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Abstract. We consider the problem of efficient key management and user revo-
cation in cryptographic file systems that allow shared access to files. A
performance-efficient solution to user revocation in such systems is lazy revo-
cation, a method that delays the re-encryption of a file until the next write to
that file. We formalize the notion of key-updating schemes for lazy revocation,
an abstraction to manage cryptographic keys in file systems with lazy revocation,
and give a security definition for such schemes. We give two composition meth-
ods that combine two secure key-updating schemes into a new secure scheme that
permits a larger number of user revocations. We prove the security of two slightly
modified existing constructions and propose a novel binary tree construction that
is also provably secure in our model. Finally, we give a systematic analysis of
the computational and communication complexity of the three constructions and
show that the novel construction improves the previously known constructions.

1 Introduction

The recent trend of storing large amounts of data on high-speed, dedicated storage-area
networks (SANs) stimulates flexible methods for information sharing, but also raises
new security concerns. As the networked storage devices are subject to attacks, protect-
ing the confidentiality of stored data is highly desirable in such an environment. Several
cryptographic file systems have been designed for this purpose [15], [28], [23], [17],
but practical solutions for efficient key management and user revocation still need to be
developed further.

We consider cryptographic file systems that allow shared access to stored informa-
tion and that use untrusted storage devices. In such systems, we can aggregate files into
sets such that access permissions and ownership are managed at the level of these sets.
The users who have access to the files in a set form a group, managed by the owner of
the files, or the group owner. Initially, the same cryptographic key can be used to en-
crypt all files in a set, but upon revocation of a user from the group, the key needs to be
changed to prevent access of revoked users to the files. The group owner generates and
distributes this new key to the users in the group. There are two options for handling user
revocation, active and lazy revocation, which differ in the way that users are revoked
from a group. With active revocation, all files in a set are immediately re-encrypted
with the new encryption key. The amount of work caused by a single revocation with
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this method might, however, be prohibitive for large sets of files. With the alternative
method of lazy revocation, re-encryption of a file is delayed until the next write to that
file and, thus, users do not experience disruptions in the operation of the file system
caused by the immediate re-encryption of all files protected by the same revoked key.
In systems adopting lazy revocation, the files in a set might be encrypted with different
keys. Storing and distributing these keys becomes more difficult than in systems using
active revocation.

In this paper, we address the problem of efficient key management in cryptographic
file systems with lazy revocation. An immediate solution to this problem, adopted by
the first cryptographic file systems using delayed re-encryption [15], is to store all keys
for the files in a set at the group owner. However, we are interested in more efficient
methods, in which the number of stored keys is not proportional to the number of revo-
cations. We formalize the notion of key-updating schemes for lazy revocation and give
a rigorous security definition. In our model, a center (e.g., the group owner) initially
generates some state information, which takes the role of the master secret key. The
center state is updated at every revocation. We call the period of time between two re-
vocations a time interval. Upon a user request, the center uses its current local state to
derive a user key and gives that to the user. From the user key of some time interval, a
user must be able to extract the key for any previous time interval efficiently. Security
for key-updating schemes requires that any polynomial-time adversary with access to
the user key for a particular time interval does not obtain any information about the
keys for future time intervals. The keys generated by our key-updating schemes can be
used with a symmetric encryption algorithm to encrypt files for confidentiality or with a
message-authentication code to authenticate files for integrity protection. Independently
and concurrently to our work1 Fu, Kamara, and Kohno [16] have also formalized key-
updating schemes.

We describe two generic composition methods that combine two secure key updating
schemes into a new scheme in which the number of time intervals is either the sum or
the product of the number of time intervals of the initial schemes. Additionally, we in-
vestigate three constructions of key-updating schemes. The first scheme uses a chain of
pseudorandom generator applications and is related to existing methods using one-way
hash chains. It has constant update cost for the center, but the complexity of the user-
key derivation is linear in the total number of time intervals. The second scheme can be
based on arbitrary trapdoor permutations and generalizes the key rotation construction
of the Plutus file system [23]. It has constant update and user-key derivation times, but
the update algorithm uses a relatively expensive public-key operation. These two con-
structions require that the total number T of time intervals is polynomial in the security
parameter. Our third scheme uses a novel construction. It relies on a tree to derive the
keys at the leaves from the master key at the root. The tree can be seen as resulting from
the iterative application of the additive composition method and supports a practically
unbounded number of time intervals. The binary-tree construction balances the tradeoff
between the center-state update and user-key derivation algorithms (both of them have
logarithmic complexity in T ), at the expense of increasing the sizes of the user key and
center state by a logarithmic factor in T .

1 A preliminary version of this paper appears as [6].
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The rest of the paper is organized as follows. In Section 2 we give the definition of
security for key-updating schemes. In Section 3, we introduce the additive and multi-
plicative composition methods for secure key-updating schemes. The three construc-
tions and proofs for their security are presented in Section 4. A systematic analysis of
the computational and communication complexities of the three constructions is given
in Section 5, and an experimental evaluation is presented in Section 6. We compare our
scheme to related work in Section 7.

2 Formalizing Key-Updating Schemes

2.1 Definition of Key-Updating Schemes

In our model, we divide time into intervals, not necessarily of fixed length, and each
time interval is associated with a new key that can be used in a symmetric-key cryp-
tographic algorithm. In a key-updating scheme, the center generates initial state infor-
mation that is updated at each time interval, and from which the center can derive a
user key. The user key for interval t permits a user to derive the keys of previous time
intervals (ki for i ≤ t), but it should not give any information about keys of future time
intervals (ki for i > t).

