
Proofs of Retrievability: Theory and Implementation

Kevin D. Bowers, Ari Juels, and Alina Oprea
RSA Laboratories, Cambridge, MA

ABSTRACT
A proof of retrievability (POR) is a compact proof by a file sys-
tem (prover) to a client (verifier) that a target file F is intact,
in the sense that the client can fully recover it. As PORs in-
cur lower communication complexity than transmission of F
itself, they are an attractive building block for high-assurance
remote storage systems.

In this paper, we propose a theoretical framework for the
design of PORs. Our framework improves the previously pro-
posed POR constructions of Juels-Kaliski and Shacham-Waters,
and also sheds light on the conceptual limitations of previous
theoretical models for PORs. It supports a fully Byzantine ad-
versarial model, carrying only the restriction—fundamental to
all PORs—that the adversary’s error rate ε be bounded when
the client seeks to extract F . Our techniques support effi-
cient protocols across the full possible range of ε, up to ε non-
negligibly close to 1.

We propose a new variant on the Juels-Kaliski protocol and
describe a prototype implementation. We demonstrate practi-
cal encoding even for files F whose size exceeds that of client
main memory.

1. INTRODUCTION
Cloud computing, the trend toward loosely coupled network-

ing of computing resources, is unmooring data from local stor-
age platforms. Users today regularly access files without know-
ing on what machines or in what geographical locations their
files reside. They may even store files on platforms with un-
known owners and operators, particularly in peer-to-peer com-
puting environments.

While cloud computing encompasses the full spectrum of
computing resources, in this paper we focus on archival or
backup data, large files subject to infrequent updates. While
users may access such files only sporadically, a demonstrable
level of availability may be required contractually or by regu-
lation. Financial records, for instance, have to be retained for
several years to comply with recently enacted regulations.

Juels and Kaliski (JK) recently proposed a notion for archived
files that they call a proof of retrievability (POR). A POR is a
protocol in which a server/archive proves to a client that a tar-
get file F is intact, in the sense that the client can retrieve all
of F from the server with high probability. In a naïve POR,
a client might simply download F itself and check an accom-
panying digital signature. JK and related constructions adopt
a challenge-response format that achieves much lower (nearly
constant) communication complexity—as little as tens of bytes

per round in practice.
JK offer a formal definition of a POR and describe a set

of different POR designs in which a client stores just a single
symmetric key and a counter. Their most practical construc-
tions, though, support only a limited number of POR chal-
lenges. Shacham and Waters (SW) offer an alternative con-
struction based on the idea of storing homomorphic block in-
tegrity values that can be aggregated to reduce the communi-
cation complexity of a proof. Its main advantage is that, due
to the underlying block integrity structure, clients can initiate
and verify an unlimited number of challenges.

In this paper, we introduce a general conceptual framework
for PORs. The resulting design space encompasses both JK
and SW, and leads naturally to variants—and improvements—
on both proposals. We examine in particular a variant of JK
that simultaneously achieves lower storage requirements and a
higher level of assurance than JK, with minimal computational
overhead. We describe a prototype implementation of this im-
proved scheme. While SW has strong theoretical advantages
over JK, e.g, it can tolerate any adversarial error rate ε < 1,
and can support arbitrarily many POR interactions, we focus
on JK in this paper because of its advantages in a practical set-
ting. Although our framework supports efficient protocols up
to ε < 1 and is applicable to SW, we focus our implemen-
tation on a variant of the JK protocol requiring ε < 1

2
and

supporting only a bounded number of queries. As we explain,
JK’s theoretical restrictions are of limited impact in practical
deployment scenarios. (For example, an adversary with ε > 1

2
would be swiftly detected by a client’s POR challenges.) As
we show in Section 5, JK carries lower resource costs than SW
in many settings of real-world interest.

1.1 Intuition for our framework
In a POR protocol, a file is encoded by a client before being

transmitted to a storage provider for archiving. A POR enables
bandwidth-efficient challenge-response protocols to guaran-
tee probabilistically that a file is available at a remote stor-
age provider. Most PORs proposed to date, and the ones we
consider in this paper, use the technique of “spot-checking” in
the challenge-response protocol to detect adversarial behavior.
In each challenge, a subset of file blocks is sampled, and the
results of a computation over these blocks is returned to the
client. The returned results are checked using some additional
information embedded into the file at encoding time.

Our POR framework operates in the strongest possible ad-
versarial model: it assumes that the adversary replies correctly

1

to a fraction of challenges 1− ε > 0 chosen uniformly at ran-
dom from the challenge space (we call such an adversary an
ε-adversary). The technique of spot-checking can only detect
a large adversarial corruption rate. For POR protocols to be re-
silient to small adversarial corruption, an error-correcting code
(called outer code) is used to encode the full file.

By analogy with zero-knowledge proofs, the same interface
used for challenge-response interactions between the client and
server is also available for extraction. The client first tries
to download F as normal (checking the integrity of the file
against a MAC or digital signature of the file). If this usual
process fails, then the client resorts to a POR-based extraction.
The client in this case submits challenges to the server and re-
constructs F from the (partially corrupted) values yielded by
the server via respond.

In most previously proposed POR constructions, the func-
tion respond returns a single file block or an XOR of file
blocks. Our key insight in this paper is a technique that bases
respond itself on an arbitrary error correcting code. In par-
ticular, we consider schemes in which respond computes a
codeword on the blocks in s and returns the uth symbol. We
refer to this as the inner code ECCin and to the code ECCout

as the outer code.1

The concatenation or interleaving of two or more error-correcting
codes is a classical technique for creating error-correcting codes
with certain properties, e.g., resilience to burst errors. The way
we compose the inner and outer codes in our construction is
similar in spirit, but quite different in its application, which is
aimed specially at PORs. The two codes play complementary
roles, but operate in distinct ways and at different protocol lay-
ers. Most notably, while the inner code may vary dynamically
based according to the challenge format, the outer code serves
in the initial file encoding, and is thus static over the lifetime
of a file.

The inner code ECCin, being computed on the fly by the
server over the encoded file F̃ , creates no storage overhead.
On the other hand, it imposes a computational burden on the
server when it responds to client challenges: The server must
retrieve the blocks in s and apply the code ECCin to them. The
outer code imposes little computational burden for the server,
but results in an expansion of the stored file: The greater the
error tolerance of ECCout, the larger |F̃ |/|F |. In designing a
practical POR, we seek to strike a good balance in our selec-
tion of ECCout and ECCin.

POR protocols designed in our framework need to specify a
maximum bound on the adversarial corruption rate ε they tol-
erate. Our POR framework proceeds in two phases. In Phase I,
the client performs a series of challenge-response interactions
with the server with the aim of detecting if the adversary is re-
specting the ε bound on corruption rate. (Phase I is in principle
optional if we assume an adversary with error rate below ε, but
helps guarantee file-retrieval efficiency.) In Phase II, the client
extracts the file, assuming that it deals with an ε-adversary.

Based on the number of verifications they support over the
lifetime of the system, we can classify PORs into two main
types:

1. PORs that enable unlimited number of verifications, such
as the SW scheme, are usually constructed by storing

1“Inner code” and “outer code” are the standard names for the
constituents of a concatenated error-correcting code [20].

additional integrity values for file blocks. SW employs
homomorphic integrity values (essentially MACs) that
can be aggregated over multiple blocks, resulting in a
bandwidth-efficient POR. In this case, thanks to the un-
derlying system of MACs, the inner code can simply be
an erasure code and the scheme can tolerate error rates ε
non-negligibly close to 1 (albeit at the cost of extraction
polynomial in 1

1−ε
). We describe in Section 4 a general-

ization of SW that fits into our framework and show how
we can improve and simplify the SW construction. The-
oretically, such protocols do not need to employ Phase
I to limit ε (since they can extract for ε close to 1). In
practice, it is still essential to bound the adversarial cor-
ruption rate using a Phase-I protocol, since this ensures
that a file can be extracted efficiently.

