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Abstract—Latent sector errors (LSEs) are a common hard
disk failure mode, where disk sectors become inaccessible while
the rest of the disk remains unaffected. To protect against
LSEs, commercial storage systems use scrubbers: background
processes verifying disk data. The efficiency of different scrub-
bing algorithms in detecting LSEs has been studied in depth;
however, no attempts have been made to evaluate or mitigate
the impact of scrubbing on application performance.

We provide the first known evaluation of the performance
impact of different scrubbing policies in implementation, in-
cluding guidelines on implementing a scrubber. To lessen this
impact, we present an approach giving conclusive answers
to the questions: when should scrubbing requests be issued,
and at what size, to minimize impact and maximize scrubbing
throughput for a given workload. Our approach achieves six
times more throughput, and up to three orders of magnitude
less slowdown than the default Linux I/O scheduler.

Keywords-scrubbing; hard disk failures; latent sector errors;
idleness predictors; background scheduling

I. INTRODUCTION

It is estimated that over 90% of all new information

produced in the world is being stored on magnetic me-

dia, primarily hard drives [1], making the reliability of

these complex mechanical components crucial. Alas, disk

drives can fail for numerous reasons, and while for many

years it was assumed that disks operate in a “fail-stop”

manner, Bairavasundaram et al. [2] showed that Latent

Sector Errors (LSEs) are a common failure mode. In the

case of LSEs, individual disk sectors become inaccessible,

while the remainder of the disk is unaffected. LSEs are a

particularly insidious failure mode, since they are silent and

only detected when the affected disk area is accessed. If

there is no redundancy in the system, the data on the affected

sectors is lost. While most storage systems do provide

redundancy, most commonly through the use of RAID, LSEs

can still cause data loss if they are detected during RAID

reconstruction after a disk failure. This scenario is becoming

a major concern, particularly since the rate at which disk

capacities increase suggests that by 2015, a full-disk scan

will incur at least one LSE [3].

To protect against data loss due to LSEs, most commercial

storage systems use a “scrubber”: a background process that

periodically performs full-disk scans to proactively detect

and correct LSEs. The goal of a scrubber is to minimize

the time between the occurrence of an LSE and its detec-

tion/correction, also referred to as the Mean Latent Error

Time (MLET), since during this time the system is exposed

to the risk of data loss (e.g. if another drive in the disk

array fails). In addition to reducing the MLET, a scrubber

must ensure to not significantly affect the performance of

foreground workloads running on the system.

The importance of employing an efficient scrubber will

only increase in the future, as continuously growing disk

capacities will increase the overheads for a disk scan, and

the rate at which LSEs will happen. Unfortunately, the

scrubbers employed in today’s storage systems are quite

simplistic: they scan the disk sequentially in increasing order

of Logical Block Numbers (LBN) at a rate determined by

the system administrator. This simple approach ignores a

number of design options that have the potential for reducing

the MLET, as well as the impact on foreground workload.

The first design question is determining the order in

which to scrub the disk’s sectors. While scrubbing the disk

sequentially is simple and efficient (as sequential I/O is more

efficient than random accesses), recent research [4] shows

that an alternative approach, called staggered scrubbing,

provides lower MLET. Staggered scrubbing aims to exploit

the fact that LSEs happen in (temporal and spatial) bursts:

rather than sequentially reading the disk from beginning

to end, the idea is to quickly “probe” different regions of

the drive, hoping that if a region has a burst of errors the

scrubber will detect it quickly and then immediately scrub

the entire region. While reducing MLET, the overhead of the

random I/O in staggered scrubbing can potentially reduce

scrub throughput and increase the impact on foreground

workloads. Unfortunately, there exists no experimental eval-

uation that quantifies this overhead, and staggered scrubbing

is currently not used in practice.

The second design question is deciding when to issue

scrub requests. The scrubbers employed in commercial stor-

age systems today simply issue requests at a predefined



rate, e.g. every r msec. This approach has two short-

comings. First, it does not attempt to minimize impact on

foreground traffic, as scrub requests are issued independently

of foreground activity. While research has been done on

scheduling general background traffic [5], [6], [7], [8], [9],

none is particularly geared towards scrubbers. Second, it is

often hard for system administrators to choose the rate r that

is right for their system, since it is hard to predict the impact

on foreground traffic that’s associated with a particular rate.

A third parameter that is not very well understood is the

scrub request size, or the number of sectors scrubbed by

individual scrub requests. Larger request sizes lead to more

efficient use of the disk, but also have the potential of bigger

impact on foreground traffic, as foreground requests that

arrive while a scrub request is in progress get delayed.

Finally, there are a number of implementation choices for

a scrubber that have not been well studied, including the

choice of a user-level versus kernel-level implementation,

or the effect of the disk interface (SCSI versus ATA).

The contributions of our work are summed up as follows:

• We developed a framework that can be used to imple-

ment scrubbing algorithms in only tens of lines of code

(LoC) within the linux kernel, and made its source code

publicly available1. We also implemented a user-level

scrubber to allow for a quantitative comparison between

user-level and kernel-level scrubbing.

• We provide the first implementation of a staggered

scrubber and compare its performance to that of a

standard sequential scrubber.

• We perform a detailed statistical study of publicly

available disk I/O traces, and apply the results towards

the design of an efficient approach for scheduling scrub

requests.

• We provide conclusive answers to the questions: when

should scrubbing requests be issued and at what size,

using an approach that maximizes scrubbing throughput

for a given workload, while meeting a predefined

slowdown goal for foreground traffic. Our approach sig-

nificantly outperforms the default linux I/O scheduler,

the only one to allow I/O prioritization.

• We provide the first known evaluation of the perfor-

mance impact of different scrubbing policies using our

framework and our approach in conjunction with real-

world workload traces.

The paper is organized as follows: In Section II we

describe work related to this paper. Section III describes the

framework we implemented and used to develop sequential

and staggered scrubbing; a performance evaluation of the

two algorithms follows in Section IV. We look at ways

to increase scrubbing throughput, while avoiding impact on

applications in Section V, and conclude with a discussion

of our observations and future directions in Section VI.