We formalize key-updating schemes using the approach of modern cryptography and
denote the security parameter by κ. For simplicity, we assume that all the keys are bit
strings of length κ. The number of time intervals and the security parameter are given
as input to the initialization algorithm.

Definition 1 (Key-Updating Schemes). A key-updating scheme consists of four deter-
ministic polynomial time algorithms KU = (Init, Update, Derive, Extract) with the
following properties:

- The initialization algorithm, Init, takes as input the security parameter 1κ, the num-
ber of time intervals T and a random seed s ∈ {0, 1}l(κ) for a polynomial l(κ), and
outputs a bit string S0, called the initial center state.

- The key update algorithm, Update, takes as input the current time interval 0 ≤ t ≤
T − 1, the current center state St, and outputs the center state St+1 for the next
time interval.

- The user key derivation algorithm, Derive, is given as input a time interval 1 ≤ t ≤
T and the center state St, and outputs the user key Mt. The user key can be used
to derive all keys ki for 1 ≤ i ≤ t.

- The key extraction algorithm, Extract, is executed by the user and takes as input a
time interval 1 ≤ t ≤ T , the user key Mt for interval t as received from the center,
and a target time interval i with 1 ≤ i ≤ t. The algorithm outputs the key ki for
interval i.

W.l.o.g., we assume that the Update algorithm is run at least once after the Init algo-
rithm, before any user keys can be derived. The first time the Update algorithm is run,
it is given as input time interval t = 0. User keys and keys are associated with the time
intervals between 1 and T .
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2.2 Applications to Cryptographic File Systems

In a cryptographic file system adopting lazy revocation, the re-encryption of a file after a
revocation is delayed until the next write to that file. Similarly to the Plutus file system,
files can be divided into sets based on their access permissions, such that all files in a
set have the same permissions. Initially, all files in a set can be encrypted with the same
key. We assume that file owners are responsible for the generation and distribution of
keys to the authorized users, so file owners take the role of the center in our model of
key-updating schemes.

When a user is revoked from the group of users having access to the set of files, the file
owner runs the Update algorithm generating a new state and advancing the time interval.
The file owner then runs Derive and the new user key is distributed to all the users that
have now access permissions to the files. A user writing a file uses the encryption key
for the latest time interval, which can be efficiently extracted from the latest user key. To
decrypt a file, a user needs to know the version of the key that was used to encrypt it, and
extract the appropriate encryption key from the user key. The key version with which each
file is encrypted might, for example, be stored in the file i-node on the file server.

Assuming that the integrity of files is protected with a message-authentication code
(MAC), key-updating schemes can also be used to manage symmetric keys for authen-
tication. To guarantee independence of the keys used for confidentiality and integrity,
different instances of key-updating schemes have to be used for encryption and authen-
tication.

2.3 Security of Key-Updating Schemes

The definition of security for key-updating schemes requires that a polynomial-time
adversary with access to the user key for a time interval t is not able to derive any
information about the keys for the next time interval. The definition we give here is re-
lated to the definition of forward-secure pseudorandom generators given by Bellare and
Yee [8]. Formally, consider a probabilistic polynomial-time adversary A = (AU , AG)
that participates in the following experiment:

Initialization: The initial center state is generated with the Init algorithm.
Key updating: The adversary adaptively picks a time interval t such that 0 ≤ t ≤ T−1

as follows. Starting with t = 0, 1, . . . , algorithm AU is given the user keys Mt for
all consecutive time intervals until AU decides to output stop or t becomes equal
to T − 1. We require that AU , a probabilistic polynomial-time algorithm, outputs
stop at least once before halting. AU also outputs some additional information z ∈
{0, 1}∗ that is given as input to algorithm AG .

Challenge: A challenge for the adversary is generated, which is either the key for
time interval t + 1 generated with the Update, Derive and Extract algorithms, or a
random bit string of length κ.

Guess: AG takes the challenge and z as inputs and outputs a bit b.

The key-updating scheme is secure if the advantage of the adversary of distinguishing
between the properly generated key for time interval t + 1 and the random key is only
negligibly larger than 1

2 . More formally, the definition of a secure key-updating scheme
is the following:



Secure Key-Updating for Lazy Revocation 331

Definition 2 (Security of Key-Updating Schemes). Let KU = (Init, Update, Derive,
Extract) be a key-updating scheme and A a polynomial-time adversary algorithm that
participates in one of the two experiments defined in Figure 1.

Expsku-0
KU,A(1κ, T ) Expsku-1

KU,A(1κ, T )
S0 ← Init(1κ, T ) S0 ← Init(1κ, T )
t ← 0 t ← 0
(d, z) ← AU (t, ⊥,⊥) (d, z) ← AU (t, ⊥, ⊥)
while(d �= stop) and (t < T − 1) while(d �= stop) and (t < T − 1)

t ← t + 1 t ← t + 1
St ← Update(t − 1, St−1) St ← Update(t − 1, St−1)
Mt ← Derive(t, St) Mt ← Derive(t, St)
(d, z) ← AU (t, Mt, z) (d, z) ← AU (t, Mt, z)

St+1 ← Update(t, St) kt+1 ←R {0, 1}κ

Mt+1 ← Derive(t + 1, St+1) b ← AG(kt+1, z)
kt+1 ← Extract(t + 1, Mt+1, t + 1) return b
b ← AG(kt+1, z)
return b

Fig. 1. Experiments defining the security of key-updating schemes

The advantage of the adversary A = (AU , AG) for KU is defined as

AdvskuKU,A(κ, T ) =
∣
∣Pr

[

Expsku-1KU,A(1κ, T ) = 1
]

− Pr
[

Expsku-0KU,A(1κ, T ) = 1
]∣
∣.