2. PORs that can verify a limited number of queries, such
as the JK scheme, usually pre-compute the responses to
a set of challenges and embed them (encrypted) into the
file encoding. The verification capability of these PORs
is limited by the number of pre-computed challenges
embedded into the file encoding. These types of POR
cannot feasibly check all the responses received during
Phase II, and thus need to employ error-correcting in-
ner codes. In such protocols, we require an upper bound
on the adversarial rate ε less than 1

2
; the actually toler-

able ε depends on the inner and outer code parameters.
For such protocols to fit our framework, we need to as-
sume that the adversary’s corruption rate in Phase I is
also limited by the same ε determined by the extraction
capability in Phase II. (The same assumption is required
for SW if we are to guarantee efficient extraction.) Un-
der this assumption, either an adversary has corruption
rate greater than ε, in which case it will be detected in
Phase I, or ε is low enough so that it is possible to extract
the file in Phase II.

In Section 4 we present a more efficient version of JK that
employs a limited number of verifications assuming an upper
bound on ε given by the error correction rates of the inner and
outer codes. Despite such restrictions, in Section 5 we show
its practical advantages over SW, in terms of storage overhead
and proof costs, for particular ranges of ε.

Besides providing a theoretical framework for designing POR
protocols and showing improvements to existing protocols, in
this paper we also consider the challenges encountered when
designing practical POR protocols. First, we show how to
construct outer codes that can encode large files efficiently,
while still preserving a high minimum distance. We define and
construct practical adversarial error-correcting codes that, in-
tuitively, give no advantage to an adversary in corrupting the
encoded file than distributing corruptions randomly across file
blocks. Secondly, as random disk access is expensive, we
present techniques to encode large files incrementally, in only
one pass through the file.

1.2 Organization
In Section 2, we review existing research related to PORs.

We describe our proposed conceptual framework in Section 3.
After presenting the full details of a new variant POR scheme
and its security proof in Section 4, we compare it with the

2

original JK protocol and with the SW scheme in Section 5. Fi-
nally, we describe several challenges we encountered in imple-
menting the new variant and present performance evaluation
in Section 6. We defer the security analysis of the proposed
construction in the full version of the paper [6].

2. RELATED WORK
The first proposed POR-like construction of which we are

aware is that of Lillibridge et al. [14]. Theirs is a distributed
scheme in which blocks of a file F are dispersed in shares
across n servers using an (m, n)-erasure code. Servers per-
form spot checks on the integrity of one another’s fragments
using message authentication codes (MACs). These MACs
also have the effect of allowing reconstruction of F in the
face of data corruption, i.e., turning the erasure code into an
error-correcting code. Corrupted blocks are discarded, and
thus treated as erasures. Lillibridge et al. do not offer formal
definitions or analysis of their scheme.

Naor and Rothblum [18], extending the memory-checking
schemes of Blum et al. [5], describe a theoretical model that
may be viewed as a generalization of PORs. Their model sup-
poses the publication of a (potentially corrupted) encoded file
F̃ , meaning that the client can directly sample segments of
F̃ . In the NR construction, F̃ includes message authentication
codes (MACs) on file blocks: A client can check the intact-
ness of a file by verifying the correctness of randomly sam-
pled file blocks. As in Lillibridge, an error-correcting code
ensures file recovery in the face of some degree of file corrup-
tion. NR, however, do not naturally model PORs with non-
trivial challenge-response protocols, as required for our pur-
poses in this paper.2 Additionally, NR propose a construction
in which the client applies a high minimum-distance error cor-
recting code across all of F . As we explain below, one of the
important challenges in practical schemes is the negotiation of
complicated error-coding strategies; a code across all of F is
not necessarily practical.

Juels and Kaliski [13] propose a formal POR protocol def-
inition and accompanying security definitions which we de-
scribe below. As in NR, they propose a scheme in which the
client applies an error-correcting code to file F to obtain the
(expanded) file F̃ stored on the server. JK do not store MACs
for individual file blocks. Instead, the client challenges the
server by specifying a subset of file blocks si from a prede-
termined set S = {si}q

i=1. JK propose two mechanisms for
checking the correctness of si. One is to generate the values
and locations of blocks si during file encoding using a pseudo-
random function (PRF), so that they are independent of F . The
other appends a collection of q MACs to F̃ to allow checking
of subsets of blocks of F . The JK protocol involves relatively
small file expansion, as dictated by the error-correcting code,
but supports only a limited number q of queries.

Ateniese et al. [1] propose a closely related construction
called a proof of data possession (PDP). A PDP demonstrates
to a client that a server possesses a file F (in an informal
sense), but is weaker than a POR in that it does not guaran-
tee that the client can retrieve the file. (In the nomenclature

2NR may be viewed as implicitly assuming that respond re-
turns raw file blocks. It is possible, if awkward, to model non-
trivial choices of respond in NR via an extended file encoding
F̃ ∗ = {respond(F̃ , c)}c∈C for challenge space C.

of proofs of knowledge, a PDP does not specify an extractor.)
Curtmola et al. [7] describe how to integrate error-correcting
codes with PDPs, and independently propose an adversarial
error-correcting code construction similar to ours.

Shacham and Waters [21] propose protocols based on the
idea of using homomorphic authenticators for file blocks, es-
sentially block integrity values that can be efficiently aggre-
gated to reduce bandwidth in a POR protocol. Due to the use
of integrity values for file blocks, their scheme can use a more
efficient erasure code to encode the file; the block authentica-
tors transform the erasure code into an error-correcting code.
Their scheme supports an unlimited number of verifications.

In concurrent and independent work, Dodis et al. [8] also
give general frameworks for POR protocols that generalize
both the JK and SW protocols. The focus of [8] is mostly
theoretical in providing extraction guarantees for adversaries
replying correctly to an arbitrary small fraction of challenges.
In contrast, we consider POR protocols of practical interest
(in which adversaries with high corruption rates are detected
quickly) and show different parameter tradeoffs when design-
ing POR protocols.

While the basic POR model supports checking of file re-
trievability by a single client in possession of a secret key,
a public POR allows any client to verify the retrievability of
F without secret keying material. Ateniese et al. [1] intro-
duce the notion of public verifiability for PDPs. JK describe
a straightforward Merkle-tree construction for public PORs,
while SW describe a more efficient, public-key based version
that relies on bilinear maps.

In other related work, Golle, Jarecki, and Miranov [12] pro-
pose techniques that enforce a minimum storage complexity
on the server responsible for storing file F . They describe pro-
tocols that ensure dedicated use by a server of storage at least
|F | but do not enforce requirements on what data the server
actually stores. Filho and Barreto [9] describe a POR scheme
that relies on the knowledge-of-exponent assumption, first set
forth in [3]. While communication efficient, this scheme is
impractical, as respond requires computation of a modular ex-
ponentiation with respect to a bit-representation of all of F .
Shah et al. [22] consider a symmetric-key variant of full-file
processing to enable external audits of file possession. The
scheme only works for encrypted files, and auditors are re-
quired to maintain long-term state.

