exists{Dij}

d−t
j=1 ⊆ {Dj}

d
j=1 s.t.

Reconstruct(κ, |{Dij}
d−t
j=1|, {Dij}

d−t
j=1) 6= F, i.e, the allocation of

blocks selected byS in the experimental run is nott-fault tolerant.
We defineAdvRAFT (t)

S (m, ℓ, t) = Pr[Exp
RAFT (t)
S (m, ℓ, t) = 1]

= Pr[AccS andNotFTS]. We define thecompletenessofRAFT (t)
asCompRAFT (t)(m, ℓ, t) = Pr[AccS and¬NotFTS] over exe-
cutions of honestS (a server that always respects the protocol spec-
ification) inExpRAFT (t)

S (m, ℓ, t).
Our general definition here is, in fact, a little too general for prac-

tical purposes. As we now explain, there is no good RAFT for a
fully maliciousS. That is why we restrict our attention to cheap-
and-lazyS, and later, in Section 7, briefly consider a “rational”S.

Why we exclude malicious servers.
A maliciousor fully Byzantine serverS is one that may expend

arbitrarily large resources and manipulate and storeG in an arbi-
trary manner. Its goal is to achieve≤ t − 1 fault tolerance forF
while convincing the client with high probability thatF enjoys full
t fault tolerance.

We do not consider malicious servers because there is no effi-
cient protocol to detect them. A malicious server can convert any
t-fault-tolerant file placement into a0-fault-tolerant file placement
very simply. The server randomly selects an encryption keyλ, and
encrypts every stored file block underλ. S then adds a new drive
and storesλ on it. To reply to a challenge,S retrievesλ and de-
crypts any file blocks in its response. If the drive containingλ fails,
of course, the fileF will be lost. There is no efficient protocol that
distinguishes between a file stored encrypted with the key held on
a single drive, and a file stored as specified, as they result in nearly
equivalent block read times.5

3.5 Problem Instances
A RAFT problem instancecomprises a client model, an adver-

sarial model, and drive and network models. In what follows, we
5The need to pullλ from the additional drive may slightly skew the
response time ofS when first challenged by the client. This skew
is modest in realistic settings. And once read,λ is available for any
additional challenges.

propose RAFT designs in an incremental manner, starting with a
very simple problem instance—a cheap-and-lazy adversarial model
and simplistic drive and network models. After experimentally
exploring more realistic network and drive models, we propose a
more complex RAFT. We then consider a more powerful (“ratio-
nal”) adversary and further refinements to our RAFT scheme.

4. THE BASIC RAFT PROTOCOL
In this section, we construct a simple RAFT system resilient

against the cheap-and-lazy adversary. We consider very simple disk
and network models. While the protocol presented in this section
is mostly of theoretical interest, it offers a conceptual framework
for later, more sophisticated RAFTs.

We consider the following problem instance:

Client model: Unkeyed and layout-specified.

Adversarial model: The server is cheap-and-lazy.

Drive model: Time to read a block of fixed lengthℓ from disk is
constant and denoted byτℓ.

Network model: The latency between client and server (denoted
L) is constant in time and network bandwidth is unlimited.

4.1 Scheme Description
To review: Our RAFT construction encodes the entirem-block

file F with an erasure code that tolerates a certain fraction of block
losses. The server then spreads the encoded file blocks evenly over
c drives and specifies a layout. To determine that the server respects
this layout, the client requestsc blocks of the file in a challenge, one
from each drive. The server should be able to access the blocks in
parallel fromc drives, and respond to a query in time close toτℓ+L.

If the server answers most queries correctly and promptly, then
blocks are spread out on disks almost evenly. A rigorous formal-
ization of this idea leads to a bound on the fraction of file blocks
that are stored on anyt server drives. If the parameters of the era-
sure code are chosen to tolerate that amount of data loss, then the
scheme is resilient againstt drive failures.

To give a formal definition of the construction, we use a max-
imum distance separable (MDS), i.e., optimal erasure code with
encoding and decoding algorithms(ECEnc,ECDec) and expan-
sion rate1 + α. ECEnc encodesm-block messages inton-block
codewords, withn = m(1 + α). ECDec can recover the original
message given anyαm erasures in the codeword.

The scheme is the following:

• Keygen(1ℓ) outputsφ.

• Encode(κ, F = {fi}
m
i=1, t, c) outputsG = {gi}

n
i=1 with n

a multiple ofc andG = ECEnc(F).

• Map(n, t, c) outputs a balanced placement{Cj}
c
j=1, with

|Cj | = n/c. In addition∪c
j=1Cj = {1, . . . , n}, so conse-

quentlyCi ∩ Cj = φ, ∀i 6= j.

• Challenge(n,G, t, c) outputsQ = {i1, . . . , ic} consisting
of c block indices, eachij chosen uniformly at random from
Cj , for j ∈ {1, . . . , c}. (Here, we omit nonceν.)

• Response(Q) outputs the responseR consisting of thec file
blocks specified byQ, and the timingT measured by the
client.

• Verify(G,Q,R, T) performs two checks. First, it checks
correctnessof blocks returned inR using the file stored lo-
cally by the client6. Second, the client also checks theprompt-
nessof the reply. If the server replies within an interval
τℓ + L, the client outputs 1.

• Reconstruct(κ, r, {g∗i }
r
i=1) outputs the decoding of the file

blocks retained byS (after a possible drive failure) under the
erasure code:ECDec({g∗i }

r
i=1) for r ≥ m, and⊥ if r < m.

The security analysis of the protocol is deferred to the full ver-
sion of the paper [6]. Here we summarize the main result.

THEOREM 1. For fixed system parametersc, t andα such that
α ≥ t/(c − t) and for constant network latency and constant
block read time, the protocol satisfies the following properties for a
cheap-and-lazy serverS:

1. The protocol is complete:CompRAFT (t)(m, ℓ, t) = 1.
2. If S usesd < c drives,AdvRAFT (t)

S (m, ℓ, t) = 0.