Without loss of generality, we can relate the success probability of adversary A of
distinguishing between the two experiments and its advantage as

Pr[A succeeds] =
1
2

[

1 + AdvskuKU,A(κ, T )
]

. (1)

The key-updating scheme KU is secure if for all polynomial-time adversaries A and all
T , there exists a negligible function ε such that AdvskuKU,A(κ, T ) = ε(κ).

Remark. The security notion we have defined is equivalent to a seemingly stronger
security definition, in which the adversary can choose the challenge time interval t∗

with the restriction that t∗ is greater than the time interval at which the adversary outputs
stop and that t∗ is polynomial in the security parameter. This second security definition
guarantees, intuitively, that the adversary is not gaining any information about the keys
of any future time intervals after it outputs stop.

3 Composition of Key-Updating Schemes

Let KU1 = (Init1, Update1, Derive1, Extract1) and KU2 = (Init2, Update2, Derive2,
Extract2) be two secure key-updating schemes using the same security parameter κ
with T1 and T2 time intervals, respectively. In this section, we show how to combine the
two schemes into a secure key-updating scheme KU = (Init, Update, Derive, Extract),
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which is either the additive or multiplicative composition of the two schemes with T =
T1 + T2 and T = T1 · T2 time intervals, respectively. Similar generic composition
methods have been given previously for forward-secure signature schemes [26].

For simplicity, we assume the length of the random seed in the Init algorithm of the
scheme KU to be κ for both composition methods. Let G : {0, 1}κ → {0, 1}l1(κ)+l2(κ)

be a pseudorandom generator; it can be used to expand a random seed of length κ into
two random bit strings of length l1(κ) and l2(κ), respectively, as needed for Init1 and
Init2. We write G(s) = G1(s)‖G2(s) with |G1(s)| = l1(κ) and |G2(s)| = l2(κ) for
s ∈ {0, 1}κ.

3.1 Additive Composition

The additive composition of two key-updating schemes uses the keys generated by the
first scheme for the first T1 time intervals and the keys generated by the second scheme
for the subsequent T2 time intervals. The user key for the first T1 intervals in KU is
the same as that of scheme KU1 for the same interval. For an interval t greater than
T1, the user key includes both the user key for interval t − T1 of scheme KU2, and the
user key for interval T1 of scheme KU1. The details of the additive composition method
are described in Figure 2. The security of the composition operation is analyzed in the
following theorem, whose proof is given in the full version of this paper [6].

Theorem 1. Suppose that KU1 = (Init1, Update1, Derive1, Extract1) and KU2 =
(Init2, Update2, Derive2, Extract2) are two secure key-updating schemes with T1 and
T2 time intervals, respectively, and that G is a pseudorandom generator as above. Then
KU = (Init, Update, Derive, Extract) described in Figure 2 denoted as KU1 ⊕ KU2 is
a secure key-updating scheme with T1 + T2 time intervals.

Init(1κ, T, s) Derive(t, (S1
t , S2

t ))
S1

0 ← Init1(1κ, T1, G1(s)) if t < T1

S2
0 ← Init2(1κ, T2, G2(s)) M1

t ← Derive1(t, S1
t )

return (S1
0 , S2

0) M2
t ← ⊥

else
M1

t ← Derive1(T1, S
1
t )

M2
t ← Derive2(t − T1, S

2
t )

return(M1
t , M2

t )
Update(t, (S1

t , S2
t )) Extract(t, (M1

t , M2
t ), i)

if t < T1 if i > T1

S1
t+1 ← Update1(t, S

1
t ) ki ← Extract2(t − T1, M

2
t , i − T1)

S2
t+1 ← S2

t else
else if t < T1

S1
t+1 ← S1

t ki ← Extract1(t, M1
t , i)

S2
t+1 ← Update2(t − T1, S

2
t ) else

return (S1
t+1, S

2
t+1) ki ← Extract1(T1, M

1
t , i)

return ki

Fig. 2. The additive composition of KU1 and KU2
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Extended Additive Composition. It is immediate to extend the additive composition to
construct a new scheme with T1 + T2 + 1 time intervals. The idea is to use the first
scheme for the keys of the first T1 intervals, the second scheme for the keys of the next
T2 intervals, and the seed s as the key for the (T1 +T2 +1)-th interval. By revealing the
seed s as the user key at interval T1 +T2 + 1, all previous keys of KU1 and KU2 can be
derived. This idea will be useful in our later construction of a binary tree key-updating
scheme. We call this composition method extended additive composition.

3.2 Multiplicative Composition

The idea behind the multiplicative composition operation is to use every key of the first
scheme to seed an instance of the second scheme. Thus, for each one of the T1 time
intervals of the first scheme, we generate an instance of the second scheme with T2
time intervals.

We denote a time interval t for 1 ≤ t ≤ T1 · T2 of scheme KU as a pair t = <i, j>,
where i and j are such that t = (i − 1)T2 + j for 1 ≤ i ≤ T1 and 1 ≤ j ≤ T2. The
Update algorithm is run initially for time interval t = 0, which will be expressed as
<0, 0>. The user key for a time interval t = <i, j> includes both the user key for time
interval i − 1 of scheme KU1 and the user key for time interval j of scheme KU2. A
user receiving M<i,j> can extract the key for any time interval <m, n> ≤ <i, j> by
first extracting the key K for time interval m of KU1 (this step needs to be performed
only if m < i), then using K to derive the initial state of the m-th instance of the
scheme KU2, and finally, deriving the key k<m,n>. The details of the multiplicative
composition method are shown in Figure 3.