Dynamic updates. File updates in POR/PDP protocols are
a particular challenge. There is a strong tension between the
security and efficiency of POR/PDP challenge-response proto-
cols and the communication efficiency of file updates. Briefly,
if an update changes a set A of blocks in the stored presenta-
tion of file F , then the server must “touch” A in computing a
response to a challenge to ensure against irretrievable corrup-
tion of F . If A is a small, then “touching” A with high prob-
ability imposes high overhead on the server. In a basic POR,
any change to the contents of file F , no matter how small, must
propagate through the (generally substantial) error-correcting
and challenge-response data encoded in F̃ .

The lack of error correction and extraction algorithms in
basic PDP constructions—and consequent lack of strong se-
curity against arbitrary adversaries—-permit file updates to be
performed efficiently, i.e., with minimal communication over-
head. In follow-up work to [1], Ateniese et al. [2] describe

3

efficient tools for file updates in PDPs. Naor and Rothblum
also support updates in their theoretical model.

We concern ourselves in this paper with archival and backup
files. Such files are subject to infrequent change, so we treat
them as static. Many systems modify backup or archival files
periodically through incremental updates—often by append-
ing a compendium of file changes. It is possible to treat such a
compendium itself as an independent, static file in a POR sys-
tem. That is, POR techniques may be applied to a full backup
file by means of challenges against individual pieces: There is
no need to reencode the full backup or archival repository.

That said, PORs do not gracefully handle files undergoing
frequent, small updates. The specification of good batching
schemes or other update techniques for PORs in such settings
remains an open problem.

3. OUR CONCEPTUAL FRAMEWORK

3.1 Preliminaries
Following JK, a file F = F1, F2, . . . , Fm consists of a set

of m blocks, each an l-bit symbol. We let L denote the symbol
alphabet {0, 1}l. (As a point of reference, in our implementa-
tion we work with 32-byte blocks, i.e., l = 256.) For brevity,
we let P denote the prover (server or archive) and V denote
the verifier (client). To draw on the formalization of JK, π
denotes the set of system parameters, while ω denotes local,
persistent client state. η is a file handle, which we drop from
our notation where convenient. A POR includes six functions:
keygen[π] → κ: Generates a secret key κ. (For a public POR,
κ may be a public/private key pair.)
encode(F ; κ, ω)[π] → (F̃η, η): Generates a file handle η and
encodes F as a file F̃η .
challenge(η; κ, ω)[π] → c: Generates a challenge value c for
the file η.
respond(c, η) → r: Generates a response r to a challenge c
(the only function run by the prover).
verify((c, r, η); κ, ω) → b ∈ {0, 1}: Checks whether r is a
valid response to challenge c. It outputs a ‘1’ bit if verification
succeeds, and ‘0’ otherwise.
extract(η; κ, ω)[π] → F : Determines a sequence of chal-
lenges that V sends to P sufficient to recover the file and de-
codes the resulting responses. If successful, it outputs F .

3.2 Adversarial model
For our purposes in this paper, a challenge for a file F of

size |F | consists of a pair c = (s, u), where s ∈ [1, |F |]v = S
specifies a subset of v blocks in F , and u ∈ [1, w] = W is
an accompanying nonce. Here v and w are system parameters
that specify the number of blocks included into a challenge,
and the nonce domain size, respectively. We let C denote the
full challenge space S ×W .

An adversary A in our model receives an encoding of the
file, and needs to answer at most Nmax challenges over the
lifetime of the file. The adversary is determined by a set of
partitions (C+

i , C−i)i=1,Nmax of C. C+
i is the set of all chal-

lenge values (s, u) to which the adversary responds correctly
when queried for the i-th time, while C−i is the set to which
it responds incorrectly at the i-th challenge. The partition
(C+

i , C−i) is adaptively determined for every i = 1, Nmax.

We let εi
s,u = 1 if (s, u) ∈ C−i , and εi

s,u = 0 otherwise. We
let εi

s =
∑

u∈W εi
s,u/w be the probability that the adversary

responds incorrectly the i-th time to challenges on a subset s of

blocks for a random choice of u. We let εi =
∑

s∈S,u∈W εi
s,u

|C|
be the probability that the adversary responds incorrectly the
i-th time to a challenge selected uniformly at random from C,
i.e., εi = |C−i |/|C|. We denote εA = maxi=1,Nmax εi the
maximum fraction of corrupted challenges at each query.

An ε-adversary is one for which εA ≤ ε. Intuitively, an
ε-adversary replies correctly to a fraction of at least 1 − εA

challenges over the lifetime of the file.

3.3 Our POR framework: Key ideas
It is useful to think of a POR in our framework as a two-phase
process:

3.3.1 Phase I: Ensuring an ε-adversary
In the first phase of a POR (depicted in Figure 1), the client

performs a series of challenge-response interactions with the
server A over file F̃out (i.e., the encoding of F under the
outer code ECCout), with the aim of detecting the condition
εA > ε. To challenge the server, the client computes c =
challenge(η; κ, ω)[π], sends c to the server, receives a response
r, and then computes verify((c, r, η); κ, ω) to check the re-
sponse of the adversary. The client repeats this process qc

times, and rejects if any response is incorrect. Otherwise the
client accepts.

Assuming that challenge selects c ∈U C, the probability
that an adversary A is accepted but is not an ε-adversary, i.e.,
εA > ε, is < λ = (1 − ε)qc . The value λ can be made
arbitrarily small, with an appropriately large qc.

The JK protocol checks adversarial responses by precom-
puting a challenge set {ci}q

i=1 ∈U C and storing verifying
data—sentinels or MACs—in the encoded file for download
by the client. The Lillibridge et al. and NR constructions
check adversarial responses by verifying MACs on file blocks.
Thus, both of these constructions also select c ∈U C. The SW
scheme omits Phase I, i.e., implicitly assumes an ε-adversary.

Remark. In practice, as envisioned in our implementation,
the server may initially be honest, but turn bad at some point
and be replaced by an adversary A. To deal with such a dy-
namic adversary, the client may spread out its challenges over
time. For example, the client might initiate a challenge every
day. If Phase I is tuned to achieve a particular λ for qc = 50,
then, the condition εA > ε will be detected with probability at
least 1 − λ within the first 50 days after the server has turned
adversarial.

3.3.2 Phase II: Extracting F from an ε-adversary
Assuming an honest server, a client can simply download

F—and verify its correctness via an appended MAC or digital
signature. If this fails, the client can download the encoded file
F̃η and try to correct it using the outer error-correcting layer.
Failing that, given an ε-adversary, it is possible for the client
to retrieve F via extract, executing a series of challenges and
decoding F from the responses. Note that in this phase, the
client may not be able to verify the correctness of the responses
it receives (in particular, for protocols with a bounded number
of verifications): In this case, it relies on the ε-bound on A for

4

Figure 1: Schematic of Phase I in our POR framework: Testing whether εA ≤ ε, i.e., if A is an ε-adversary.

successful decoding.
In our general framework, there are two levels of error-

correction:

• The outer code: This is a (n, k, d2)-error-correcting code
ECCout applied to F to compute F̃out, the error-corrected
portion of F output by encode. Usually, for large files,
n < m, and to encode a file of size m we need to resort
to a well-known technique, called striping: the file is di-
vided into stripes of size k blocks each, and each stripe
is encoded under ECCout. In the rest of the paper, when
we encode the file with the outer code, we implicitly
mean that striping is performed if necessary.

• The inner code: This (w, v, d1)-error-correcting code
ECCin represents a second layer of error-correction in
the challenge-response interface for a POR. The func-
tion respond(s, u) applies ECCin to the set s of mes-
sage blocks specified in a challenge; the value u ∈ W
specifies which symbol of the corresponding codeword
should be returned to the client.