3. If S usesd ≥ c drives,AdvRAFT (t)
S (m, ℓ, t) ≤ 1 − B(c, t, α)

whereB(c, t, α) = α(c−t)−t

(1+α)(c−t)
.

Multiple-step protocols.
We can make use of standard probability amplification techniques

to further reduce the advantage of a server. For example, we can
run multiple steps of the protocol. A step for the client involves
sending ac-block challenge, and receiving and verifying the server
response. We need to ensure that queried blocks are different in all
steps, so that the server cannot reuse the result of a previous step in
successfully answering a query.

We define two queriesQ andQ′ to benon-overlappingif Q ∩
Q′ = ∅. To ensure that queries are non-overlapping, the client
running an instance of a multiple-step protocol maintains state and
issues only queries with block indices not used in previous query
steps. We can easily extend the proof of Theorem 1 (3) to show that
a q-step protocol with non-overlapping queries satisfies
Adv

RAFT (t)
S (m, ℓ, t) ≤ (1 − B(c, t, α))q for a serverS using

d ≥ c drives.

5. NETWORK AND DRIVE TIMING MODEL
In the simple model of Section 4, we assume constant network

latency between the client and server and a constant block-read
time. Consequently, for a given queryQ, the response time of the
server (whether honest or adversarial) is deterministic. In prac-
tice, though, network latencies and block read times are variable.
In this section, we present experiments and protocol-design tech-
niques that can be used to adapt our simple RAFT protocol to more
practical settings.

5.1 Network model
We present some experimental data on network latency between

hosts in different geographical locations based on the Lumezanu
et al. study [24], and quantify the amount of variance it exhibits
over time. We discuss how our RAFT protocol can be made robust
against variability in network latency. We also show how to reduce
the communication complexity of our protocol—thereby eliminat-
ing network-timing variance due to fluctuations in network band-
width.

6Recall we assume a copy of the file is kept by the client to simplify
verification, though this is not necessary.

Network latency model.
Lumezanu et al. [24] present a study that measures the network

latency between 1715 pairs of hosts at various time intervals within
a two month period. Their goal is to study the occurrence and char-
acteristics of triangle inequality violations in the Internet. In one
of their experiments, they measure the variability of network la-
tency among pairs of hosts over time. Their findings indicate that
for about 88% of host pairs in their trace, the standard deviation of
network latency is less than 100ms. Another metric of variability
is the inter-quartile range of the latency distribution (defined as the
difference between 75th and 25th percentiles). They show that less
than 10% of the host pairs have inter-quartile higher than 40ms,
suggesting that the variance in network latency is caused by out-
liers farther away from the mean, rather than values closer to the
mean.

For our purposes, we are interested in estimating the maximum
difference between round-trip times observed at various times be-
tween the same pair of hosts. While the study does not give us
directly an estimate for this metric, we can approximate the 99th
percentile of the difference, for instance, by three standard devia-
tions, i.e., 300ms (which for the normal distribution cover 99.7%
of the distribution).

To validate this choice of parameters, we perform our own small-
scale experiments. We pinged two hosts (one in Santa Clara, CA,
USA and one in Shanghai, China) from our Boston, MA, USA lo-
cation during a one week interval in March 2010. We observed that
the ping time distribution is heavy tailed with spikes correlated in
time, most likely due to temporary network congestion.

The ping times to Santa Clara ranged from 86 ms to 463 ms,
with 90th, 99th and 99.9th percentiles at 88ms, 95ms and 102ms,
respectively. Ping times to Shanghai exhibit more variability across
the larger geographical distance and range between 262 ms and 724
ms. While daily spikes in latency raise the average slightly, 90% of
readings are still less than 278 ms. These spikes materially lengthen
the tail of the distribution, however, as the 99% (433 ms) and 99.9%
(530 ms) thresholds are no longer grouped near the 90% mark, but
are instead much more spread out. To summarize, the 99th per-
centile of the difference in network latency is 9 ms for Santa Clara
and 171 ms for Shanghai. The 99.9th percentile results in 16ms
for Santa Clara, and 268ms for Shanghai. We believe therefore
that a choice of three standard deviations (300ms) is a reasonable
maximum variability in network latency we can set in our RAFT
experiments.

In our RAFT protocol, we consider a response valid if it arrives
within the maximum characterized network latency. We then adopt
the bounding assumption that the difference between minimum and
maximum network latency is “free time” for an adversarial server.
That is, during a period of low latency, the adversary might simulate
high latency, using the delay to cheat by prefetching file blocks
from disk into cache. This strategy would help the server respond
to subsequent protocol queries faster, and help conceal poor file-
block placement. If the amount of data which can be read during
this “free time” is small compared to the size of the file, the effect
is insignificant. We quantify this precisely in the full version of the
paper [6].

Limited network bandwidth.
In the basic protocol from Section 4, challenged blocks are re-

turned to the client as part of the server’s response. To minimize
the bandwidth used in the protocol, the server can simply apply a
cryptographically strong hash to its response blocks together with
a nonce supplied by the client, and return the resulting digest. The

client can still verify the response, by recomputing the hash value
locally and comparing it with the response received from the server.

5.2 Drive model
We now look to build a model for the timing characteristics of

magnetic hard drives. While block read times exhibit high variabil-
ity due to both physical factors and prefetching mechanisms, we
show that for a judicious choice of block size (64KB on a typical
drive), read times adhere to a stable probability distribution. This
observation yields a practical drive model for RAFT.

Drive characteristics.
Magnetic hard drives are complex mechanical devices consisting

of multiple platters rotating on a central spindle at speeds of up to
15,000 RPM for high-end drives today. The data is written and read
from each platter with the help of a disk head sensing magnetic
flux variation on the platter’s surface. Each platter stores data in
a series of concentric circles, called tracks, divided further into a
set of fixed-size (512 byte) sectors. Outer tracks store more sectors
than inner tracks, and have higher associated data transfer rates.