1Kernel patches can be found at http://www.cs.toronto.edu/∼gamvrosi

II. RELATED WORK

The concept of scrubbing is not new in reliability research;

several papers have studied scrubbing in different contexts.

While scrubbers in production systems simply scan the disk

sequentially, work by Oprea et al. [4] shows that an approach

based on sampling can exploit LSE locality to reduce MLET.

The disk is separated into R regions, each partitioned into

S segments. In each scrub interval, the scrubber begins by

reading the first segment from each region ordered by LBN,

then the second one, and so on. Other proposed algorithms

focus on actions taken once an LSE is detected [10], [11],

or scrubbing in archival systems with limited uptime [12].

All these studies focus solely on reducing the MLET, and

do not evaluate the scrubber’s impact on the performance

of foreground traffic. Also, evaluation is done analytically,

without an actual implementation. This paper provides an

implementation of sequential and staggered scrubbing, and

evaluates their impact on foreground traffic performance;

we also examine a number of other design choices for

implementing a scrubber.

A number of prior studies have also focused on ways to

schedule background workloads in a storage system, while

limiting the impact on foreground traffic. Unfortunately,

none of this work is optimal or suitable for scheduling

background scrub requests. Proposed approaches include:

I/O preemption [13], merging background requests with

application requests [5], [6] and piggy-backing background

requests to foreground requests [14]. These approaches,

however, make extensive use of prefetching, and a scrubber

should ideally avoid request prefetching/merging as it pol-

lutes the on-disk and page caches with data from scrubbed

sectors. Furthermore, a scrubber needs to guarantee that the

sector’s contents were verified from the medium’s surface

(rather than a cache) at request execution time.

Other approaches try to limit the impact of background

requests on foreground traffic by trying to predict disk

idleness and scheduling background requests during those

idle intervals. Golding et al. [7] provide a general taxonomy

of idleness predictors, without, however, adapting their pa-

rameters to accommodate for different workloads or specific

slowdown goals. Our study moves along the lines of prior

work by Mi et al. [8], [9] and Schindler et al. [15], who

try to determine the best start and end times to schedule

background requests while limiting the number of collisions

(situations where a foreground request arrives to find the

disk busy with a background request). Our approach, instead

of focusing on collisions requires more intuitive input: the

average slowdown allowed per I/O request. We also find

that a simple approach is sufficient, where only the start

time is determined, and requests are always issued until a

collision happens. Finally, we optimize a different parameter

set specific to scrubbing, which provides additional degrees

of freedom such as the scrub request size.
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Figure 1. Response times for different ATA VERIFY sizes

III. IMPLEMENTING A SCRUBBER

When implementing a scrubber, three components need

to be considered: an interface directing the disk to carry out

the verification of specific sectors, a module that implements

the scrubbing algorithm(s), and an I/O scheduler capable of

issuing scrub requests in a fashion that limits the impact

on foreground traffic. We experimented with the SCSI and

ATA interfaces [16], and examine their ability to issue

scrub requests in Section III-A. In Section III-B, we briefly

present the only I/O scheduler in linux that provides I/O

prioritization. Finally, we explore and evaluate different

implementations of the scrubbing module in both user- and

kernel-level in Section III-C.

A. Scrub requests in SCSI/SAS vs. ATA/SATA

Scrubbers typically rely on the VERIFY commands imple-

mented in both the SCSI and ATA interfaces to issue scrub

requests, rather than using regular disk reads. The reason is

that VERIFY guarantees to verify the data from the medium’s

surface (rather than reading it from the on-disk cache) and

prevents cache pollution by avoiding to transfer any data or

use prefetching.

Interestingly, our experiments with multiple ATA drives

show that ATA VERIFY is not implemented as advertised.

Specifically, we observe strong evidence that ATA VERIFY

reads data from the on-disk cache, rather than the medium’s

surface. Our evidence is summarized in Fig. 1, which

shows ATA VERIFY response times for different request

sizes for two popular current ATA drives (WD Caviar and

Hitachi Deskstar) and one SAS drive (Hitachi Ultrastar)

when accessing data sequentially from the disk. The solid

lines for all models show the response times when the on-

disk cache is disabled, while the dashed lines show results

for when the on-disk cache is enabled. It is evident that

disabling the cache affects VERIFY response times for the

ATA drives but not for the SAS drive, indicating that the

former do depend on the on-disk cache, rather than forcing

accesses to the drive’s platter. We conclude that since ATA

VERIFY is implemented incorrectly in modern ATA disks,

scrubbers using them would likely pollute the on-disk cache.

Figure 2. Architecture of our kernel scrubber.

B. The Completely Fair Queueing (CFQ) I/O scheduler

In our implementation we use the linux CFQ I/O sched-

uler, as it is the only open source scheduler that supports

I/O prioritization. CFQ provides a separate priority class

(Idle), for scheduling of background requests. To minimize

the effect of background requests on foreground ones, CFQ

only issues requests from the Idle class after the disk has

remained idle for at least 10ms. Although this parameter is

tunable, changing it in linux 2.6.35 did not seem to affect

CFQ’s background request scheduling.

C. User space, or kernel space?

While current scrubbers rely on the VERIFY commands

for the reasons outlined in Section III-A, there are downsides

to using them due to the way they are executed by the linux

kernel. As is common with device-specific functionality in

linux, a wild-card system call is used (ioctl) to pass a

packet with the command and its arguments directly to the

I/O scheduler, and then to the device driver for execution.

However, since the kernel has no knowledge of the command

that is about to be executed, such requests are flagged as

soft barriers, and performance optimizations (e.g. reordering

between or merging with outstanding block requests) are

not applied. Since a scrubber implemented in user space

has no way to avoid the performance penalty due to these

scheduling decisions made in the kernel, we implement our

scrubbing framework entirely in kernel space.