In this view, the adversary is a noisy channel with error
probability at most ε. We may think of the adversary as in-
tercepting transmissions from a (correct) oracle for respond
to the client. When the client submits the i-th challenge c =
(s, u), the respond oracle computes the correct response r. If
εi
s,u = 1, then A corrupts the response in the channel; other-

wise, the adversary leaves r unchanged.
The goal of employing two levels of error correction in the

design of our POR framework is to correct the adversarial error
ε. The effect of the inner code is to drive down the adversarial
error ε to some error value ε′ < ε. The outer code then cor-
rects this residual error ε′. Thus, the stronger the inner code,
the weaker the outer code we need to employ. The outer code
needs to be an adversarial error-correcting code (defined in
the full version of the paper [6]). Intuitively, an adversarial
code transforms an ε′ computationally bounded adversary to
a random one, i.e., one in which the adversary has no better
chance of corrupting codeword symbols than choosing at ran-
dom.

Our PORs are designed to be effective against a maximum
adversarial error ε. In the next section, we will show examples
of protocols that tolerate ε values non-negligibly close to 1, as

well as protocols that require an upper bound on ε less than
1
2

. There are two main types of POR protocols that we can
construct in our framework:

1. In protocols that enable an unbounded number of server
verifications (e.g., SW), the responses to challenges in
Phase II can be verified. In this case, the inner code
can simply be an erasure code and can therefore toler-
ate error rates ε non-negligibly close to 1. We describe
in Section 4 a generalization of SW that fits into our
framework. Even if, theoretically, such protocols do not
need to employ Phase I to limit ε (since they can extract
for ε close to 1), in practical settings obtaining a Phase-I
bound on the adversarial corruption rate is still valuable
to ensure efficient extraction.

2. In protocols in which a limited number of responses can
be verified, we need to employ an error-correcting inner
code in order to correct arbitrary server responses. In
such protocols, we need to set an upper bound on the
adversarial rate less than 1

2
and dependent on both the

inner and outer code parameters. For such protocols to
fit our framework, we need to assume that the adver-
sary’s corruption rate during extraction is also limited
by the same ε < 1

2
. Under this assumption, either the

adversary corruption rate is greater than ε, and will be
detected with high probability in Phase I, or ε is low
enough so that we can extract F successfully in Phase
II.

In Section 4 we present a more efficient version of JK
that employs a limited number of verifications assuming
an upper bound on ε given by the error correction rate
of the inner code. Despite such restrictions, we show
its practical advantages in storage overhead and proof
costs compared to SW for values of ε within the error-
correction capabilities of the inner and outer codes.

Now the full storage and successful extraction process for
the client is as follows. We let the superscript ∗ denote a cor-
rupted file:

1. Outer encoding and storage: The client encodes file F
under ECCout as F̃out, and stores F̃out with the server. (Thus
F̃out is a component of the full file encoding F̃η , which may
include supplementary data such as MACs.)

5

Figure 2: Schematic of Phase II in our POR framework: Extracting F from an ε-adversary.

2. Extraction: If both ordinary downloading of F and
error-correction of F̃η fails, the client invokes extract. In this
case, the client submits a series of challenges to the respond
oracle, which outputs symbols under the encoding ECCin. To-
gether, these responses make up a file F̃in+out that is encoded
under a composition of ECCout and ECCin.

3. Corruption / noise: The adversary corrupts up to an ε-
fraction on average of F̃in+out. The resulting file is F̃ ∗in+out.

4. Inner decoding: The client decodes the inner code in
F̃ ∗in+out under ECCin, obtaining file F̃ ∗out. The file F̃ ∗out is a
representation of F̃out with ε′-fraction corruption, where ε′ <
ε.

5. Outer decoding: The client decodes F̃ ∗out under ECCout,
obtaining the original file F .

3.4 Security definition
By viewing a POR as a two-phase process, we are able to

offer a simpler security definition than JK that is akin to that
of SW. We abstract away Phase I, and assume an ε-adversary.
Referring then to JK for details of the experimental setup:

DEFINITION 1. A poly-time POR system PORSYS[π] is a
(ε, γ)-valid proof of retrievability (POR) if for every poly-time
ε-adversary A, the probability that extract outputs F is γ.
More formally,

γ = pr
[
F = Fη∗

∣∣ F ← extractA(δ,·)(“respond”)(η∗; κ, ω)[π]
]
.

Remark. Observe that the inner code imposes no storage
overhead in our protocol, as it is computed on the fly by respond.
We could in principle use an inner code only, with no outer
code. The drawback to this approach is that the message size
of ECCin would have to be very large to guarantee extraction.
In the limit, we could let v = m. In this case, respond would
treat the whole file F as a message, and return one symbol of
a codeword over the whole file. In this case, if d1 ≥ 2εm, i.e.,
the code ECCin is resilient to an ε-fraction of file corruption,
we could dispense with the outer code. But in practice, con-
structing an error-correcting code with large message size and
large distance would be impractical. So in constructing a POR,
we seek to strike a balance between the resource requirements
of the inner code (computation and file-block retrieval) with
the outer code (file expansion).

4. NEW VARIANT POR PROTOCOLS

4.1 The SW scheme
SW propose two constructions based on the idea of storing

homomorphic authenticators for file blocks together with the
file. These are essentially block integrity values that can be
efficiently aggregated to reduce bandwidth in a POR protocol.
Since each block can be independently verified with the stored
authenticators, SW could encode the file with a more efficient
erasure code. The block authenticators (or MAC values) ef-
fectively turn the erasure code into an error-correcting code.

More specifically, to encode a file F of length |F | in the
SW scheme, an erasure code of rate ρ is applied first. Then
the encoded file is divided into n blocks, each consisting of s
sectors. A sector is an element of a prime group Zp, where the
size of p is a security parameter λ. Thus, |F | = nsλρ.

For each block 1 ≤ i ≤ n, an authenticator σi is computed
and stored with the file. In addition, the client stores a file tag
of size sλ. In a challenge, the client in the SW scheme sends
l block indices and l values in Zp. The server response is one
aggregated authenticator of size (s + 1)λ.

The SW construction fits nicely into our framework. SW
implicitly assumes an ε-adversary (for some ε < 1) and thus
omits Phase I of our framework. The SW scheme setup, how-
ever, allows us easily to include a Phase I stage to bound ε
below any desired value. While SW can tolerate essentially
any ε < 1, the ability to bound ε at lower values in a Phase
I stage can be quite important in practice. The error value ε
determines the efficiency of file extraction for the client, so
ensuring ε bounded well away from 1 can be vital in practice.

We can generalize the SW construction by replacing their
ad-hoc inner erasure code with an erasure code with linear en-
coding and decoding time, e.g., Tornado codes [16], on-line
codes [17], LT codes [15] or Raptor codes [23]. In addition to
obtaining a more efficient extraction algorithm (reducing the
decoding cost from O(|F |

√
|F |) to O(|F |), for the natural

choice of n = s =
√
|F |), this approach can simplify the se-

curity proofs of SW. For instance, the proofs from Section 4.2
in [21] could be easily inferred from the decoding properties
of the above mentioned erasure codes.

4.2 Improvement to JK protocol
We now describe improvements that our new framework

6

brings to the JK protocol, the main focus of the paper.
As explained above, SW has strong theoretical benefits, e.g.,

an ability to extract files for essentially any ε < 1. In practice,
though, an adversary with ε > 1

2
would be quickly detected

in phase one of our framework. Consequently, in practice, the
higher ε tolerated by SW is of limited benefit. SW also permits
an unbounded number of phase-one queries by the client. JK,
however, can support a large number of phase-one queries in
practice. As we explain in Section 5, JK has notable efficiency
benefits over SW for parameter ranges we consider of most
practical interest. This is the reason for our focus on JK.