To read or write to a particular disk sector, the drive must first
perform aseek, meaning that it positions the head on the right track
and sector within the track. Disk manufacturers report average seek
times on the order of 2 ms to 15 ms in today’s drives. Actual
seek times, however, are highly dependent on patterns of disk head
movement. For instance, to read file blocks laid out in sequence on
disk, only one seek is required: That for the sector associated with
the first block; subsequent reads involve minimal head movement.
In constrast, random block accesses incur a highly variable seek
time, a fact we exploit for our RAFT construction.

After the head is positioned over the desired sector, the data is
read from the platter. The data transfer rate (or throughput) de-
pends on several factors, but is on the order of 300MB per sec-
ond for high-end drives. The disk controller maintains an internal
cache and implements complex caching and prefetching policies.
As drive manufacturers give no clear specifications of these poli-
cies, it is difficult to build general data access models for drives [30].

The numbers we present in this paper are derived from experi-
ments performed on a number of enterprise class SAS drives, all
connected to a single machine running Red Hat Enterprise Linux
WS v5.3 x86_64. We experimented with drives from Fujitsu, Hi-
tachi, HP7, and Seagate. Complete specifications for each drive can
be found in Table 1.

Modeling disk-access time.
Our basic RAFT protocol is designed for blocks of fixed-size,

and assumes that block read time is constant. In reality, though
block read times are highly variable, and depend on both physical
file layout and drive-read history. Two complications are particu-
larly salient: (1) Throughput is highly dependent on the absolute
physical position of file blocks on disk; in fact, outer tracks exhibit
up to 30% higher transfer rates than inner tracks [29] and (2) The
transfer rate for a series of file blocks depends upon their relative
position; reading of sequentially positioned file blocks requires no
seek, and is hence much faster than for scattered blocks.

We are able, however, to eliminate both of these sources of read-
time variation from our RAFT protocol. The key idea is torender
seek time the dominant factorin a block access time. We accom-
plish this in two ways: (1) We readsmallblocks, so that seek time

7Upon further inspection, the HP drive is actually manufactured by
Seagate. Nearly all drives available today are in fact made by one
of three manufacturers.

Manufacturer Model Capacity Buffer Size Avg. Seek / Full Stroke Seek Latency Throughput

Hitachi HUS153014VLS300 147 GB 16 MB 3.4 ms./ 6.5 ms. 2.0 ms. 72 - 123 MB/sec
Seagate ST3146356SS 146 GB 16 MB 3.4 ms./6.43 ms. 2.0 ms. 112 - 171 MB/sec
Fujitsu MBA3073RC 73.5 GB 16 MB 3.4 ms./8.0 ms. 2.0 ms. 188 MB/sec
HP ST3300657SS 300 GB 16 MB 3.4 ms./6.6 ms. 2.0 ms. 122 - 204 MB/sec

Table 1: Drive specifications

 0

 0.02

 0.04

 0.06

 0.08

 0.1

2 4 6 8 10 12 14 16 18 20

P
ro

ba
bi

lit
y

Time (ms)

Read Time Distributions
(with 99.9% cutoffs) Fujitsu HP Seagate

HP
Seagate

Hitachi
Fujitsu

Figure 2: Read time distribution for 64KB blocks

dominates read time and (2) We access arandompattern of file
blocks, to force the drive to perform a seek of comparable diffi-
culty for each block.

 0

 100

 200

 300

 400

 500

 600

 700

 800

8KB 16KB 32KB 64KB 128KB 256KB 512KB

T
im

e
(m

s)

Block Size

Time to Read 50 Random Samples

HP
Seagate

Hitachi
Fujitsu

Figure 3: Read time for 50 random blocks

As Figure 3 shows, the time to sample a fixed number of random
blocks from a 2GB file is roughly constant for blocks up to 64KB,
regardless of drive manufacturer. We suspect that this behavior is
due to prefetching at both the OS and hard drive level. Riedel et
al. also observe in their study [29] that the OS issues requests to
disks for blocks of logical size 64KB, and there is no noticeable
difference in the time to read blocks up to 64KB.

For our purposes, therefore, a remote server can read 64KB ran-
dom blocks at about the same speed as 8K blocks. If we were to
sample blocks smaller than 64KB in our RAFT protocol, we would
give an advantage to the server, in that it could prefetch some addi-
tional file blocks essentially for free. For this reason, we choose to
use 64KB blocks in our practical protocol instantiation.

Figure 2 depicts the read time distributions for a random 64KB
block chosen from a 2GB file. To generate this distribution, 250
random samples were taken from a 2GB file. The read time for
each request was recorded. This was repeated 400 times, for a total
of 100,000 samples, clearing the system memory and drive buffer
between each test. The operating system resides on the Hitachi
drive, and occasionally contends for drive access. This causes out-
liers in the tests (runs which exceed 125% of average and contain
several sequential reads an order of magnitude larger than average),
which were removed. Additional tests were performed on this drive
to ensure the correctness of the results. By comparison, the vari-
ability between runs on all other drives was less than 10%, further
supporting the OS-contention theory.

While the seek time average for a single block is around 6 ms,
the distribution exhibits a long tail, with values as large as 132 ms.
(We truncate the graph at 20 ms for legibility.) This long tail does
not make up a large fraction of the data, as indicated by the 99.9%
cutoffs in figure 2, for most of the drives. The 99.9% cutoff for the
Hitachi drive is not pictured as it doesn’t occur until 38 ms. Again,
we expect contention from the OS to be to blame for this larger
fraction of slow reads on that drive.

Read times for blocks of this size are dominated by seek time
and not affected by physical placement on disk. We confirmed this
experimentally by sampling from many files at different locations
on disk. Average read times between files at different locations
differed by less than 10%. The average seek time for 64KB blocks
does, however, depend on the size of the file from which samples
are being taken, as shown in Figure 4.

We observe that the average block read time increases with the
file size, due to more head movement. While this relationship is
fairly linear above a certain point (close to 40MB files), small files
exhibit significantly reduced average block read times, likely due
to the disk buffer. Once the file is small enough to fit in the disk
buffer, the drive will respond from its cache without performing the

 0.01

 0.1

 1

 10

 1 10 100 1000 10000

T
im

e
(m

s)

Original File Size (MB)

Effects of File Size on Average Block Read Time

HP
Seagate

Fujitsu

Figure 4: Effects of file size on average block retrieval time

physical seek, returning data much more quickly. This indicates
that RAFTs will not work for files smaller than the combined disk
buffer sizes of the drives being used to store the file, an hypothesis
we confirm in our experimental evaluation.