Init(1κ, T, s) Derive(<i, j>, (S1
i−1, S

1
i , S2

j ))
S1

0 ← Init1(1κ, T1, G1(s)) if i > 1
S1

1 ← Update1(0, S1
0) M1

i−1 ← Derive1(i − 1, S1
i−1)

k1
1 ← Extract1(1, Derive1(1, S1

1), 1) else
S2

0 ← Init2(1κ, T2, G2(k1
1)) M1

i−1 ← ⊥
return (⊥, S1

0 , S2
0) M2

j ← Derive2(j, S2
j )

return (M1
i−1, M

2
j )

Update(<i, j>, (S1
i−1, S

1
i , S2

j )) Extract(<i, j>, (M1
i−1, M

2
j ), <m, n>)

if j = T2 if i = m
S1

i+1 ← Update1(i, S
1
i ) k<m,n> ← Extract2(j, M2

j , m)
k1

i+1 ← Extract1(i + 1, else
Derive1(i + 1, S1

i+1), i + 1) K ← Extract1(i − 1, M1
i−1, m)

S2
0 ← Init2(1κ, T2, G2(k1

i+1)) S2
0 ← Init2(1κ, T2, G2(K))

S2
1 ← Update2(0, S2

0) k<m,n> ← Extract2(T2, S
2
0 , n)

return (S1
i , S1

i+1, S
2
1) return k<m,n>

else
S2

j+1 ← Update2(j, S
2
j )

return (S1
i−1, S

1
i , S2

j+1)

Fig. 3. The multiplicative composition of KU1 and KU2
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The security of the multiplicative composition method is analyzed in the following
theorem, whose proof is given in the full version of this paper [6].

Theorem 2. Suppose that KU1 = (Init1, Update1, Derive1, Extract1) and KU2 =
(Init2, Update2, Derive2, Extract2) are two secure key-updating schemes with T1 and
T2 time intervals, respectively, and that G is a pseudorandom generator as above. Then
KU = (Init, Update, Derive, Extract) described in Figure 3 denoted as KU1 ⊗ KU2 is
a secure key-updating scheme with T1 · T2 time intervals.

4 Constructions

In this section, we describe three constructions of key-updating schemes with different
complexity and communication tradeoffs. The first two constructions are based on pre-
viously proposed methods [23,16]. We give cryptographic proofs that demonstrate the
security of the existing constructions after some subtle modifications. Additionally, we
propose a third construction that is more efficient than the known schemes. It uses a
binary tree to derive the user keys and is also provably secure in our model.

4.1 Chaining Construction (CKU)

In this construction, the center generates an initial random seed of length κ and applies
a pseudorandom generator iteratively i times to obtain the key for time interval T − i,
for 1 ≤ i ≤ T −1. This construction is inspired by a folklore method using a hash chain
for deriving the keys. A construction based on a hash chain can be proven secure if the
hash function h is modeled as a random oracle. To obtain a provably secure scheme in
the standard model, we replace the hash function with a pseudorandom generator.

Let G : {0, 1}κ → {0, 1}2κ be a pseudorandom generator. We write G(s) =
G1(s)‖G2(s) with |G1(s)| = |G2(s)| = κ for s ∈ {0, 1}κ. The algorithms of the
chaining construction, called CKU, are:

- Init(1κ, T, s) generates a random seed s0 of length κ from s and outputs S0 = s0.
- Update(t, St) copies the state St into St+1.
- Derive(t, St) and Extract(t, Mt, i) are given in Figure 4.

Derive(t, St) Extract(t, Mt, i)
BT+1 ← St (Bt, kt) ← Mt

for i = T downto t for j = t − 1 downto i
(Bi, ki) ← G(Bi+1) (Bj , kj) ← G(Bj+1)

return (Bt, kt) return ki

Fig. 4. The Derive(t, St) and Extract(t, Mt, i) algorithms of the chaining construction

This construction has constant center-state size and linear cost for the user-key deriva-
tion algorithm. An alternative construction with linear center-state size and constant
user-key derivation is to precompute all the keys ki and user keys Mi, for 1 ≤ i ≤ T
in the Init algorithm and store all of them in the initial center state S0. The security of
the chaining construction is given be the following theorem, whose proof is in the full
version of this paper [6].
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Theorem 3. Given a pseudorandom generator G, CKU is a secure key-updating
scheme.

4.2 Trapdoor Permutation Construction (TDKU)

In this construction, the center picks an initial random state that is updated at each time
interval by applying the inverse of a trapdoor permutation. The trapdoor is known only
to the center, but a user, given the state at a certain moment, can apply the permutation
iteratively to generate all previous states. The key for a time interval is generated by
applying a hash function, modeled as a random oracle, to the current state. This idea
underlies the key rotation mechanism of the Plutus file system [23], with the difference
that Plutus uses the output of an RSA trapdoor permutation directly for the encryption
key. We could not prove the security of this scheme in our model for key-updating
schemes, even when the trapdoor permutation is not arbitrary, but instantiated with the
RSA permutation.

This construction has the advantage that knowledge of the total number of time inter-
vals is not needed in advance; on the other hand, its security can only be proved in the
random oracle model. Let a family of trapdoor permutations be given such that the do-
main size of the permutations with security parameter κ is l(κ), for some polynomial l.
Let h : {0, 1}l(κ) → {0, 1}κ be a hash function modeled as a random oracle. The
detailed construction of the trapdoor permutation scheme, called TDKU, is presented
below:

- Init(1κ, T, s) generates a random s0 ←R {0, 1}l(κ) and a trapdoor permutation
f : {0, 1}l(κ) → {0, 1}l(κ) with trapdoor τ from seed s using a pseudorandom
generator. Then it outputs S0 = (s0, f, τ).