In Fig. 2 we present the architecture of our kernel scrub-

ber, implemented in the block layer of the 2.6.35 kernel

[17]. The scrubber is activated at bootstrapping, matching

scrubber threads to every block device in the system; this

matching is updated when devices are inserted/removed,

e.g. due to hot swapping. The threads remain dormant by

being inserted in the CPU’s sleeping queue, until scrubbing

for a specific device is activated. Internally, the scrubber

implements SCSI VERIFY2, since it is not natively sup-

ported by the kernel, and provides a simple API that can be

2Our implementation supports ATA devices through the kernel’s libATA
library, which performs the appropriate translation for VERIFY.
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Figure 3. Comparison of our user- (U) and kernel-level (K) scrubbers.

used to code new scrubbing strategies. We implemented our

framework in 2700 commented LoC, and in that we coded

sequential and staggered scrubbing in approx. 50 LoC each.

To send requests to the I/O scheduler and set the I/O

priority for scrubber threads (if CFQ is used), we use the

Generic Block Layer interface. To enable the I/O scheduler

to sort scrubbing requests among other outstanding ones,

every time a scrubber thread dispatches a VERIFY request

we disguise it as a regular read request bearing all relevant

information, such as starting LBN and request size. This in-

formation is unavailable in the vanilla kernel, since sorting is

not permitted for soft barrier commands. Once the scrubbing

request has been dispatched, we put the thread back to the

sleeping queue, and at request completion it is awakened by

a callback function to repeat the process.

Fig. 3 shows the results from experimenting with the

basic version of our kernel-level scrubber and a basic

user-level scrubber. We generate a simple, highly-sequential

foreground workload, with exponential think times between

requests (µ = 100ms) to allow for idle intervals that the

scrubber can utilize. In one set of experiments we run the

foreground workload and the scrubber at the same priority

level (Default), while in a second set of experiments we use

CFQ’s Idle priority class to reduce the scrubber’s priority.

For both the Idle and the Default priorities we allowed the

scrubber to issue requests back to back, and for the Default

priority, we also experimented with a 16ms delay between

scrub requests (Def. 16ms), in order to allow the foreground

workload to make progress. Results are shown for a Hitachi

Ultrastar SAS drive, but we also experimented with a Fujitsu

MAX3073RC SAS drive and got similar results.

It is evident from Fig. 3 that when allowing the scrubber

to issue requests back-to-back, both the scrubber and the

foreground workload achieve significantly higher throughput

in the kernel-level implementation. Also, priorities have no

effect on the user-level scrubber whose requests are soft

barriers, as opposed to the kernel scrubber, which is bene-

fiting by the workload’s think time and starving it under the

Default priority. When the scrubber is delayed, however, the

maximum scrubbing throughput (3.9MB/s, or 64KB/16ms) is

reached only by the user-level scrubber; proper prioritization

limits the kernel scrubber’s throughput at 3MB/s. These

results clearly motivate the use of sophisticated scheduling

with I/O prioritization, if the scrubber’s impact is to be

mitigated while retaining high throughput.

IV. GETTING THERE QUICKLY

The goal of this section is to compare the performance

of staggered and sequential scrubbing. While sequential

scrubbing is the approach currently employed in practice,

research indicates that staggered scrubbing can significantly

reduce the MLET. The reason practitioners are shying away

from using staggered scrubbing, is the fear that moving from

sequential to more random scrubbing I/O patterns might

affect the performance of the I/O system, both in terms

of the scrubber’s throughout, and its impact on foreground

workloads. To quantify these effects, we implemented both

a sequential and a staggered scrubber within the kernel-

level framework described in Section III-C. We begin our

experimental evaluation in Section IV-A by comparing the

scrubbing throughput that can be achieved by a staggered

versus a sequential scrubber, and then evaluate their impact

on foreground traffic, using simple synthetic foreground

workloads in Section IV-B, and more realistic trace-based

workloads in Section IV-C.

A. Staggered versus sequential scrubbing

The performance of both a sequential and a staggered

scrubber will naturally depend on the choice of their param-

eters. Therefore, we begin by evaluating the effect of the

scrubbers’ parameters on their performance to identify the

optimal set of parameters for each scrubber.

The only tunable parameter of a sequential scrubber is the

request size S of each scrubbing request, a parameter shared

with the staggered scrubber. Our first goal in this section is to

distinguish the range of request sizes that can achieve high

scrubbing throughput. We measured the response time of

SCSI VERIFY for different request sizes for two SAS drives

(Hitachi Ultrastar 15K450 300GB and Fujitsu MAX3073RC

73GB) and one SCSI disk (Fujitsu MAP3367NP 36GB), and

we found that for requests ≤ 64KB, response times remain

almost constant for all models (Fig. 4). As a consequence,

we henceforth experiment only with request sizes starting at

64KB, and report the throughput achieved by each scrubber.

The results for the two SAS drives are shown in the two

solid lines in Fig. 5a, suggesting that the largest scrubbing

request size should be preferred, from 64KB to 4MB.

In the case of the staggered scrubber there is an additional

parameter: the number of regions that the disk is divided

into. Recall that a staggered scrubber separates the disk

into R regions, based on a predefined region size, each of

which gets scrubbed in ⌈R
S
⌉ rounds. In the first round, the

first S bytes are verified from each region, then the S after

those, and so on. To experiment with the region size, we ran

the staggered scrubber on our two SAS disks using 64KB
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Figure 5. Impact of scrubbing parameters on sequential and staggered scrubbing performance.

requests (the presented trend holds regardless of request

size), dividing the disks in up to 512 regions. The solid lines

in Fig. 5b represent the staggered scrubber’s throughput for

the two drives as a function of the number of regions. We

observe that the throughput of the scrubber continuously

increases as the number of regions increases from two to

512 (in the case of one region, the staggered scrubber’s

actions are identical to a sequential scrubber). To answer

our original question, which is how the performance of a

staggered scrubber compares to that of a sequential scrubber,

the dashed lines in Fig. 5b represent the throughput achieved

by a sequential scrubber (using 64KB requests). Interestingly,

for more than 128 regions we find that the staggered scrubber

performs equally well or better than the sequential one. We

have observed this trend for drives of varying capacities,

which leads us to assume that it is independent of the disk’s

capacity. To verify that this trend holds for larger request

sizes, we have also plotted the throughput of a staggered

scrubber as a function of the request size (while fixing the

number of regions to 128) in Fig. 5a. Since work on the

impact of staggered scrubbing on the MLET shows that the

number of regions has a relatively small impact on MLET

[4], we recommend using small region sizes, compared to the

disk’s capacity. To obtain conservative results, though, we

fix the number of regions to 128 in subsequent experiments.