In the next section, we modify our basic protocol to smooth out
seek-time variance. The idea is to sample (seek) many randomly
chosen file blocks in succession.

6. PRACTICAL RAFT PROTOCOL
In this section, we propose a practical variant of the basic RAFT

protocol from Section 4. As discussed, the main challenge in prac-
tical settings is the high variability in drive seek time. The key
idea in our practical RAFT here is to smooth out the block access-
time variability by requiring the server to access multiple blocks
per drive to respond to a challenge.

In particular, we structure queries here in multiplesteps, where
a step consists of a set of file blocks arranged such that an (honest)
server must fetch one block from each drive. We propose in this
section what we call alock-step protocolfor disk-block scheduling.
This lock-step protocol is a non-interactive, multiple-step variant of
the basic RAFT protocol from Section 4. We show experimentally
that for large enough files, the client can, with high probability,
distinguish between a correct server and an adversarial one.

6.1 The lock-step protocol
A naïve approach to implementing a multiple-step protocol with

q steps would be for the client to generateq (non-overlapping) chal-
lenges, each consisting ofc block indices, and send allqc distinct
block indices to the server. The problem with this approach is that
it immediately reveals complete information to the server about all
queries. By analogy with job-shop scheduling [26], the server can
then map blocks to drives to shave down its response time. In par-
ticular, it can take advantage of drive efficiencies on reads ordered
by increasing logical block address [32]. Our lock-step technique
reveals query structure incrementally, and thus avoids giving the
server an advantage in read scheduling. Another possible approach
to creating a multi-step query would be for the client to specify
steps interactively, i.e., specify the blocks in stepi + 1 when the
server has responded to stepi. That would create high round com-
plexity, though. The benefit of our lock-step approach is that it
generates steps unpredictably, but non-interactively.

The lock-step approach works as follows. The client sends an
initial one-step challenge consisting ofc blocks, as in the basic
RAFT protocol. As mentioned above, to generate subsequent steps

non-interactively, we use a Fiat-Shamir-like heuristic [13] for sig-
nature schemes: The block indices challenged in the next step de-
pend on all the block contents retrieved in the current step (a “com-
mitment”). To ensure that block indices retrieved in next step are
unpredictable to the server, we compute them by applying a cryp-
tographically strong hash function to all block contents retrieved in
the current step. The server only sends back to the client the fi-
nal result of the protocol (computed as a cryptographic hash of all
challenged blocks) once theq steps of the protocol are completed.

The lock-step protocol hasKeygen,Encode,Map, andReconstruct
algorithms similar to our basic RAFT. Leth be a cryptographi-
cally secure hash function with fixed output (e.g., from the SHA-2
family). Assume for simplicity that the logical placement gener-
ated byMap in the basic RAFT protocol isCj = {jn/c, jn/c +
1, . . . , jn/c + n/c − 1}. We usec suitable hash functions that
output indices inCj : hj ∈ {0, 1}

∗ → Cj . (In practice, we might
takehj(x) = h(j̃||x) mod Cj , wherej̃ is a fixed-length index
encoding.)

TheChallenge,Response, andVerify algorithms of the lock-step
protocol withq steps are the following:

- In Challenge(n,G, t, c), the client sends an initial challenge
Q = (i11, . . . , i

1
c) with eachi1j selected randomly fromCj , for

j ∈ {1, . . . , c}, along with random nonceν ∈U {0, 1}
l.

- AlgorithmResponse(Q) consists of the following steps:

1. S reads file blocksfi1
1

, . . . , fi1c specified inQ.
2. In each stepr = 2, . . . , q, S computes

irj ← hj(i
r−1
1 || . . . ||ir−1

c ||f
i
r−1

1

|| . . . ||f
i
r−1
c
||h(ν, j)). If any of

the block indicesirj have been challenged in previous steps,S in-
crementsirj by one (in a circular fashion inCj) until it finds a block
index that has not yet been retrieved.S schedules blocksfir

j
for re-

trieval, for allj ∈ {1, . . . , c}.
3. S sends responseR = h(fi1

1

|| . . . ||fi1c || . . . ||fi
q
1

|| . . . ||fiqc ||ν)

to the client, who measures the timeT from the moment when chal-
lengeQ was sent.

- In Verify(G,Q,R, T), the client checks first correctness ofR
by recomputing the hash of all challenged blocks, and comparing
the result withR. The client also checks the timing of the reply
T , and accepts the response to be prompt if it falls within some
specified time interval (experimental choice of time intervals within
which a response is valid is dependent on drive class and is dis-
cussed in Section 6.2 below).

Security of lock-step protocol.We omit a formal analysis. Briefly,
derivation of challenge values from (assumed random) block con-
tent ensures the unpredictability of challenge elements across steps
in Q. S computes the final challenge result as a cryptographic hash
of all qc file blocks retrieved in all steps. The collision-resistance
of h implies that if this digest is correct, then intermediate results
for all query steps are correct with overwhelming probability.

6.2 Experiments for the lock-step protocol
In this section, we perform experiments to determine the number

of steps needed in the lock-step protocol to distinguish an honest
server usingc drives from an adversarial server employingd < c
drives. As discussed in Section 3.3, we evaluate both servers that
"reserve" drives for RAFT testing, as well as services operating
under contention.

6.2.1 Reserved drive model
We begin by looking at the "reserved" drive model, which we can

test locally. The first question we attempted to answer with our tests
is if we are able to distinguish an honest server from an adversarial

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250

T
im

e
(m

s)

Steps

Average Separation

10 MB
100 MB

1 GB
10 GB

Figure 5: Average difference between adversarial and honest
response times in a challenge

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

T
im

e
(m

s)

Steps

100% Separation

10 MB
100 MB

1 GB
10 GB

Figure 6: Complete separation of adversarial and honest re-
sponse times in a challenge

one employing fewer drives based only on disk access time. Is there
a range where this can be done, and how many steps in the lock-step
protocol must we enforce to achieve clear separation? Intuitively,
the necessity for an adversarial server employingd ≤ c− 1 drives
to read at least two blocks from a single drive in each step forces the
adversary to increase its response time when the number of steps
performed in the lock-step protocol increases.