Our main goals in designing the new variant on JK are to
tolerate a larger level of errors than in the original JK scheme,
reduce the storage overhead on the server, and employ a more
lightweight verification mechanism in the first phase to ensure
that the client is dealing with an ε-adversary. After describing
the details of the new variant, we provide its security analysis
in a stronger adversarial model than employed in the JK proto-
col. We conclude the section by showing a range of parameters
our new variant supports and their relative tradeoffs.

Building blocks
To specify the algorithms in our protocol, we need several
cryptographic primitives, in particular a symmetric-key au-
thenticated encryption scheme (KGenEnc, Enc, Dec), a fam-
ily of pseudorandom permutations PRP[n] : KPRP×{0, 1}n →
{0, 1}n and a message-authentication algorithm (KGenMAC,
MAC, Ver). We assume the primitives are secure according
to standard security definitions, i.e., the encryption scheme is
IND-CPA secure, the permutation family is pseudorandom and
the MAC scheme is unforgeable [10, 11].

Outer layer of error correction
The outer layer of error correction needs to be adversarial in
the sense that it transforms a noisy channel into a random one
(see a discussion on adversarial codes in the full version of the
paper [6]). To implement an adversarial code, the JK’s encode
algorithm uses a striped “scrambled” code. The file is divided
into stripes and each stripe is encoded with a standard (n, k, d)
Reed-Solomon code. The resulting symbols are permuted with
a PRP and encrypted with secret keys known only to the client.

Our goal is to construct a systematic adversarial error-correcting
code, i.e., one in which the message blocks of F remain un-
changed by error-correcting. A systematic code of this kind
has considerable practical benefit. In the ordinary case when
the server is honest and extraction is unnecessary, i.e., the vast
majority of the time, the client need not perform any permuta-
tion or decryption on the recovered file. To build a systematic
adversarial error-correcting code, we apply code “scrambling”
exclusively to parity blocks. However, this does not ensure by
itself a random adversarial channel, since the adversary has in-
formation about stripe boundaries. To hide stripe boundaries
from the server, we first implicitly apply a pseudorandom per-
mutation to the file blocks and then divide the permuted file
into stripes. Our outer code outputs the file in order, followed
by the “scrambled” parity blocks.

The encode algorithm of our adversarial code SA-ECC takes
as input secret keys k1, k2 and k3, and a message M of size
m blocks, and performs the following operations:

- Permute M using PRP[m] with key k1, divide the per-

muted message into dm
k
e stripes of consecutive k blocks

each, and compute error-correcting information for each
stripe using code ECCout.

- The output codeword is M followed by permuted and
encrypted error-correcting information (the permutation
of parity blocks is done using PRP[m

k
(n− k)] with se-

cret key k2 and their encryption with key k3, respec-
tively).

Remark.
We emphasize that thanks to our use of systematic encod-

ing of F , we can achieve strong security in the encoded file
by encrypting only the parity blocks. Such limited encryp-
tion fully conceals the error-coding stripes, as the blocks of
F itself remain untouched and therefore carry no permutation
information.

The decode algorithm of SA-ECC simply reverses the op-
erations of encode.

Precomputing challenge-response pairs
As described in Phase II of our framework, a challenge is a
pair (s, u) ∈ S × W . The response is the u-th symbol in
a codeword over an inner coding instance consisting of file
blocks with indices in set s. The client precomputes a set of
randomly generated challenges derived from a seed and ap-
pends to the file encrypted (and authenticated) corresponding
responses.

4.2.1 Complete POR protocol
We present here the complete POR protocol. In the keygen

algorithm, a master secret key MS is generated, from which
additional keys are derived: a master challenge key kchal, a key
kind used to sample codeword indices of ECCin, a file MAC
key kfile

MAC, a master encryption key kenc, a file permutation key
kfile

perm, an ECC permutation key kECC
perm and an ECC encryption

key kECC
enc . Let us denote the generator matrix of ECCin by

G = {gij}1≤i≤v,1≤j≤w.
The encode algorithm for our POR protocol is the follow-

ing:

1. Divide file F into m blocks, each an l-bit symbol, i.e.,
F = F1 . . . Fm.

2. Apply outer error-correcting layer: Encode F under
SA-ECC with secret keys (kfile

perm, kECC
perm, kECC

enc), resulting
in F ′ = F1 . . . FmFm+1 . . . Ft (with t = dmn

k
e).

3. Precompute challenge-response pairs: For each chal-
lenge j with 1 ≤ j ≤ q:

(a) The client first derives a challenge key kc
j from

kchal from which she computes v pseudorandom
block indices i1, . . . , iv ∈ [1, t]. The client de-
rives a random index u ∈ [1, w] from seed kind

and an encryption key ke
j from kenc.

(b) The client computes Mj =
∑v

s=1 Fisgsu and ap-
pends Qj = Encke

j
(Mj) to the encoded file.

4. Append a MAC of the whole file MACkfile
MAC

(F) and re-
turn the encoded file.

In the challenge algorithm, the client sends to the server j, kc
j

and the random index u derived from kind. In the respond
algorithm, the server derives i1, . . . , iv from kc

j , computes

7

Mj =
∑v

s=1 Fisgsu, and returns to the client Mj and Qj .
The verify algorithm returns true if Mj = Decke

j
(Qj).

In the extract algorithm, executed when normal file down-
load and error-correction of the encoded file fail, the client
executes two phases, one for each layer of error correction.
To decode from the inner layer, the client submits a sufficient
number of challenges and then uses majority decoding. The
client obtains on average α decodings for each file block (for α
a parameter in the system chosen so that each file block is cov-
ered with sufficiently large probability), and she decodes to the
block that appears in at least a fraction of 1

2
+ δ of decodings

(for δ > 0 a parameter of our system). If no such block ex-
ist, the client outputs an erasure for that block, denoted ⊥. For
each file block i, the client maintains during the first extraction
phase a set of all decodings obtained with repetitions, denoted
Di. After decoding all blocks in the first phase, the client uses
the decoding procedure of the outer error-correcting code in
order to correct the possible errors and erasures introduced in
the first phase. The extract algorithm is given below:

1. Recover from the inner error-correction layer

(a) Di = Φ, for all blocks i ∈ [1, t].
(b) Pick a set of challenges C of size NC = α t

v
as

follows:
(b1) For each j ∈ [1, α t

v
] do:

• Generate a seed kc
j (used to generate a se-

quence of v block indices).
• Add (j, kc

j) to C.
(c) For each challenge (j, kc

j) ∈ C do:
(c1) Execute challenge w times with parameters

j, kc
j and u, where u takes all the values be-

tween 1 and w and all the other parameters
remain constant.

(c2) Apply the decoding procedure of ECCin to
recover Fi1 , . . . , Fiv (where i1, . . . , iv are gen-
erated from seed kc

j) and add each Fis to the
set Dis , for s ∈ [1, v].

(d) For each block i ∈ [1, t] do:

(d1) If there exists b ∈ Di such that |j:Di[j]=b|
|Di| ≥

1
2

+ δ, output Fi = b.
(d2) Otherwise, output Fi = ⊥.

2. Recover from the outer error-correcting layer: Decode
F1 . . . Ft under SA-ECC using secret keys (kfile

perm, kECC
perm,

kECC
enc) and obtain F .

3. Compute the MAC over the whole file and check it against
the MAC stored at the end of the file. If the MAC veri-
fies, output the file, and otherwise output error.