The fact that staggered can outperform sequential scrub-

bing may seem counter-intuitive. However, since VERIFY

avoids transferring data to the controller or on-disk cache,

when a sequential scrubbing request is completed, the next

one will have to be serviced from the medium’s surface. At

the same time, the head has moved further along the track,

while the VERIFY result was propagated to the controller.

Hence, when the next VERIFY is initiated, the head needs

to wait for a full rotation of the platter until it reaches the

correct sector. For the staggered scrubber, this describes only

the worst case. However, when the regions are too large (less

than 64 in total), the overhead of jumping between regions

dominates the overhead caused by rotational latency. We

have validated this hypothesis experimentally by increasing

the delay between subsequent scrubbing requests, by inter-

vals smaller than the rotational latency. As expected, only

the staggered scrubber was harmed by such delays.

B. Scrubbing impact on synthetic workloads

Next, we evaluate the performance impact of scrubbing

on two simple synthetic foreground workloads. The first is

a workload with a high degree of sequentiality: it picks a

random sector and reads the following 8MB using 64KB re-

quests. Once the chunk’s last request is serviced, it proceeds

to pick another random sector and start again. The second

is a random workload, which reads random 64KB chunks

of data from the disk. For both workloads we insert an

exponentially distributed think time between requests, with a

mean of 100ms, to allow for idle intervals that the scrubber

can utilize. In all cases, we send requests directly to the disk,

bypassing the OS cache.

We experiment with both the staggered and the sequential

scrubber using 64KB scrub requests, which represent the

best case in terms of collision impact by imposing minimal

slowdown (recall Fig. 4). We schedule scrub requests in two

commonly used ways: in one case we issue scrub requests

back-to-back through CFQ, using the Idle priority to limit

their impact on the foreground workload; in the second case

we use the Default priority and limit the scrubber’s rate by

introducing delays between scrub requests, ranging from 0-

256ms (anything larger scrubs less than 320GB bi-weekly).

The results for the sequential workload are shown in

Fig. 6a. We observe that the highest combined throughput for

the workload and the scrubber is achieved with CFQ (where

the scrubber submits requests back-to-back); however, this

comes at a significant cost for the foreground application:

a drop of 20.6% in throughput, compared to the case when

the foreground workload runs in isolation. When inserting

delays between scrub requests, rather than using CFQ to

limit the impact of the scrubber, we see that for large enough

delays (≥ 16ms) the throughput of the foreground workload

is comparable to that without a scrubber. However, in those

cases the throughput of the scrubber is greatly reduced, from

9MB/s under CFQ to less than 3MB/s with a delay of more

than 16ms. As a secondary result, we note that again there
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Figure 6. Throughput comparison of sequential and staggered scrubbing, when run alongside a synthetic workload (64KB segment size, 128 regions).

is no perceivable difference between the staggered and the

sequential scrubber for sufficiently small regions (here: 128).

We observe similar results when we scrub against the ran-

dom workload in Fig. 6b: to achieve application throughput

comparable to the case without a scrubber in the system,

large delays are required that cripple the scrubber’s through-

put. Note that random workloads induce additional seeking,

decreasing the scrubber’s throughput.

C. Scrubbing impact on real workloads

To experiment with more realistic workloads, we replayed

a number of real I/O traces from the HP Cello and MSR

Cambridge collections, available publicly from SNIA [18].

We have worked with a set of 77 disk traces in total,

spanning from one week to one year (we make use of only

one week in our experiments) and being used in almost all

possible scenarios: home and project directories, web and

print servers, proxies, backups, etc. Although we ran the

experiments in the rest of the paper for almost all disks, we

have chosen to focus mainly on four disks from each trace

collection when presenting our results. These disks contain

the largest number of requests per week, and represent

diverse workloads. The characteristics of the chosen traces

are summarized in Table I 3.

Trace Disk Requests Description

MSR
Cambridge
(2008)

src11 45,746,222 Source Control

usr1 45,283,980 Home dirs

proj2 29,266,482 Project dirs

prn1 11,233,411 Print server

HP Cello
(1999)

c6t8d0 9,529,855 News Disk

c6t5d1 4,588,778 Project files

c6t5d0 3,365,078 Home dirs

c3t3d0 2,742,326 Root & Swap

MS TPC-C
(2009)

disk66 513,038 TPC-C run

disk88 513,844 TPC-C run

Table I
SNIA BLOCK I/O TRACES USED IN THE PAPER

3We originally added TPC-C [18] for completeness (database workload),
but later found it to produce an unrealistic distribution of inter-arrivals.
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Figure 7. Response Times CDFs during the replay of a real I/O trace.

Fig. 7 shows the impact of our scrubbers on one of

these (more realistic) workloads by plotting the cumulative

distribution function of the response times of application

requests. For better readability we only include results

for four different cases: no scrubber; back-to-back scrub

requests scheduled through CFQ’s Idle priority class; and

scrub requests with delays of 0ms and 64ms between them.