Detailed experiments forc = 3 drives.
In practice, files are not typically distributed over a large number

of drives (since this would make meta-data management difficult).
Here, we focus on the practical case ofc = 3. The file sizes pre-
sented are those of the original file before encoding and splitting
across drives. Files are encoded to survive one drive failure in the
honest server case and are evenly spread over the available drives.
The adversarial server must store the same total amount of informa-
tion in order to respond to challenges, but does so using one fewer
drive than the honest server. The adversarial server spreads theen-
coded file evenly across two drives and must perform a double read
from one of the drives in each step of the lock-step protocol.

For each file size, we performed 200 runs of the protocol for both
the honest and adversarial servers. The honest server stores data on
the HP, Seagate, and Fujitsu drives, while the adversary uses only
the HP and Seagate drives. We show in Figure 5 the average ob-
served difference between the adversarial and honest servers’ time
to reply to a challenge as a function of the number of steps in the
protocol. In Figure 6, we show the 100% separation between the
honest and adversarial servers defined as the difference between
the minimum adversarial response time and the maximum honest
response time in a challenge. Where the time in the graph is neg-
ative, an adversary using two drives could potentially convince the
client that he is using three drives as promised.

One way for the adversary to cheat is to ignore the protocol en-
tirely and instead read the whole file sequentially into memory and
then respond to challenges. In the 10 MB file case this becomes
the optimal strategy almost immediately, and thus both the average
and complete separation graphs are entirely negative. For the 100
MB file this strategy becomes dominant around 100 steps. At this
point, reading the file sequentially becomes faster than performing
100 random seeks. The turning point for the larger files is much
higher and thus not visible in these graphs. Since an adversary can
choose how to respond to the challenges, and may in fact read the
file into memory to answer queries, a RAFT will only be effective
for relatively large files.

We plot in Figures 7-10 the actual read-time histograms for both
honest and adversarial servers for the shown number of steps in
the lock-step protocol. Using 10 steps for the 10 MB file achieves
no separation between honest and adversarial servers, due to the
fact that the file fits completely in the disk buffer (running for more
steps would only benefit the adversary). For a 100MB file, there
is a small separation (of 14ms) between the adversarial and hon-
est servers at 100 steps.8 On the other hand, an honest server
can respond to a 175 step challenge on a 1 GB file in roughly one
second, a task which takes an adversary almost 400 ms more, and
with 250 steps over a 10 GB file we can achieve nearly a second of
separation between honest and adversarial servers. As discussedin
Section 5.1, this degree of separation is sufficient to counteract the
variability in network latency encountered in wide area networks.
As such, a RAFT protocol is likely to work for files larger than
100MB when the latency between the client and cloud provider ex-
periences little variability, and for files larger than 1GB when there
is highly variable latency between the client and cloud provider.

Simulated experiments forc > 3 drives.
We have been comparing in all our experiments so far an honest

server usingc = 3 drives to an adversary usingd = 2 drives. We
now perform some simulations to test the effect of the number of
drives the file is distributed across on the protocol’s effectivness.
Figure 11 shows, for different separation thresholds (given in mil-
liseconds), the number of steps required in order to achieve 95%
separation between the honest server’s read times and an adver-
sary’s read times for a number of drivesc ranging from 3 to 11.
The honest server stores a 1 GB file, encoded for resilience to one
drive failure, evenly across the available number of drives, while
the adversarial server stores the same file on onlyc − 1 drives,
using a balanced allocation across its drives optimized given the
adversary’s knowledge ofMap.

The graph shows that the number of steps that need to be per-
formed for a particular separation threshold increases linearly with
the number of drivesc used by the honest server. In addition, the
number of steps for a fixed number of drives also increases with
larger separation intervals. To distinguish between an honest server
using 5 drives and an adversarial one with 4 drives at a 95% sepa-

8Running more than 100 steps for a 100 MB file would not benefit
us here as the adversary would simply switch to a strategy of read-
ing the entire file into memory and then answering the challenge
from memory.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 50 100 150 200 250 300

P
ro

ba
bi

lit
y

Time (ms)

10 Step Response Time Histogram for 10 MB File

Honest (3 Drives)
Adversary (2 Drives)

Figure 7: Read-time histogram at 10 steps for a 10 MB file

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

400 450 500 550 600 650 700 750

P
ro

ba
bi

lit
y

Time (ms)

100 Step Response Time Histogram for 100 MB File

Honest (3 Drives)
Adversary (2 Drives)

Figure 8: Read-time histogram at 100 steps for a 100 MB file

 0

 0.1

 0.2

 0.3

 0.4

 0.5

900 1000 1100 1200 1300 1400 1500 1600 1700

P
ro

ba
bi

lit
y

Time (ms)

175 Step Response Time Histogram for 1 GB File

Honest (3 Drives)
Adversary (2 Drives)

Figure 9: Read-time histogram at 175 steps for a 1 GB file

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

P
ro

ba
bi

lit
y

Time (ms)

250 Step Response Time Histogram for 10 GB File

Honest (3 Drives)
Adversary (2 Drives)

Figure 10: Read-time histogram at 250 steps for a 10 GB file

 0

 50

 100

 150

 200

 250

 300

 3 5 7 9 11

S
te

ps

Number of Honest Server Drives

Steps to Achieve 95% Separation

300 ms.
200 ms.
100 ms.
10 ms.

Figure 11: Effect of drives and steps on separation

ration threshold of 100ms, the lock-step protocol needs to use less
than 150 steps. On the other hand, for a 300ms separation thresh-
old, the number of steps increases to nearly 250.