The full security analysis of this construction is given in the
full version of the paper [6].

4.2.2 Parameterization
In this section, we show different tradeoffs our construction

achieves for different parameter choices. We consider differ-
ent types of inner codes, in particular a first class of theoreti-
cal codes whose existence is guaranteed by the Varsharmov-
Gilbert lower bound, and a second class of practical codes
that can be easily built from concatenation of standard Reed-
Solomon codes.

Theoretical codes.
The following lower bound for the minimum distance of a

code (n, k) holds.

THEOREM 1. (Varsharmov-Gilbert [20]) It is possible to
construct an (n, k) code over an alphabet Σ of size σ with
minimum distance at least d, provided that:

∑d−2
i=0

(
n
i

)
(σ −

1)i ≥ σn−k.

We consider several codes over a byte alphabet that follow the
lower bound by varying codeword sizes from 500 to 4000 and
code rates from 0.1 to 0.9.

Practical codes obtained from concatenation.
A standard code used in practical applications is the sys-

tematic (255, 223, 32) Reed-Solomon code. From this code
we build several codes (k + 32, k, 32), with 32 ≤ k ≤ 223,
by padding k with zeros to obtain a message of size 223, en-
coding the padded message, and truncating the codeword of
size 255 to size k +32. It is easy to see that the distance given
by this code remains 32. We obtain by this procedure codes
(64, 32, 32) and (96, 64, 32).

For our construction, we need inner codes that operate on
larger message sizes, on the order of several thousand bytes.
A standard procedure to enlarge the message and codeword
sizes is to build concatenated codes. The concatenation of two
codes with parameters (n1, k1, d1) and (n2, k2, d2) is denoted
(n1, k1, d1)·(n2, k2, d2) and has parameters (n1n2, k1k2, d1d2).
A description of the concatenation procedure is outside the
scope of this paper, but we refer the reader for more details
to [20]. Several codes obtained through concatenation are
given in Table 1.

Code name Code parameters How obtained
Code 1 (255,223,32) Reed-Solomon code
Code 2 (4096,1024,1024) (64, 32, 32) · (64, 32, 32)
Code 3 (6144,2048,1024) (64, 32, 32) · (96, 64, 32)
Code 4 (9216,4096,1024) (96, 64, 32) · (96, 64, 32)
Code 5 (16320,7136,1024) (64, 32, 32) · (255, 223, 32)

Table 1: Several practical codes.

Error rates tolerated.
In our new variant, we can tolerate a higher error rate than

in the JK scheme, due to the addition of a new dimension in
the design space of POR protocols, namely the inner code. As
explained in our theoretical framework, the inner code reduces
the adversarial error ε to a residual ε′ < ε, and the outer code
then corrects the residual error ε′. Since in the new variant ε′

is reduced by at least an order of magnitude compared to ε, we
need a more lightweight outer code than the JK scheme, and,
as such, the outer code storage overhead decreases.

We show in Figure 3 the maximum error rate ε tolerated by
different inner codes that follow the Varsharmov-Gilbert lower
bound, as well as by several practical codes. For theoretical
codes, we fix the code rate to a constant (2/3, corresponding to
an expansion of 50%), and only vary the codeword size (and,
implicitly, the message size)3. The graphs from Figure 3 plot

3We also performed tests for theoretical codes with rates vary-
ing from 0.1 to 0.9 with a 0.1 increment. It turns out that
similar results hold, and, thus, we omit them from the paper.

8

 0.0001

 0.001

 0.1

 1

 10 15 20 25 30

E
rr

or
 r

at
es

Outer code distance

Error rates for theoretical codes with rate 2/3

JK scheme
Codeword size 500

Codeword size 1000
Codeword size 2000
Codeword size 3000
Codeword size 4000

 0.0001

 0.001

 0.1

 1

 10 15 20 25 30

E
rr

or
 r

at
es

Outer code distance

Error rates for practical codes

JK scheme
Inner code 1
Inner code 2
Inner code 3
Inner code 4
Inner code 5

Figure 3: Maximum error rate ε tolerated as a function of
outer code distances for both theoretical inner codes with
rate 2/3 and for different practical codes.

the tolerated error rates as a function of the outer code dis-
tance, for a file size of 4GB, α = 10, δ = 1

4
and security

bound γ = 10−6. Our outer code is built from the standard
(255, 223, 32) Reed-Solomon code, by truncating codewords
to size 223 + d to obtain distance 0 < d ≤ 32.

When the outer code distance drops below a certain thresh-
old (i.e., 20 for the JK scheme, and between 10 and 14 for
the new variant), we can no longer obtain a security bound
of γ = 1 − 10−6. This shows that our new variant spans a
larger parameter domain, allowing different tradeoffs between
the outer code storage overhead, the error rates tolerated and
the number of verifications in Phase I.

The results for theoretical codes show that for a fixed outer
code distance (and, implicitly, outer code storage overhead),
higher error rates are tolerated by codes with larger codeword
sizes. For practical codes, the results demonstrate that error
rates do not depend only on inner codeword size, but also on
inner code rate and minimum distance. For instance, for an
outer code distance greater than 26, inner code 2 tolerates a
higher fraction of errors than inner codes 3-5, even though its
codeword size is smaller. For outer code distances smaller than
22, the amount of errors tolerated by codes 2-5 is close, with
a difference of at most 0.003 between any consecutive codes.
Code 1 performs much worse than codes 2-5 due to its small
codeword size of 255 bytes.

 10

 100

 1000

 10000

 10 15 20 25 30

N
um

be
r

of
 c

ha
lle

ng
es

Outer code distance

Number of challenges for theoretical codes with rate 2/3

JK scheme
Codeword size 500

Codeword size 1000
Codeword size 2000
Codeword size 3000
Codeword size 4000

 10

 100

 1000

 10000

 10 15 20 25 30

N
um

be
r

of
 c

ha
lle

ng
es

Outer code distance

Number of challenges for practical codes

JK scheme
Inner code 1
Inner code 2
Inner code 3
Inner code 4
Inner code 5

Figure 4: Number of challenges required in Phase I as a
function of outer code distance.

Number of challenges required in Phase I.
Intuitively, as the protocol tolerates a larger amount of er-

ror rates, the number of verifications needed in Phase I of our
framework decreases. Figure 4 shows the number of chal-
lenges for both theoretical codes with rate 2/3 and practical
codes. For an outer code distance of 32 (and, thus, a file
storage overhead of 14.34%), inner code 3 requires only 20
challenge verifications in Phase I. In contrast, JK needs 400
verifications for the same security level. The number of verifi-
cations in Phase I becomes prohibitive very fast for JK: for an
outer code distance of 24, 1596 verifications are necessary. In
contrast, as the outer code storage overhead decreases from 32
to 16 in the new variant, the number of challenges increases at
an almost linear rate. For instance, for an outer code distance
of 16, we need to check 94 challenges with inner code 2, 79
with inner code 3, and 68 with inner code 4. When the outer
code distance drops below 16 in the new variant, the number
of challenges exhibits an exponential increase. In conclusion,
using one of the inner codes 2, 3 or 4 in the new variant, we
can obtain a 50% reduction in the outer code storage overhead,
at the expense of checking less than 100 challenges in the first
phase.

5. PRACTICAL COMPARISON WITH PRE-
VIOUS SCHEMES

9

Scheme SW Our POR
Storage overhead nλ + (1

ρ − 1)|F | zq + (1
ρout

− 1)|F |
on server

Storage cost sλ + κ κ
on client

Size of challenge lλ 8 + κ
Size of response (s + 1)λ z

Parameters |F | = nsλρ, ρl = 2−λ κ = 32 bytes,
z = 32 bytes

Table 2: Storage overhead on server and client, and com-
munication cost for SW and our scheme.