- Update(t, St) with St = (st, f, τ) computes st+1 = f−1(st) and outputs St+1 =
(st+1, f, τ).

- Derive(t, St) outputs Mt ← (st, f).
- Extract(t, Mt, i) applies the permutation iteratively t − i times to generate state

si = f t−i(Mt) and then outputs h(si).

The security of this construction is given be the following theorem, whose proof is
in the full version of this paper [6].

Theorem 4. Given a family of trapdoor permutations and a hash function h, TDKU is
a secure key-updating scheme in the random oracle model.

4.3 Tree Construction (TreeKU)

In the two schemes above, at least one of the algorithms Update, Derive and Extract
has worst-case complexity linear in the total number of time intervals. We present a tree
construction based on ideas of Canetti, Halevi and Katz [10] with constant complexity
for the Derive algorithm and logarithmic worst-case complexity in the number of time
intervals for the Update and Extract algorithms. Moreover, the amortized complexity of
the Update algorithm is constant. In this construction, the user key size is increased by
at most a logarithmic factor in T compared to the user key size of the two constructions
described above.



336 M. Backes, C. Cachin, and A. Oprea

Our tree-based key-updating scheme, called TreeKU, generates keys using a com-
plete binary tree with T nodes, assuming that T = 2d − 1 for some d ∈ Z. Each node
in the tree is associated with a time interval between 1 and T , a unique label in {0, 1}∗,
a tree-key in {0, 1}κ and an external key in {0, 1}κ such that:

1. Time intervals are assigned to tree nodes using post-order tree traversal, i.e., a node
corresponds to interval i if it is the i-th node in the post-order traversal of the tree.
We refer to the node associated with interval t as node t.

2. We define a function label that maps node t with 1 ≤ t ≤ T to its label in {0, 1}∗
as follows. The root of the tree is labeled by the empty string ε, and the left and
right children of a node with label � are labeled by �‖0 and by �‖1, respectively.
The parent of a node with label � is denoted by parent(�), thus parent(�‖0) =
parent(�‖1) = �. We denote the length of a label � by |�|.

3. The tree-key for the root node is chosen at random. The tree-keys for the two chil-
dren of an internal node in the tree are derived from the tree-key of the parent node
using a pseudorandom generator G : {0, 1}κ → {0, 1}2κ. For an input s ∈ {0, 1}κ,
we write G(s) = G1(s)‖G2(s) with |G1(s)| = |G2(s)| = κ. If the tree-key for
the internal node with label � is denoted u�, then the tree-keys for its left and right
children are u�‖0 = G1(u�) and u�‖1 = G2(u�), respectively. This implies that
once the tree-key for a node is revealed, then the tree-keys of its children can be
computed, but knowing the tree-keys of both children of a node does not reveal any
information about the tree-key of the node.

4. The external key of a node t is the key kt output by the scheme to the application
for interval t. For a node t with tree-key ulabel(t), the external key kt is obtained by
computing Fulabel(t)(1), where Fu(b) = F (u, b) and F : {0, 1}κ×{0, 1} → {0, 1}κ

is a pseudorandom function on bits.

We describe the four algorithms of the binary tree key-updating scheme:

- Init(1κ, T, s) generates the tree-key for the root node randomly, uT ←R {0, 1}κ,
using seed s, and outputs S0 = ({(ε, uT )}, ∅).

- Update(t, St) updates the state St = (Pt, Lt) to the next center state St+1 =
(Pt+1, Lt+1). The center state for interval t consists of two sets: Pt that contains
pairs of (label, tree-key) for all nodes on the path from the root to node t (including
node t), and Lt that contains label/tree-key pairs for all left siblings of the nodes in
Pt that are not in Pt.
We use several functions in the description of the Update algorithm. For a label �
and a set A of label/tree-key pairs, we define a function searchkey(�, A) that outputs
a tree-key u for which (�, u) ∈ A, if the label exists in the set, and ⊥ otherwise.
Given a label � and a set of label/tree-key pairs A, function rightsib(�, A) returns the
label and the tree-key of the right sibling of the node with label �, and, similarly,
function leftsib(�, A) returns the label and the tree-key of the left sibling of the
node with label � (assuming the labels and tree-keys of the siblings are in A). The
function leftkeys is given as input a label/tree-key pair of a node and returns all
label/tree-key pairs of the left-most nodes in the subtree rooted at the input node,
including label and tree-key of the input node.
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Update(t, (Pt, Lt))
if t = 0

P1 ← leftkeys(ε, uT )
L1 ← ∅

else
�t ← label(t)
ut ← searchkey(�t, Pt)
if �t ends in 0

(�s, us)← rightsib(�t, Pt)
Pt+1 ← Pt \ {(�t, ut)} ∪ leftkeys(�s, us)
Lt+1 ← Lt ∪ {(�t, ut)}

else
(�s, us)← leftsib(�t, Lt)
Pt+1 ← Pt \ {(�t, ut)}
Lt+1 ← Lt \ {(�s, us)}

return (Pt+1, Lt+1)

leftkeys(�, u)
A← ∅
while |�| ≤ d

A← A ∪ {(�, u)}
�← �‖0
u← G1(u)

return A

/* P1 contains the label/tree-key pairs of all the left-most nodes */
/* the set of left siblings is empty */

/* compute the label of node t */
/* compute the tree-key of node t */
/* t is the left child of its parent */
/* compute the label/tree-key pair of the right sibling of t */
/* update the label/tree-key pairs in Pt+1 */
/* add the label/tree-key pair of t to set of left siblings for t + 1 */
/* t is the right child of its parent */
/* compute the label/tree-key pair of the left sibling of t */
/* remove label/tree-key pair of t from Pt+1 */
/* remove label/tree-key pair of left sibling of t from Lt+1 */

/* initialize set A with the empty set */
/* advance to the left until we reach a leaf */
/* add the label and tree-key of the current node in A */
/* move to left child of the node with label p */
/* compute the tree-key of the left child */

Fig. 5. The Update(t, (Pt, Lt)) algorithm

The code for the Update and leftkeys algorithms is given in Figure 5. We omit the
details of functions searchkey, rightsib and leftsib. The Update algorithm distin-
guishes three cases:
1. If t = 0, the Update algorithm computes the label/tree-key pairs of all left-

most nodes in the complete tree using function leftkeys and stores them in P1.
The set L1 is empty in this case, as nodes in P1 do not have left siblings.