More powerful adversaries.
In the experiments presented thus far we have considered an “ex-

pected” adversary, one that usesd = c− 1 drives, but allocates file
blocks on disks evenly. Such an adversary still needs to perform a
double read on at least one drive in each step of the protocol. For
this adversary, we have naturally assumed that the block that is a

double read in each step is stored equally likely on each of thec−1
drives. As such, our expected adversary has limited ability to select
the drive performing a double read.

One could imagine a more powerful adversary that has some
control over which drive performs a double read. As block read
times are variable, the adversary would ideally like to perform the
double read on the drive that completes the first block read fastest
(in order to minimize its total response time). We implement such
a powerful adversary by storing a full copy of the encoded file on
each of thed = c − 1 drives available. In each step of the proto-
col, the adversary issues one challenge to each drive, and then the
fourth challenged block to the drive that completes first.

We performed some experiments with a 2GB file. We imple-
mented the honest server using all four of our test drives and issu-
ing a random read to each in each step of the protocol. We then
removed the OS drive (Hitachi) from the set, and implemented
both the expected and the powerful adversaries with the remain-
ing (fastest) three drives. We show in Figure 12 the average time
to respond to a challenge for an honest server usingc = 4 drives,
as well as for the expected and powerful adversaries usingd = 3
drives (the time shown includes the threading overhead needed to
issue blocking read requests to multiple drives simultaneously, as
well as the time to read challenged blocks from disk).

The results demonstrate that even if a powerful adversarial server
is willing to store triple the necessary amount of data, it is still dis-
tinguishable from an honest server with a better than 95% probabil-
ity using only a 100-step protocol. Moreover, the number of false

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

50 100 150 200 250

T
im

e
(m

s)

Steps

Response Times of Different Adversaries

Honest (4 Drives)
Powerful (3 Drives)

Expected (3 Drives)

Figure 12: Time to complete lock-step protocol

negatives can be further reduced by increasing the number of steps
in the protocol to achieve any desired threshold.

6.2.2 Contention model
We now turn to look at implementing RAFT in the face of con-

tention from other users. For that, we performed tests on Mozy,
a live cloud backup service. As confirmed by a system architect
[19], Mozy does not use multi-tiered storage: Everything is stored
in a single tier of rotational drives. Drives are not spun down
and files are striped across multiple drives. An internal server ad-
dresses these drives independently and performs erasure encod-
ing/decoding across the blocks composing file stripes. Given Mozy’s
use of a single tier of storage, independently addressable devices,
and internal points of file-block aggregation and processing, we be-
lieve that integration of RAFT into Mozy and other similar cloud
storage systems is practical and architecturally straightforward.

To demonstrate the feasibility of such integration, we performed
a simple experiment. This experiment shows that even with no
modification or optimization for RAFT, and in the face of con-
tention from other users, it is possible to achieve a very basic RAFT-
style demonstration that files span multiple drives.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(m

s)

File Blocks

Timing: Mozy Cloud Storage vs. Local HP Drive

HP Average
HP Min

Mozy Average
Mozy Min

Figure 13: Comparing block retrieval on Mozy and a local
drive

In this experiment, we had a remote client upload a large (64GB)
file into Mozy. The client then issued several requests for randomly

located bytes in the file9. The client measured the time required for
Mozy to return the requested blocks. The time seen by the client
also includes roughly 100 ms. of round-trip network latency (mea-
sured by pinging the Mozy servers). For comparison, we ran the
same tests locally on the HP drive and report the results in Fig-
ure 13. Once the number of requested blocks is greater than 150,
Mozy is able to retrieve the blocks and transmit them over the net-
work faster than our local drive can pull them from disk. For ex-
ample, 500 requested blocks were returned from Mozy in 2.449
seconds. By comparison, the same task took 3.451 seconds on the
HP drive. Mozy consistently retrieved the blocks 15% faster (and
occasionally up to 30% faster) than would be consistent with the
use of a single, high-performance drive. Even withno modifica-
tion to Mozy, we are already able to demonstrate with a RAFT-like
protocol that Mozy distributes files across at least two drives.

Of course, with an integrated RAFT system in Mozy, we would
expect to achieve a stronger (i.e., higher) lower bound on the num-
ber of drives in the system, along with a proof of resilience to drive
crashes. RAFT’s suitability for Mozy promises broader deploy-
ment opportunities in cloud infrastructure.

7. RATIONAL SERVERS
The cheap-and-lazy server model reflects the behavior of an or-

dinary substandard storage provider. As already noted, an efficient
RAFT is not feasible for a fully malicious provider. As we now
explain, though, RAFTs can support an adversarial server model
that is stronger than cheap-and-lazy, but not fully Byzantine. We
call such a serverrational. We show some RAFT constructions for
rational servers that are efficient, though not as practical as those
for cheap-and-lazy servers.

A rational serverS aims to constrain within some bound the
drive and storage resources it devotes to fileF . Refer again to Ex-
perimentExpRAFT (t)

S (m, ℓ, t) in Figure 1. Letρ(d, {Dj}
d
j=1) be

acost functionon a file placement(d, {Dj}
d
j=1) generated byS in

this experiment. This cost functionρ may take into accountd, the
total number of allocated drives, and|Dj |, the amount of storage
on drivej. Let R denote an upper bound onρ. We say thatS is
(ρ,R)-constrained if it satisfiesρ(d, {Dj}

d
j=1) ≤ R for all block

placements it generates. Roughly speaking, within constraintR, a
rational serverS seeks to maximizePr[AccS]. Subject to maxi-
mizedPr[AccS], S then seeks to maximize the fault-tolerance of
F . Formally, we give the following definition:

DEFINITION 1. Let p be the maximum probabilityPr[AccS]
that a(ρ,R)-constrained serverS can possibly achieve. A(ρ,R)-
constrained serverS is rationalif it minimizesPr[NotFTS] among
all (ρ,R)-constrained serversS ′ withPr[AccS′] = p.

A rational adversary can perform arbitrary computations over file
blocks. It is more powerful than a cheap-and-lazy adversary. In
fact, a rational adversary can successfully cheat against our RAFT
scheme above. The following, simple example illustrates how a
rationalS can exploit erasure-codecompression, achievingt = 0,
i.e., no fault-tolerance, but successfully answering all challenges.