5.1 New Variant JK Protocol vs. Original
JK Scheme

The original JK scheme employs only one layer of error-
correction. In the challenge phase, the client downloads a
number of sentinel values from the server and verifies their
correctness. Thus, the challenge phase in JK is only used
to ensure an ε-adversary, but is not effectively useful to ex-
tract file blocks. For this reason, their scheme is resilient to
a smaller fraction of block corruptions than the new variant.
Our extraction success is amplified by using two layers of er-
ror correction.

We performed a detailed comparison of the two schemes by
using the results from Figures 3 and 4. The new variant toler-
ates an error rate ε at least an order of magnitude higher than
the original JK scheme for the same outer code overhead and
security bound. This imposes in the JK scheme the verifica-
tion of a larger number of challenges in the first phase (e.g.,
by a factor between 20 and 80 for inner code 3) to achieve
an equivalent error rate. The cost we pay for our efficiency
in storage overhead and first phase verification is a more ex-
pensive extract algorithm. However, our hope is that in the
normal case, i.e., most of the time, the user downloads the
original file with a valid MAC or can correct the encoded file
using ECCout, and does not need to resort to extract for file
recovery.

Moreover, our security analysis for the new variant is per-
formed in a much stronger adversarial model, since we do not
make simplifying assumptions about the adversary’s behavior,
except for the bound on ε as described above. JK includes a
strong block isolation assumption, stating that the probabili-
ties file blocks are returned correctly in a challenge are inde-
pendent of one another.

5.2 Comparison to Shacham-Waters Scheme

5.2.1 Parameters in Shacham-Waters
In Table 2, we quantify the server storage overhead cost,

storage cost on the client, and communication cost of chal-
lenge and response protocols in both SW and our new POR
scheme. SW is parameterized by security parameter λ, the rate
of the erasure code ρ , the number of blocks and authenticators
n, and the size of a block s, such that ρl is negligible in λ, e.g.,
ρl = 2−λ. The JK variant is parameterized by ρout = k

n
the

rate of the outer code ECCout, z the size of a symbol in the
outer code (e.g., 32 bytes in our implementation), and κ the
size of symmetric keys (e.g., 32 bytes).

5.2.2 Discussion
While we have crafted our scheme to trade off the stor-

age overhead on the server against the number of challenges
needed to ensure an ε-adversary in the first phase, and the
extraction complexity, we observe a different tradeoff in the
design of SW: The storage overhead on the server, storage on
the client, and communication complexity in challenge and re-
sponse protocols are traded off by the choice of parameters n,
s and the erasure code expansion rate ρ.

Let us consider a particular parameterization of our scheme
in which we set a security level of 10−6, an outer code with
rate 0.9 (and thus an expansion of 10%), and the total num-
ber of pre-computed challenges stored q = 10000. The stor-
age overhead on the server for our scheme is 320KB + 0.1 ·
|F |. The maximum adversarial corruption rate ε < 1

2
is a

value bounded by our inner and outer error correcting codes
(for instance, for the (4096, 1024, 1024) inner code and the
(255, 223, 32) outer code, ε could be as large as 0.1 as shown
in Figure 3). We show how we can design SW to match some
of the parameters, assuming the same bound on ε. For SW, a
security level of 10−6 translates to λ = 22.

To illustrate the relative costs between SW and our scheme,
we consider two points of comparison, one in which the server
storage overhead is set to be identical in both schemes, and
another in which communication complexity is set to be iden-
tical. We derive the parameters for a 4GB file.

• For the same storage overhead on the server for the two
schemes, we need to set ρ to 0.1 in SW, and thus l =
169. Additionally, nλ needs to equal 320KB, and we
can derive s = 13, 107. In this case, the size of a chal-
lenge in SW is 464 bytes, and the response size is 36KB,
as opposed to both these values being on the order of 40
bytes in our construction. The communication complex-
ity in SW is increasing with the file size.

• For the same communication complexity in the two schemes,
lλ needs to be 40 bytes, and (s + 1)λ needs to be 32
bytes, which implies l = 14 and s = 10. We can then
derive 1

ρ
= 2.96, and thus the storage overhead on the

server in SW is about twice the size of the file.

These examples show that for small values of ε SW is more
expensive than our scheme with respect to both storage over-
head on server and client and communication complexity. But,
of course, it still retains the advantage that it allows for an un-
limited number of verifications, and can provide file extraction
for any ε < 1 (albeit at polynomial cost in 1

1−ε
).

6. IMPLEMENTATION
There are several challenges that we have encountered in the

process of implementing the new variant.

6.1 Small PRPs
To build adversarial code SA-ECC, we need to construct

two pseudorandom permutations: one that permutes file blocks
to generate stripes, and the second that permutes parity blocks.
Both are “small” pseudrandom permutations, i.e., smaller than
the size of a typical block cipher. For instance, for a 4GB file
divided into 32-byte blocks, we need a permutation with do-
main size of 227 to permute file blocks.

Black and Rogaway [4] have considered the problem of de-
signing small block ciphers, and proposed several solutions.

10

For small domains, a practical solution (method 1 in [4]) is to
build and store into main memory a table with random values.
Another method applicable to larger domains (method 3 of [4])
is to use a 3-round Feistel cipher, with the random functions
in each round based on a standard block cipher, such as DES
or AES. However, their security bound is quite weak, i.e., the
PRP-advantage to generate a permutation of length 2n is on
the order q2

2n , where q is the number of permutation queries
asked by the adversary.

We have found a solution to enhance this security bound in
a paper by Patarin [19]. Patarin proves that, if 6 rounds are per-
formed in the Feistel construction, then the indistinguishabil-
ity advantage of a permutation of size 2n is 5q3

22n . This bound
is ideal for our limited adversarial model, in which q = 1
(our adversary does not have access to a PRP oracle). The
method we adopted in our implementation is to use a 6-round
Feistel construction, with the random functions in each round
implemented as random tables stored into memory. We have
briefly experimented with the random functions implemented
with AES, but this alternative is several orders of magnitude
slower than having the tables stored into main memory.

6.2 Incremental encoding
A naive implementation of our encode protocol based on

random access to file blocks for encoding would be prohibitively
expensive (for a seek time of 10ms, it takes 66000s to ran-
domly access a 1GB file, using 32-byte blocks). As solid-
state disks become more popular, random access might be-
come comparable to sequential access. In the meanwhile, for
today’s drives, our objective is to implement the encoding al-
gorithm in only one pass through the file, in an incremental
fashion.

If Reed-Solomon codes are used for implementing ECCout,
computation of parity blocks involves associative operations
in a Galois field. For an incremental encoding of the file, we
could store the parity blocks into main memory, and update
them when we process a file chunk in memory. However, we
pay some performance cost for incremental encoding, since
existing Reed-Solomon implementations are highly optimized
if the whole message is available at encoding time. The parity
block size depends on both the file size and the outer code
distance, but for a fixed outer code distance, it grows linearly
with the file size.

With this method, we could encode incrementally files for
which the parity blocks (whose size is a percentage of the file
size) fit into memory. For large files for which parity blocks
do not fit into main memory, there are several encoding alter-
natives. First, we could still perform a single pass over the
file, but store only a smaller set of parity blocks into memory.
As a file block is processed in memory, the parity blocks that
depend on it are swapped in, updated, and then swaped out of
memory. Another alternative is to break a very large file into
more manageable sized files, and encode each separately.