Again, we observe results very similar to those for the

synthetic workloads. Using back-to-back scrub requests,

even when lowering their priority through CFQ, greatly

affects the response times of foreground requests. On the

other hand, when making delays between scrub requests

large enough to limit the effect on the foreground workload

(64ms), the throughput of the scrubber drops by more

than an order of magnitude (the scrubber’s throughput for

each experiment is included in the legend of Fig. 7). As

before, the results are identical for the staggered and the

sequential scrubber. These results motivate us to look at

more sophisticated ways to schedule scrub requests.

V. KNOWING WHEN TO SCRUB

Our experiments in Section IV showed that simply relying

on CFQ to schedule scrub requests, or issuing them at a fixed

rate is suboptimal both for minimizing impact on foreground

traffic, and for maximizing the scrubber’s throughput. This

motivates us to consider more sophisticated methods for

scheduling scrub requests in this section. Using statistical

analysis of I/O traces, we identify some statistical properties
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Figure 9. Periods detected for the busiest 63 disks using ANOVA.

of I/O workloads, to aid us in deriving better techniques for

scheduling scrub requests in Section V-A. We define and

experimentally evaluate those techniques in the remaining

sections.

A. Insights from the statistical analysis of traces

While previous work [19], [20] has provided some general

analysis of I/O workloads, in this section we look at I/O traf-

fic characteristics that are relevant to scheduling background

scrub requests. The main goal is to schedule scrub requests

with minimal impact on foreground traffic by making better

use of the idle intervals that hard drives experience.

Periodicity: Periodic behavior in the length of idle inter-

vals is helpful for scheduling scrub requests, since it provides

a predictable pattern that a scheduler can exploit. While we

are not aware of prior work that has specifically focused

on periodic behavior of I/O workloads, one might expect

I/O workloads to exhibit periodic patterns, such as diurnal

trends. We begin our analysis of periodicity by a visual

inspection of how the request arrival rate varies as a function

of time. Fig. 8 plots the number of requests per hour as a

function of time for four representative traces from our trace

collection. We observe that all four traces exhibit repeating

patterns, often with spikes at 24 hour intervals, but in some

cases also at other time intervals. For Cello, these consistent

spikes could be attributed to daily backups [21], while for

MSR activity peaks on different hours for different disks,

with some days seeing smaller or no peaks. We believe

that such activity spikes can be common in the field, with

Trace Disk Mean (s) Variance CoV

MSR
Cambridge
(2008)

src11 0.4640 101.31 21.693

usr1 0.0997 0.7448 8.6516

proj2 0.1384 772.18 200.75

prn1 0.2280 8.3073 12.641

HP Cello
(1999)

c6t8d0 0.1502 4.3243 13.845

c6t5d1 0.4503 180.13 29.807

c6t5d0 0.4345 15.545 9.0731

c3t3d0 0.4555 14.051 8.2301

MS TPC-C
(2009)

disk66 0.0014 1.5e-6 0.8608

disk88 0.0015 1.6e-6 0.8785

Table II
SNIA TRACE IDLE INTERVAL DURATION ANALYSIS RESULTS

varying intensity based on their causes that could be any:

from scheduled tasks to applications and/or human activity.

For a more statistically rigorous approach to periods, we

used analysis of variance (ANOVA) to identify the time

interval with the strongest periodic behavior for each trace

in our data set. The results are shown in Fig. 9. We observe

that for most traces ANOVA does identify periods, most

commonly at intervals of 24 hours (our analysis was done

at the granularity of hours, so periods of one hour in Fig. 9

mean there was no periodicity identified).

Autocorrelation: Autocorrelation is an interesting statis-

tical property, as it means that the length of previous (recent)

idle intervals is predictive of the lengths of future idle

intervals; information that a scheduler could use to identify

long idle intervals, in which to schedule scrub requests.

Previous work [19] has reported evidence of autocorrelation

for some (not publicly available) disk traces in the form of

Hurst parameter values larger than 0.5. We studied the auto-

correlation function for all our traces and found that 44 out

of the busiest 63 disk traces exhibit strong autocorrelation.

Decreasing hazard rates and long tails: Previous

work [19] has reported that the distribution of I/O request

inter-arrival times exhibits high variability. We verified that

this is also the case for our traces. We observe Coefficients

of Variation4 typically in the 10–30 range (Table II), and in

one case as high as 200. These numbers are even higher than

those reported in [19], who observed a CoV of 19 for their

most variable trace. To put those numbers in perspective,

we remind the reader that an exponential distribution has

a CoV of 1. The exponential distribution is a memoryless

distribution, i.e. if idle times were exponentially distributed,

then the expected time until the next request arrival would

always be the same, independent of the time since the last

arrival. We believe this is unrepresentative of real workloads,

and found it to be the case only for the TPC-C traces.

The high CoV values signify long tails in the distribution

of idle intervals. In the context of our work, a long tail

implies that a large fraction of the system’s total idle time is

concentrated in a small fraction of very long idle intervals.

4Recall that the Coefficient of Variation (CoV) is defined as the standard
deviation divided by the mean.
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Figure 10. What fraction of a disk’s idle time do the largest idle periods
make up? Note that the x axis is cut off at the 50

th percentile.

For a closer study of this characteristic, Fig. 10 plots the

fraction of the total idle time in the system that is made up

by the longest idle intervals, i.e. each data point (x, y) shows

that the x% largest idle intervals in the system account for

y% of the total idle time in the system. We observed that for

all traces a very large fraction of idle time is concentrated

in the tail of the idle time distribution: typically more than

80% of the idle time is included in less than 15% of the idle

intervals, in most cases the skew is even stronger.

The strong weight in the tail of the distributions is good

news for scheduling background workloads. It means that

if we can identify the 15% largest intervals, we can make

use of more than 80% of the total idle time in the system.

Scheduling background work for only a small percentage of

the idle intervals is advantageous for limiting the number of

possible collisions, where a foreground request arrives while

a background request is in progress.