2. If t is the left child of its parent, the successor of node t in post-order traversal
is the left-most node in the subtree rooted at the right sibling t′ of node t.
Pt+1 contains all label/tree-key pairs in Pt except the tuple for node t, and, in
addition, all label/tree-key pairs for the left-most nodes in the subtree rooted at
t′, which are computed by leftkeys. The set of left siblings Lt+1 contains all
label/tree-key pairs from Lt and, in addition, the label/tree-key pair for node t.

3. If t is the right child of its parent, node t + 1 is its parent, so Pt+1 contains all
label/tree-key pairs from Pt except the tuple for node t, and Lt+1 contains all
the label/tree-key pairs in Lt except the pair for the left sibling of node t.

- Algorithm Derive(t, (Pt, Lt)) outputs the user tree-key Mt, which is the minimum
information needed to generate the set of tree-keys {ui : i ≤ t}. Since the tree-
key of any node reveals the tree-keys for all nodes in the subtree rooted at that
node, Mt consists of the label/tree-key pairs for the left siblings (if any) of all
nodes on the path from the root to the parent of node t and the label/tree-key pair
of node t. This information has already been pre-computed such that one can set
Mt ← {(label(t), ut)} ∪ Lt.

- Algorithm Extract(t, Mt, i) first finds the maximum predecessor of node i in post-
order traversal whose label/tree-key pair is included in the user tree-key Mt. Then
it computes the tree-keys for all nodes on the path from that predecessor to node i.
The external key ki is derived from the tree-key ui as ki = Fui(1) using the pseu-
dorandom function. The algorithm is in Figure 6.
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Extract(t, Mt, i)
�1 . . . �s ← label(i)
v ← s
�← �1 . . . �v

while v > 0 and searchkey(�, Mt) = ⊥
v ← v − 1
�← �1 . . . �v

for j = v + 1 to s
u�1...�j

← G�j
(u�1...�j−1 )

k�1...�s ← Fu�1...�s
(1)

return k�1...�s

/* the label of i has length s */

/* find a predecessor of i that is in Mt */

/* compute tree-keys of all nodes on path from predecessor to i */

/* return external key of node i */

Fig. 6. The Extract(t, Mt, i) algorithm

Analysis of Complexity. The worst-case complexity of the cryptographic operations
used in the Update and Extract algorithms is logarithmic in the number of time inter-
vals, and that of Derive is constant. However, it is easy to see that the key for each node
is computed exactly once if T updates are executed. This implies that the total cost of
all update operations is T pseudorandom-function applications, so the amortized cost
per update is constant. The size of the center state and the user key is proportional to
the height of the binary tree, so the worst-case space complexity is O(κ log2 T ) bits.

The security of the tree construction is given be the following theorem, whose proof
is in the full version of this paper [6].

Theorem 5. Given a pseudorandom generator G and a pseudorandom function F ,
TreeKU is a secure key-updating scheme.

An Incremental Tree Construction. We can construct an incremental tree scheme using
ideas from the generic forward-secure signature scheme of Malkin, Micciancio, and
Miner [26]. The incremental scheme does not require the total number of time intervals
to be known in advance.

Let TreeKU(i) be the binary tree construction with 2i −1 nodes. Then the incremen-
tal tree scheme is obtained by additively composing binary tree schemes with increasing
number of intervals: TreeKU(1) ⊕ TreeKU(2) ⊕ TreeKU(3) ⊕ . . . . The keys gener-
ated by the tree scheme TreeKU(i) correspond to the time intervals between 2i − i and
2i+1−i−2 in the incremental scheme. Once the intervals of the tree scheme TreeKU(i)
are exhausted, an instance of TreeKU(i + 1) is generated, if needed.

In addition to allowing a practically unbounded number of time intervals, this con-
struction has the property that the complexity of the Update, Derive and Extract algo-
rithms and the size of the center state and user key depend on the number of past time
intervals. Below we perform a detailed analysis of the cost of the scheme for an interval
t that belongs to TreeKU(i) with 2i − i ≤ t ≤ 2i+1 − i − 2:

1. The center state includes all the root keys of the previous i − 1 trees and the center
state for node t in TreeKU(i). In the worst-case, this equals (i − 1) + (2i − 1) =
3i − 2 = 3�log2(t) − 2 tree-keys. Similarly, the user key for interval t includes
the user key of node t as in scheme TreeKU(i) and the root keys of the previous
i − 1 trees, in total (i − 1) + (i − 1) = 2i − 2 = 2�log2(t) − 2 tree-keys. It
follows that the space complexity of the center state and the user key for interval t
is O(κ log2(t)) bits.
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2. The cost of both Update and Extract algorithms is at most i = �log2(t) applica-
tions of the pseudorandom generator. The cost of Derive is constant, as in the tree
construction.