Another problem we encountered was how to prepare the
challenges in an incremental fashion. To compute each chal-
lenge, v blocks need to be picked at random from the range
of all file blocks. A simple solution, which we have imple-
mented, is to generate in advance all these v block indices for
each of the q challenges, and store them into main memory.
We have experimented with an alternative technique in which

 0

 500

 1000

 1500

 2000

 2500

 3000

1GB 2GB 4GB 6GB 8GB

T
im

e
(in

 s
)

File Size

Encoding micro-benchmarks

Read
PRP
ECC encode
MAC
Challenges
Encrypt-Write

Figure 5: Encoding micro-benchmarks for inner code
(4096, 1024, 1024) and outer code (241, 223, 18).

we select the number of samples for each chunk from a Bi-
nomial distribution, and then sample uniformly the blocks in
each chunk. This technique proved very expensive because of
the high cost of sampling from a Binomial distribution, i.e., it
takes about 3s in Java and 9s in Mathematica to generate 1,000
binomials.

As future work, we plan to investigate more efficient tech-
niques for generating a fixed set of random numbers from a
large interval incrementally.

6.3 Performance
We have implemented our new variant with incremental en-

coding of files in Java 1.6. The Java Virtual Machine has 1GB
of memory available for processing. We report our perfor-
mance numbers from an Intel Core 2 processor running at
2.16 GHz. Files were stored on a Hitachi 100 GB Parallel-
ATA drive with a buffer of 8MB and rotational speed of 7200
RPMs. The average latency time for the hard drive is 4.2ms
and the average seek time is 10ms. We use the BSAFE library
in Java for implementing the cryptographic operations.

We show in Figure 5 the total encoding time for files of
several sizes, divided into several components: Read (time
to read the file from disk), PRP (time to compute the two
PRPs used in SA-ECC), ECC encode (time to compute error-
correcting information for the outer-code), MAC (time to com-
pute a MAC over the file), Challenges (time to compute q =
1000 challenges with the inner code), and Encrypt-Write (time
to encrypt the error-correcting information and write the par-
ity blocks and the challenges to disk). The results are reported
for the (4096, 1024, 1024) inner code and the (241, 223, 18)
outer code. We show averages over 10 runs.

The encoding algorithm achieves a throughput of around
3MB/s, and we observe that encoding time grows linearly with
file size. The outer error-correcting layer is responsible for
most of the encoding overhead (i.e., between 61% and 67%
in our tests). The outer code encoding time can be reduced
by reducing the outer code distance, at the expense of check-
ing more challenges in Phase I of our framework. We expect
that an optimized C implementation of Reed-Solomon encod-

11

ing would reduce this overhead several times. Among the
other components, noticeable overheads are seen in the time
to compute a file MAC (around 4.2%), the time to access files
from disk (around 11-12%), and the time to encrypt and write
to disk the parity blocks (around 15%). Encryption of party
blocks is slow because our decoding algorithm demands that
each parity block is encrypted separately (if CBC encryption
is used, for instance, then a corruption in one parity block will
propagate to multiple blocks).

7. CONCLUSIONS
We have proposed in this paper a new framework for theo-

retical design of POR protocols that incorporates existing POR
constructions, and enables design of new protocols with a wide
range of parameter tradeoffs. We showed how the protocols of
Juels-Kaliski and Shacham-Waters can be simplified and im-
proved using the new framework. We designed a new variant
of the Juels-Kaliski scheme that achieves lower storage over-
head, tolerates higher error rates, and can be proven secure in
a stronger adversarial setting. Finally, we provided a Java im-
plementation of the encoding algorithm of the new variant, in
which files are processed and encoded incrementally, i.e., as
they are read into main memory.

As future work, we think it is worth exploring further op-
timizations in our implementation to enhance the encoding
throughput. An interesting practical problem is to design dif-
ferent encoding techniques with a minimal number of disk
accesses for very large files, i.e., those for which the parity
blocks do not fit into main memory. On the theoretical side,
we leave open the problems of designing efficient POR pro-
tocols that support file updates, as well as publicly verifiable
PORs.

8. REFERENCES
[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring,

L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In Proc. ACM CCS,
pages 598–609, 2007.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik.
Scalable and efficient provable data possession, 2008.
IACR ePrint manuscript 2008/114.

[3] M. Bellare and A. Palacio. The knowledge-of-exponent
assumptions and 3-round zero-knowledge protocols. In
Proc. CRYPTO ‘04, pages 273–289. Springer, 2004.
LNCS vol. 3152.

[4] J. Black and P. Rogaway. Ciphers with arbitrary finite
domains. In Proc. CT-RSA ‘02, pages 114–130.
Springer, 2002. LNCS vol. 2271.

[5] M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and
M. Naor. Checking the correctness of memories.
Algorithmica, 12(2/3):225–244, 1994.

[6] K. Bowers, A. Juels, and A Oprea. Proofs of
retrievability: Theory and implementation, 2008.
Available from ePrint, report 2008/175.

[7] R. Curtmola, O. Khan, and R. Burns. Robust remote
data checking. In Proc. 4th ACM Workshop on Storage
Security and Survivability (StorageSS), 2008.

[8] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of
retrievability via hardness amplification. In TCC, 2009.

[9] D.L.G. Filho and P.S.L.M. Barreto. Demonstrating data
possession and uncheatable data transfer, 2006. IACR
eArchive 2006/150. Referenced 2008 at
http://eprint.iacr.org/2006/150.pdf.

[10] O. Goldreich. Foundations of cryptography, Volume I:
Basic tools. Cambridge University Press, 2001. First
Edition.

[11] O. Goldreich. Foundations of cryptography, Volume II:
Basic applications. Cambridge University Press, 2004.
First Edition.

[12] P. Golle, S. Jarecki, and I. Mironov. Cryptographic
primitives enforcing communication and storage
complexity. In M. Blaze, editor, Proc. Financial
Cryptography ‘02, pages 120–135. Springer, 2002.
LNCS vol. 2357.

[13] A. Juels and B. Kaliski. PORs: Proofs of retrievability
for large files. In Proc. ACM CCS, pages 584–597, 2007.

[14] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative Internet backup scheme. In
Proc. USENIX Annual Technical Conference, General
Track 2003, pages 29—41, 2003.

[15] M. Luby. LT codes. In Proc. Symposium on Foundations
of Computer Science (FOCS), pages 271–Ů282. IEEE,
2002.

[16] M. Luby, M. Mitzenmacher, A. Shokrollahi,
D. Spielman, and V. Stemann. Practical loss-resilient
codes. In Proc. Symposium on Theory of Computation
(STOC), page 150Ů159. ACM, 1997.

[17] P. Maymounkov. On-line codes. Technical Report
TR2002-833, Computer Science Department at New
York University, November 2002.

[18] M. Naor and G. N. Rothblum. The complexity of online
memory checking. In Proc. 46th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 573–584, 2005.

[19] J. Patarin. Improved security bounds for pseudorandom
permutations. In Proc. ACM CCS, pages 142–150, 1997.

[20] W. W. Peterson and E. J. Weldon, Jr. Error-Correcting
Codes. MIT Press, 1972. Second Edition.

[21] H. Shacham and B. Waters. Compact proofs of
retrievability. Proc. Asiacrypt 2008.

[22] M.A. Shah, M. Baker, J.C. Mogul, and R. Swaminathan.
Auditing to keep online storage services honest, 2007.
Presented at HotOS XI, May 2007.

[23] A. Shokrollahi. Raptor codes. IEEE Transactions on
Information Theory, 52(6):2551–2567, 2006.

12