An obvious problem that occurs at this point is identifying

at the beginning of an idle interval, whether it is going to

be one of the few very large ones (and hence, scrubbing

should be initiated). We can derive two ideas for identifying

long idle intervals from our previous two observations:

since there is periodicity in the data, we could schedule

background work only during those times of the day that

tend to be lightly loaded; alternatively, since there is strong

autocorrelation in the data, we could use auto-regression to

predict the length of upcoming idle intervals based on the

lengths of previous ones.

The high CoVs we observed in our traces suggest a third

option for predicting idle times: it is possible that the CoVs

in our traces are so much higher than that for an exponential

distribution, because their empirical idle time distributions

have decreasing hazard rates, i.e. the longer the system has

been idle, the longer it is expected to stay idle. In this case,

an approach based on waiting might work well, where we

wait until the system has been idle for a certain amount of

time before we issue a scrub request.

To check for decreasing hazard rates we plotted the

expected remaining idle time, as a function of how long the

disk has been idle (Fig. 11). A data point (x, y) in the graph

means that after being idle for x seconds, the system will
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Figure 11. Expected idle time remaining for the traces in Table I
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Figure 13. Fraction of idle time remaining for the traces in Table I

be idle in expectation for an additional y seconds before the

next request arrives. We observe that the lines for all Cello

and MSR traces are continuously increasing. In fact, having

been idle for a long time increases the expected remaining

idle time by several orders of magnitude (note the log scale

on the y-axis). Since the expected remaining idle time is

just an average (on average after waiting for x seconds it

will take another y seconds until the next foreground request

arrives) which might be biased by outliers, we also plotted

the first percentile of remaining time in Fig. 12. A data point

(x, y) in this graph means that in 99% of the cases, after

waiting for x seconds we have at least another y seconds

before the next foreground request arrives. We again note

strongly increasing trends.

One potential problem with the wait-based approach is

that we miss out on using the idle time that passes while

we wait. Fig. 13 plots the fraction of the total idle time

in the system that we can exploit if we only schedule



scrub requests after waiting for x seconds. The figure shows

that even after waiting for some time before issuing scrub

requests, we can still make use of a significant fraction of

the total idle time. For example, for a wait time on the

order of 100msec we can still make use of more than 60-

90% of the total idle time in the system, depending on the

trace. At the same time, the number of possible collisions

between arriving foreground and background requests is

limited, since less than 10% of all idle intervals in our traces

are larger than 100msec and will be picked for scrubbing.

Finally, our observation of decreasing hazard rates has

another implication for designing a scheduler for scrub

requests. Existing approaches for scheduling background

requests [7], [8] consist of a method for identifying a start-

ing criterion (when to start issuing background requests),

and a stopping criterion (when to stop issuing background

requests). Fig. 11 tells us that we need not worry about

a stopping criterion. The goal of background scheduling

policies is to schedule background requests when the chance

of a foreground request arriving is low. Decreasing hazard

rates, however, imply that the chance of a foreground request

arriving at any given moment diminishes with time, past the

beginning of the idle interval. Therefore, once scrubbing is

initiated, if the system is still idle upon the completion of a

scrub request, the chance of a foreground request arriving is

even lower than before issuing the scrub request. This means

that once an idle interval is identified as long, the policy that

makes most sense statistically is to keep sending background

requests, until the next foreground request arrives.

B. Profiting from idleness

In this section we define and evaluate three different

policy classes for scheduling scrub requests, which have all

been directly motivated by our results in Section V-A.

1) Autoregression (AR) – Predicting the future: The

strong periods and autocorrelation we observed in our anal-

ysis in Section V-A motivated us to look into approaches

that capture repetitive patterns. We examined autoregressive

(AR) models, which use successive observations of an event

to express relationships between a dependent and one or

more independent variables. In our experiments we used the

simple AR(p) model, which regresses a request inter-arrival

interval of length Xt against past intervals Xt−1, ..., Xt−p:

Xt = µ+

p∑

i=1

ai(Xt−i − µ) + ǫt, (1)

where ai, ..., ap are parameters of the model, ǫt is white

noise, and µ expresses a mean calculated over past inter-

vals. We estimate the order p using Akaike’s Information

Criterion [22], that optimizes the ratio between the number

of parameters and the accuracy of the resulting model. Since

AR models can only be applied to regular time series, i.e.

sequences of events recorded at regular intervals, we model

the durations of request inter-arrival intervals [23]. This also

implies that AR predictions are estimations of the amount

of time until the arrival of the next request. We attempted

to fit several AR models to our data, including ACD [24]

and ARIMA [25], and found that AR(p) is the only model

that can be fitted quickly and efficiently to the millions of

samples that need to be factored at the I/O level.

Our AR policy works by predicting the length of

the current idle interval Xt based on previous intervals

Xt−1, ..., Xt−p using the AR(p) model. The policy makes

the prediction for Xt at the beginning of the current idle

interval and starts firing scrub requests if the prediction Xt

is larger than some specified time threshold c, which is a

parameter of the policy. Once it starts issuing scrub requests

it continues until a foreground request arrives.

2) Waiting – Playing the waiting game: The decreasing

hazard rates in our traces imply that after the system has

been idle for a while, it will likely remain idle. This property

is exploited by the Waiting policy, which dictates that no

requests are to be issued, unless the system has remained idle

for some time t (t is a parameter of the policy). Requests stop

being issued only upon the arrival of a foreground request.

3) AR+Waiting – Combining auto-regression and wait-

ing: This policy combines the Auto-regression and Waiting

approaches. It waits for a time threshold t and if the system

has been idle for that long it starts firing, provided that the

auto-regression prediction for the length of this idle interval

is larger than some time threshold c.

Comparison of policies: Naturally, for all policies there is

a trade-off in the throughput that the scrubber achieves, and

the resulting impact on the performance of the foreground

traffic. The trade-off is governed by the parameters of the

policies, so choosing larger values for parameters c and t of

the AR and Waiting policies, respectively, will lead to lower

impact on the foreground traffic at the cost of reduced scrub

throughput. For a fair comparison of the different policies,

we need to find which one achieves highest scrub throughput

for a given fixed penalty to the foreground traffic.