5 Performance of the Constructions

In this section we analyze the time complexity of the cryptographic operations and the
space complexity of the center and the user for the three proposed constructions. Recall
that all schemes generate keys of length κ. In analyzing the time complexity of the
algorithms, we specify what kind of operations we measure and distinguish public-key
operations (PK op.) from pseudorandom generator applications (PRG op.) because PK
operations are typically much more expensive than PRG applications. We omit the time
complexity of the Init algorithm, as it involves only the pseudorandom generator for all
schemes except for the trapdoor permutation scheme, in which Init also generates the
trapdoor permutation. The space complexities are measured in bits. Table 1 shows the
details for a given number T of time intervals.

Table 1. Worst-case time and space complexities of the constructions for T time intervals. ∗Note:
the amortized complexity of Update(t, St) in the binary tree scheme is constant.

CKU TDKU TreeKU
Update(t, St) time 0 1 PK op. O(log2 T ) PRG op.∗

Derive(t, St) time T − t PRG op. const. O(log2 T )
Extract(t, Mt, i) time t − i PRG op. t − i PK op. O(log2 T ) PRG op.

Center state size κ poly(κ) O(κ log2 T )
User key size κ κ O(κ log2 T )

In the chaining scheme CKU, the Update algorithm takes no work, but the Extract
and the Derive algorithms take linear work in the number of time intervals. On the other
hand, the trapdoor permutation scheme TDKU has efficient user-key derivation, which
involves only a copy operation, but the complexity of the Update algorithm is one appli-
cation of the trapdoor permutation inverse and that of the Extract(t, Mt, i) algorithm is
t− i applications of the trapdoor permutation. The tree-based scheme TreeKU balances
the tradeoffs between the complexity of the three algorithms, taking logarithmic work
in the number of time intervals for all three algorithms in the worst-case. The Derive al-
gorithm involves only O(log2 T ) copy operations, and Update and Extract algorithms
involve O(log2 T ) PRG operations. This comes at the cost of increasing the center-state
and user-key sizes to O(κ log2 T ). Note that the amortized cost of the Update algorithm
in the binary tree construction is constant.

As the chaining and the trapdoor permutation schemes have worst-case complexities
linear in T for at least one algorithm, both of them require the number of time intervals
to be rather small. In contrast, the binary tree construction can be used for a practically
unbounded number of time intervals.

In an application in which the number of time intervals in not known in advance, the
incremental tree scheme can be used. Its space and time complexities only depend on
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the number of past revocations and not on the total number of revocations supported.
The incremental tree construction is an interesting example of an additive composi-
tion of tree constructions with different number of intervals. Furthermore, our additive
and multiplicative composition methods allow the construction of new schemes starting
from the basic three constructions described in Section 4.

6 Experimental Evaluation

We have implemented the chaining, trapdoor, and tree constructions for 128-bit keys.
We have used the 128-bit AES block cipher to implement the pseudorandom generator
G as G(s) = AESs(0128)||AESs(1128) with |s| = 128 for the CKU and TreeKU
constructions of Sections 4.1 and 4.3. In construction TDKU from Section 4.2, we have
used the RSA permutation with a bit length of 1024 and public exponent 3 and the
SHA-1 hash function as the random oracle h.

We performed the following experiment. For a fixed total number of revocations T ,
the center first initializes the key-updating scheme. Then, the steps below are repeated
for t = 1, . . . , T :

– The center runs the Update and Derive algorithms to simulate one revocation.
– Given the user key for interval t, the user runs the Extract algorithm to obtain the

key k1 for the first time interval.

Note that the time to extract the key for the first interval is larger than the extraction
time for any other interval between 1 and t in all three constructions. Hence, the ex-
traction time for the first interval represents a worst-case measure. We measured the
performance using four metrics: the maximum and average Update and Derive time
for the center (over the T revocations), and the maximum and average Extract time for
clients to compute the key for the first time interval (from one of the T time intervals).
We ran our experiments on a 2.4 GHz Intel Xeon processor machine, running Linux
2.6. Our unoptimized implementation was written in C++ using gcc 3.2.1.

The results are presented in Figures 7, 8, and 9, respectively. The graphs show the
measured time as a function of the total number of revocations T , which ranges from
28 to 225 depending on the scheme. Note that the both axis are logarithmic and that the
vertical axis differs for the three constructions. In the chaining construction, the cost of
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both the center and client computation increases linearly with the total number of revo-
cations, as expected. In the trapdoor permutation construction, the center time is always
constant, but the extraction time grows linearly with the total number of revocations.
In the tree construction, all four metrics have a logarithmic dependence on the total
number of revocations. We observe that the tree construction performs several orders of
magnitude better than the other schemes.

Table 2 gives a direct comparison of the constructions in an experiment with 1024
revocations as above. It contains also the timing measurements for the first 1024 revo-
cations in the tree construction where the upper bound T on number of revocations was
set to a much larger value. This makes it possible to relate the tree construction to the
trapdoor permutation scheme, which has no fixed upper bound on the number of revo-
cations. It is evident that the tree scheme performs much better than the other schemes,
even with a bound on the number of revocations that allows a practically unlimited
number of them.