EXAMPLE 1. Suppose thatS aims to reduce its storage costs,
i.e., minimizeρ(d, {Dj}

d
j=1) =

∑
j |Dj |. Consider aRAFT (t)

with (systematic) encodingG, i.e., with{g1, . . . , gm} = {f1, . . . ,
fm} = F and parity blocksgm+1, . . . , gn. S can store{fj}mj=1

individually acrossm disks{Dj}
m
j=1 anddiscard all parity blocks.

9We use bytes to ensure the requested block is on a single drive
since we don’t know the granularity with which Mozy stripes files.

To reply to a RAFT challenge,S retrieves every block ofF (one per
disk) and recomputes parity blocks on the fly as needed.

7.1 Incompressible erasure codes
This example illustrates why, to achieve security against ratio-

nal adversaries, we introduce the concept ofincompressibleerasure
codes. Intuitively, an incompressible file encoding / codewordG is
such that it is infeasible for a server to compute a compact represen-
tationG′. I.e.,S cannot feasibly computeG′ such that|G′| < |G|
andS can compute any blockgi ∈ G from G′. Viewed another
way, an incompressible erasure code is one that lacks structure,
e.g., linearity, thatS can exploit to save space.10

Suppose thatS is trying to create a compressed representation
G′ of G. Let u = |G′| < n = |G| denote the length ofG′. Given
a bounded number of drives, a serverS that has storedG′ can, in
any given timestep, access only a bounded number of file blocks /
symbols ofG′. We capture this resource bound by definingr < n
as the maximum number of symbols inG′ that S can access to
recompute any symbol / blockgi of G.

Formally, letIEC = (ECEnc : SK × Bm → Bn,ECDec :
PK×Bn → Bm) be an(n,m)-erasure code overB. Let(sk, pk) ∈
(SK,PK) ← Keygen(1ℓ) be an associated key-generation algo-
rithm with security parameterℓ. LetA = (A1, A

(r)
2) be a memory-

less adversary with running time polynomially bounded inℓ. Here
r denotes the maximum number of symbols / blocks thatA2 can
access overG′.

ExperimentExpIEC
A (m,n, ℓ;u, r):

(sk, pk)← Keygen(1ℓ);

F = {fi}
m
i=1

R
← Bm ;

G = {gi}
n
i=1 ← ECEnc(sk, F);

G′ ∈ Bu ← A1(pk,G);

i
R
← Zn;

g ← A
(r)
2 (pk,G′);

if g = gi
then output 1,

else output 0

Figure 14: IEC Security Experiment

Referring to Figure 14, we have the following definition:

DEFINITION 2. LetAdvIEC
A (m,n, ℓ, u, r) =

Pr[ExpIEC
A (m,n, ℓ;u, r) = 1]−u/n. We say that IEC is a(u, r)-

incompressible code (foru < n, r < n) if there exists noA such
thatAdvIEC

A (m,n, ℓ;u, r) is non-negligible.

In the full version of the paper [6], we prove the following the-
orem (as a corollary of a result on arbitrary(u, d)-incompressible
IECs). It shows that given an IEC and a slightly modified query
structure, a variant of our basic scheme,RAFT ′(t), is secure
against rational adversaries:

THEOREM 2. For a systemRAFT (t) using a(n− 1, d)-
incompressible IEC, a(ρ,R)-constrained rational adversaryS with
d drives has advantage at mostAdv

RAFT (t)
S (m, ℓ, t) ≤ 1−B(c, t, α),

whereB(c, t, α) is defined as in Theorem 1.

We propose two constructions for incompressible erasure codes,
with various tradeoffs among security, computational efficiency,
and key-management requirements:

10Incompressibility is loosely the inverse of local decodability [22].

Keyed RAFTs Adopting the approach of [17, 21], it is possible
to encrypt the parity blocks ofG (for a systematic IEC) or all
of G to conceal the IEC’s structure fromA. (In a RAFT, the
client would computeEncode, encrypting blocks individually un-
der a symmetric keyκ—in practice using, e.g., a tweakable cipher
mode [18].) Under standard indistinguishability assumptions be-
tween encrypted and random blocks, this transformation implies
(u, r)-incompressibility for any validu, r < n. While efficient,
this approach has a drawback: Fault recovery requires use ofκ,
i.e., client involvement.

Digital signature with message recoverabilityA digital signa-
tureσ = Σsk[m] with message recoverability on a messagem has
the property that ifσ verifies correctly, thenm can be extracted
from σ. (See, e.g., [4] for PSS-R, a popular choice based on RSA.)
We conjecture that an IEC such thatg′i = Σsk[gi] for a message-
recoverable digital signature scheme implies(u, r)-incompressibility
for any validu, r < n. (Formal proof of reduction to signature un-
forgeability is an open problem.)

This RAFT construction requires use of private keysk to com-
pute encodingG or to reconstructG after a data loss. Importantly,
though, it doesn’t require use ofsk to constructF itself after a data
loss. In other words, encoding is keyed, butdecodingis keyless.

The construction is somewhat subtle. A scheme thatappends
signatures that lack message recovery does not yield an incom-
pressible code:A can throw away parity blocks and recompute
them as needed provided that it retains all signatures. Similarly, ap-
plying signatures only to parity blocks doesn’t work:A can throw
away message blocks and recompute them on the fly.11

8. CONCLUSION
We have shown how to bring a degree of transparency to the

abstraction layer of cloud systems in order to reliably detect drive-
failure vulnerabilities in stored files. Through theory and experi-
mentation, we provided strong evidence that our Remote Assess-
ment of Fault Tolerance (RAFT) works in realistic settings. With
careful parametrization, a RAFT can handle the real-world chal-
lenges of network and drive operation latency for large files (at least
100MB) stored on traditional storage architectures.