Therefore, we compare policies by varying their corre-

sponding parameters, and plotting the resulting amount of

idle time that can be utilized for scrubbing versus the number

of resulting collisions (the fraction of foreground requests

that are delayed due to a scrub request in progress). The re-

sults are shown in Fig. 14: MSRusr2 (right) is representative

of most disks in our trace collections, while HPc6t8d0 (left)

is characterized by multiple short idle intervals, representing

a worst case scenario with respect to collisions. The numbers

on top of the data points provide the parameter setting used

to derive that data point: the wait time threshold t for the

Waiting approach and the threshold c for the AR approach.

In addition to AR and Waiting, we also plot results for

the combined approach. For that, we experiment with four

different values of the c parameter for the AR component.

These four values were chosen to be the 20th, 40th, 60th,

and 80th percentile of all observed AR values for a trace.
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Figure 14. Comparison of the Auto-regression and Waiting approaches with the optimal (Oracle), for two disks: HPc6t8d0 (left) and MSRusr2 (right).

For each of these values we plot one line in the graph, which

results from varying the wait time threshold.

Finally, for reference we also plot the best possible results

that could be achieved by a clairvoyant Oracle that can

accurately predict the x% longest idle intervals and only

utilize those, maximizing the amount of idle time one can

utilize for a collision rate of x%. This Oracle provides an

upper bound on the results one can hope to achieve.

The results in Fig. 14 are quite interesting. We find that

the simple Waiting approach clearly outperforms AR and the

combined approaches, as it consistently manages to utilize

more idle time for a given collision rate. On the other hand,

the pure AR policy shows by far the worst performance,

which we attribute to its inability to capture enough request

history to make successful decisions. While outperforming

the other policies, the Waiting approach is weaker than the

Oracle. One might wonder whether this is due to the fact

that Waiting fails at predicting all the long idle intervals, or

because it wastes idle time while sitting idle waiting for t

time before firing. To answer this question we also plotted

results for a hypothetical policy, Lossless Waiting, which

utilizes the same intervals as Waiting, while assuming that

we can magically also make use of the time that passes while

waiting. We see that this hypothetical policy performs very

closely to the best possible policy (the Oracle). This means

that the Waiting approach is extremely good at identifying

long idle intervals, and only falls short from achieving

optimal possible performance due to the time spent waiting.

C. Sizing up throughput opportunities

One important remaining parameter is the size of each

scrub request. While larger scrub requests will increase scrub

throughput (recall Fig. 4), they also increase the impact on

foreground workloads, as collisions become more expensive

(increasing delays for the foreground request arriving while

a scrub request is in progress, and often also for the ones

following that). Our goal is to take as input from a system

administrator the average and maximum tolerable slowdown

per foreground application request, and within these limits

find the parameters that maximize scrub throughput.

Fig. 15 shows that the throughput a scrubber can achieve

while limiting the slowdown of the foreground application
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Figure 15. Comparison of different Waiting variants. Fixed variant prevails.

to some acceptable threshold, can vary dramatically as a

function of the request size. The fixed lines in Fig. 15 were

obtained by simulating the Waiting policy while keeping

the request size fixed at 64KB, 768KB, 1216KB, 1280KB and

4MB, and varying the wait time threshold. For each threshold

value, we plot the resulting average slowdown on foreground

requests versus the throughput achieved by the scrubber (we

experimented with request sizes ranging from 64KB to 4MB

and a maximum allowed request slowdown of 50ms, but

plot only results for 5 sizes for readability). We observe

that for the two extreme examples of 64KB and 4MB, the

scrubber using 4MB requests has a consistently higher scrub

throughput for the same foreground application slowdown.

This motivated us to try and determine the optimal scrub

request size for a specific request slowdown, i.e. the request

size that will lead to a slowdown within the prescribed limit,

while maximizing scrub throughput (we focus only on the

Waiting approach, since we showed how it outperforms the

rest). We accomplished this using simulation to find the op-

timal request size in the range from 64KB to 4MB (bounded

by the maximum tolerable slowdown), and the wait time

threshold for which it yields the maximum throughput,

satisfying the given average slowdown goal per I/O request.

For each size, the optimal threshold can be found efficiently

through binary search, since for a given request size, larger

thresholds will always lead to smaller slowdowns. Using the

threshold we can then estimate the maximum throughput per

request size, and use that as a comparison metric to find

the optimal request size. To summarize, our policy chooses

for each slowdown the request size (and corresp. wait time



threshold) that maximizes the scrubber’s throughput. Results

for our policy are shown in Fig. 15, where we find, for ex-

ample, that some optimal (slowdown, request size) pairs are:

(0.5ms, 768KB), (1.0ms, 1280KB) and (1.5ms, 1216KB).

We observe that this approach performs significantly better

than either the 64KB or the 4MB approach.

In the experiment above, we limit ourselves to picking the

best request size (and wait time) to maximize throughput

for a given acceptable slowdown, and have the scrubber

send back-to-back scrub requests of that fixed size until a

collision occurs. Based on our observations of decreasing

hazard rates in Section V-A, one might think of doing even

better by varying the request size over time, as the scrubber

fires. When the wait time is just over and the scrubber starts

sending requests, the probability of a foreground request

arriving during that scrub request is much higher than later,

when the scrubber has already been firing requests for a

while (due to the decreasing hazard rates, the probability

of collision decreases as the system remains idle – recall

Fig. 11, 12). One could, therefore, start with smaller request

sizes at the beginning of a scrub interval (when chances of a

foreground request arriving are still high) and then gradually

increase the request size over time.

We have experimented with three adaptive approaches, all

of which wait for some time t before firing scrub requests

of a start size s; this size is then increased with time. The

exponential approach multiplies the request size by a factor

a every time a scrub request is completed without a collision

occurring. The linear approach uses the factor a calculated

by the exponential approach and affixes a constant b to each

increase, so each new request is multiplied by a and further

increased by b. Using both, we can find the optimal rate

of increase for our request size (we apply the exponential

approach first, since it affects that rate more than the linear).

We used simulations to find the constants a, b that provide

the best trade-off between slowdown and scrub throughput

for each trace. We have also experimented with a simpler

swapping policy, that considers only two different request

sizes: when the initial wait time t is over it starts firing with

the optimal request size s that achieves the average given

slowdown, and then at some later point t′ it switches over

to the maximum request size, whose service time does not

exceed the maximum allowed slowdown.

The results for our adaptive approaches are given by the

dashed lines in Fig. 15 (omitting swapping, for which we

found t′opt = ∞). Surprisingly, we notice that none of these

adaptive approaches outperforms the fixed approach where

one optimal request size is picked for a given slowdown goal.

Through detailed statistical analysis, we managed to identify

the reason behind the poor performance of the adaptive

approaches. The technique of increasing the request size

only works in the presence of strongly decreasing hazard

rates, i.e. over time the instantaneous probability of collision

decreases. While we found this to be the case for idle

time distributions in their entirety, we also found that upon

“cutting off” the initial wait time, the resulting truncated

distribution shows a much weaker decrease in hazard rates.

In other words, the long intervals captured by the Waiting

approach, are far longer than the time it takes the slowest

of our adaptive approaches to reach the maximum allowed

request size. Since this size will be larger than the optimal

and will be reached on every captured interval, each collision

will incur more slowdown than it would with the optimal

size. As a result, the extra throughput comes at a cost of extra

slowdown, and vice versa: when the predefined slowdown

goal is considered, the corresponding throughput is lower

than that for the optimal fixed approach5.

D. Putting it all together

In summary, we have made some interesting observations

for optimizing the background scheduling of scrubbing

requests in I/O schedulers. First, we found that a simple

approach based on waiting outperforms more complex ones

based on auto-regression. Second, we found that picking one

fixed request size for the scrubber, rather than adapting it

within an idle interval, is sufficient. This allows for a simple

scrub policy with only two tunable parameters: the scrub

request size and the wait time threshold. We further found

that for a given slowdown target these two parameters can

be determined relatively easily, based on a short I/O trace

capturing the workload’s periodicity, and simulations guided

by binary search. The simulations can be repeated to adapt

the parameter values if the workload changes substantially.

Disk Avg. Sldn Throughput Threshold Req. Size

HPc6t8d0
(Waiting)

1.0 ms 38.75 MB/s 205 ms 1280KB

2.0 ms 50.53 MB/s 88.1 ms 1536KB

4.0 ms 61.51 MB/s 32.4 ms 2048KB

CFQ 938 ms 6.25 MB/s 10 ms 64KB

HPc6t5d1
(Waiting)

1.0 ms 68.12 MB/s 632 ms 3072KB

2.0 ms 72.83 MB/s 340 ms 4096KB6

4.0 ms 73.97 MB/s 247 ms 4096KB6

CFQ 4.4 ms 13.75 MB/s 10 ms 64KB

MSRsrc11
(Waiting)

1.0 ms 73.54 MB/s 22.3 ms 3072KB

2.0 ms 75.77 MB/s 15.3 ms 4096KB6

4.0 ms 76.40 MB/s 12.6 ms 4096KB6

CFQ 7.7 ms 13.19 MB/s 10 ms 64KB

MSRusr1
(Waiting)

1.0 ms 62.49 MB/s 10.8 ms 1472KB

2.0 ms 71.24 MB/s 39.8 ms 3072KB

4.0 ms 71.58 MB/s 18.5 ms 4096KB6

CFQ 106 ms 13.44 MB/s 10 ms 64KB

Table III
FIXED WAITING APPROACH RESULTS FOR DIFFERENT DISK TRACES

Table III summarizes the throughput a scrubber can ac-

complish for four of our traces and three average slowdown

goals of one, two and four msec, respectively. The table

5This is why the adaptive and 4MB Fixed approaches overlap in Fig.15.
6The maximum slowdown allowed (50.4ms) limits the request size at

4MB. If that restriction is relaxed, this run can achieve higher throughput.



also provides the wait time threshold and the request size

that was used to achieve those throughputs. To put these

results into perspective, we also include numbers for CFQ,

albeit for 64KB requests. We find that our scrubber achieves

significantly less slowdown (up to 3 orders of magnitude

for busier traces) for up to 64x larger requests, yielding

significantly more throughput per ms of slowdown. CFQ

comes (somewhat) close to our approach only when its fixed

threshold (10ms) happens to align with the workload.

VI. CONCLUSIONS AND FUTURE WORK

With this work, we have taken a broad look at ways to

issue background scrub requests in storage systems, in order

to maximize the rate at which the system is being scrubbed.

At the same time, we limit the impact on foreground

applications running on the system to a predefined threshold.

We have also developed an experimental framework within

the Linux kernel, which can be used to implement scrubbing

algorithms in only tens of LoC and we have made its

source code publicly available1. Using our framework, we

performed the first experimental comparison of sequential

and staggered scrubbing. While sequential scrubbing is the

approach that is currently used in production systems, we

find that staggered scrubbing implemented with the right

parameters can achieve the same (or better) scrub through-

put as a sequential scrubber, without additional penalty to

foreground applications. In addition, we presented a detailed

statistical analysis of publicly available I/O traces, and used

the results to define policies for deciding when to issue scrub

requests, while keeping foreground request slowdown at a

user-defined threshold. We find that the simplest approach,

based on idle waiting and using a fixed scrub request

size outperforms more complex statistical approaches and

approaches using variable request sizes.

While we have focused on issuing scrub requests, we

believe that our approach and observations can be applied

for other uses of idle time. Examples include: contributing

to power savings in data centers (e.g. by spinning disks

down), guaranteeing availability (e.g. checkpointing, back-

ups), performance (e.g. prefetching), reliability (e.g. lazy

parity updates), or profit in the cloud by encouraging sharing

a disk among more users while retaining QoS.
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