We believe that RAFT has a clear deployment path in systems
such as Mozy, where a cloud server can request data in parallel
from multiple drives and aggregate it before communicating with
the client. Such infrastructure is likely common for providers of-
fering fault-tolerant cloud storage. As we have shown, some level
of data dispersion can already be evidenced in Mozy even with-
out server-side modification. It remains an open problem to build
a full end-to-end RAFT protocol integrated into an existing cloud
infrastructure and demonstrate its feasibility in practice.

With their unusual combination of coding theory, cryptography,
and hardware profiling, we feel that RAFTs offer an intriguing new
slant on system assurance. RAFT design also prompts interest-
ing new research questions, such as the modeling of adversaries in
cloud storage systems, the construction of provable and efficient
incompressible erasure codes, and so forth.

11Message-recoverable signatures are longer than their associated
messages. An open problem is whether, for randomF , there is
some good message-recoverable signature scheme over blocks ofG
that has no message expansion. Signatures would be existentially
forgeable, but checkable against the client copy ofF .

Acknowledgments
We wish to extend our thanks to Burt Kaliski for his comments on
an early draft of this paper, and to Erik Riedel for clearing up ques-
tions about hard drive operation. We also thank Tom Ristenpart
for shepherding the paper and to the anonymous reviewers for their
helpful comments.

9. REFERENCES
[1] The Hadoop distributed file system.

http://hadoop.apache.org/hdfs.
[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,

L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy
nodes. InProc. ACM SOSP, 2009.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,
Z. Peterson, and D. Song. Provable data possession at
untrusted stores. InProc. ACM CCS, pages 598–609, 2007.

[4] M. Bellare and P. Rogaway. The exact security of digital
signatures: How to sign with RSA and Rabin. In U. Maurer,
editor,Proc. EUROCRYPT ’96, volume 1070 ofLNCS,
pages 399–416. Springer-Verlag, 1989.

[5] K. Bowers, A. Juels, and A. Oprea. HAIL: A
high-availability and integrity layer for cloud storage. In
Proc. ACM CCS ’09, pages 187–198, 2009.

[6] K. D. Bowers, M. van Dijk, A. Juels, A Oprea, and R. Rivest.
How to tell if your cloud files are vulnerable to drive crashes,
2010. IACR ePrint manuscript 2010/214.

[7] S. Brands and D. Chaum. Distance-bounding protocols
(extended abstract). InProc. EUROCRYPT ‘93, pages
344–359. Springer, 1993. LNCS vol. 765.

[8] A. Clements, I. Ahmad, M. Vilayannur, and J. Li.
Decentralized deduplication in san cluster file systems. In
Proc. USENIX Annula Technical Conference, 2009.

[9] J. Cox. T-Mobile, Microsoft tell Sidekick users we ’continue
to do all we can’ to restore data.Network World, October 13,
2009.

[10] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. MR.PDP:
Multiple-replica provable data possession. InProc. 28th
IEEE ICDCS, 2008.

[11] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability
via hardness amplification. InProc. TCC, 2009.

[12] C. Dwork and M. Naor. Pricing via processing or combatting
junk mail. In E.F. Brickell, editor,Proc. CRYPTO ‘92, pages
139–147. Springer, 1992. LNCS vol. 740.

[13] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. InProc.
CRYPTO’86, volume 263 ofLNCS, pages 186–194.
Springer, 1986.

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: a virtual machine-based platform for trusted
computing. InProc. ACM SOSP, pages 193–206, 2003.

[15] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google file
system. InProc. ACM SOSP, pages 29–43, 2003.

[16] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives
enforcing communication and storage complexity. InProc.
Financial Cryptography, pages 120–135. Springer, 2002.
LNCS vol. 2357.

[17] P. Gopalan, R. J. Lipton, and Y. Z. Ding. Error correction
against computationally bounded adversaries, October 2004.
Manuscript.

[18] S. Halevi and P. Rogaway. A tweakable enciphering mode. In
D. Boneh, editor,Proc. CRYPTO’03, volume 2729 ofLNCS,
pages 482–499. Springer, 2003.

[19] Mozy CTO J. Herlocker. Personal Communication, 2011.
[20] A. Juels and J. Brainard. Client puzzles: A cryptographic

countermeasure against connection depletion attacks. In
Proc. ISOC NDSS, pages 151–165, 1999.

[21] A. Juels and B. Kaliski. PORs–proofs of retrievability for
large files. InProc. ACM CCS 2007, pages 584–597, 2007.

[22] J. Katz and L. Trevisan. On the efficiency of local decoding
procedures for error-correcting codes. InProc. STOC, pages
80–86, 2000.

[23] R. Kotla, L. Alvisi, and M. Dahlin. Safestore: a durable and
practical storage system. InProc. USENIX’07, pages
10:1–10:14, Berkeley, CA, USA, 2007. USENIX
Association.

[24] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee.
Triangle inequality variations in the internet. InProc. ACM
IMC, 2009.

[25] R. Merkle. A certified digital signature. InProc. Crypto
1989, volume 435 ofLNCS, pages 218–238.
Springer-Verlag, 1989.

[26] J.F. Muth and G.L. Thompson.Industrial scheduling.
Prentice-Hall, 1963.

[27] M. Naor and G. N. Rothblum. The complexity of online
memory checking. InProc. 46th IEEE FOCS, pages
573–584, 2005.

[28] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The case for RAMClouds: Scalable
high-performance storage entirely in dram.SIGOPS
Operating Systems Review, 43(4):92–105.

[29] E. Riedel, C. Van Ingen, and J. Gray. A performance study of
sequential I/O on Windows NT 4.0. Technical Report
MSR-TR-97-34, Microsoft Research, September 1997.

[30] C. Ruemmler and J. Wilkes. An introduction to disk drive
modeling.IEEE Computer, 27(3):17–29, 1994.

[31] H. Shacham and B. Waters. Compact proofs of retrievability.
In Proc. Asiacrypt 2008, volume 5350 ofLNCS, pages
90–107. Springer-Verlag, 2008.

[32] B. L. Worthington, G. R. Ganger, and Y. N. Patt. Scheduling
algorithms for modern disk drives. InProc. ACM Sigmetrics,
pages 241–251, 1994.