Table 2. Evaluation of the three constructions for 1024 revocations

Scheme T Maximum Time Average Time Maximum Time Average Time
Update+Derive (ms) Update+Derive (ms) Extract (ms) Extract (ms)

Chaining 1024 2.57 1.28 2.5 1.24
Trapdoor 1024 25.07 15.36 32.96 15.25

Tree 1024 0.079 0.015 0.025 0.006
Tree 216 0.142 0.015 0.018 0.0076
Tree 225 0.199 0.015 0.02 0.01

The space usage for T = 1024 is as follows. The center state is 16 bytes for the
chaining construction, 384 bytes for the trapdoor construction, and at most 328 bytes
for the tree scheme. The size of the user key is 32 bytes for the chaining construction,
128 bytes for the trapdoor construction, and at most 172 bytes for the tree scheme. In
general, for the tree scheme with depth d, the center state takes at most (2d − 1)(16 +
d/8) bytes, containing 2d−1 key value/key label pairs, assuming 16-byte keys and d-bit
labels. The user key size is at most d key/label pairs, which take d(16 + d/8) bytes.
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In summary, we note that the performance of the tree scheme is superior to the others.
The chaining construction has the smallest space requirements, but its computation cost
becomes prohibitive for large T . The trapdoor construction has sligthly smaller space
requirements than the tree scheme, but these savings are very small compared to the
additional computational overhead.

7 Related Work

Time-Evolving Cryptography. The notion of secure key-updating schemes is closely
related to forward- and backward-secure cryptographic primitives. Indeed, a secure key-
updating scheme is forward-secure as defined originally by Anderson [4], in the sense
that it maintains security in the time intervals following a key exposure. However, this
is the opposite of the forward security notion formalized by Bellare and Miner [7] and
used in subsequent work. Here we use the term forward security to refer to the latter
notion.

Time-evolving cryptography protects a cryptographic primitive against key exposure
by dividing the time into intervals and using a different secret key for every time inter-
val. Forward-secure primitives protect past uses of the secret key: if a device holding
all keys is compromised, the attacker can not have access to past keys. In the case of
forward-secure signatures, the attacker can not generate past signatures on behalf of the
user, and in the case of forward-secure encryption, the attacker can not decrypt old ci-
phertexts. There exist many efficient constructions of forward-secure signatures [7,2,21]
and several generic constructions [24,26]. Bellare and Yee [8] analyze forward-secure
private-key cryptographic primitives (forward-secure pseudorandom generators, mes-
sage authentication codes and symmetric encryption) and Canetti, Halevi and Katz [10]
construct the first forward-secure public-key encryption scheme.

Forward security has been combined with backward security in models that pro-
tect both the past and future time intervals, called key-insulated [13,14] and intrusion-
resilient models [22,12]. In both models, there is a center that interacts with the user
in the key update protocol. The basic key insulation model assumes that the center is
trusted and the user is compromised in at most t time intervals and guarantees that the
adversary does not gain information about the keys for the intervals the user is not com-
promised. A variant of this model, called strong key insulation, allows the compromise
of the center as well. Intrusion-resilience tolerates arbitrarily many break-ins into both
the center and the user, as long as the break-ins do not occur in the same time interval.
The relation between forward-secure, key-insulated and intrusion-resilient signatures
has been analyzed by Malkin, Obana and Yung [27]. A survey of forward-secure cryp-
tography is given by Itkis [20].

Re-keying, i.e., deriving new secret keys periodically from a master secret key, is
a standard method used by many applications. It has been formalized by Abdalla and
Bellare [1]. The notion of key-updating schemes that we define is closely related to
re-keying schemes, with the difference that in our model, we have the additional re-
quirement of being able to derive past keys efficiently.

Multicast Key Distribution. In key distribution schemes for multicast, a group controller
distributes a group encryption key to all users in a multicast group. The group of users
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is dynamic and each join or leave event requires the change of the encryption key. The
goal is to achieve both forward and backward security. In contrast, in our model of
key-updating schemes users should be able to derive past encryption keys efficiently.

A common key distribution model for multicast is that of key graphs, introduced by
Wong et al. [32] and used subsequently in many constructions [30], [29], [19],[18]. In
these schemes, each user knows its own secret key and, in addition, a subset of secret
keys used to generate the group encryption key and to perform fast update operations.
The relation between users and keys is modeled in a directed acyclic graphs, in which
the source nodes are the users, intermediary nodes are keys and the unique sink node is
the group encryption key. A path from a user node to the group key contains all the keys
known to that user. The complexity and communication cost of key update operations is
optimal for tree structures [31], and in this case it is logarithmic in the number of users in
the multicast group. We also use trees for generating keys, but our approach is different
in considering the nodes of the tree to be only keys, and not users. We obtain logarithmic
update cost in the number of revocations, not in the number of users in the group.

Key Management in Cryptographic Storage Systems. Early cryptographic file sys-
tems [9,11] did not address key management. Cepheus [15] is the first cryptographic
file system that considers sharing of files and introduces the idea of lazy revocation
for improving performance. However, key management in Cepheus is centralized by
using a trusted key server for key distribution. More recent cryptographic file systems,
such as Oceanstore [25] and Plutus [23], acknowledge the benefit of decentralized key
distribution and propose that key management is handled by file owners themselves.
For efficient operation, Plutus adopts a lazy revocation model and uses a key-updating
scheme based on RSA, as described in Section 4.2.

Farsite [3], SNAD [28] and SiRiUS [17] use public-key cryptography for key man-
agement. The group encryption key is encrypted with the public keys of all group mem-
bers and these lockboxes are stored on the storage servers. This approach simplifies key
management, but the key storage per group is proportional to the number of users in the
group. Neither of these systems addresses efficient user revocation.

Independently and concurrently to our work Fu, Kamara, and Kohno [16] have pro-
posed a cryptographic definition for key-updating schemes, which they call key re-
gression schemes. Key regression schemes are, in principle, equivalent to key-updating
schemes. Their work formalizes three key regression schemes: two constructions, one
using a hash function and one using a pseudo-random permutation, are essentially
equivalent to our chaining construction, and an RSA-based construction originating in
Plutus, which is equivalent to our trapdoor-permutation construction. Our composition
methods and the tree-based construction are novel contributions that go beyond their
work.

8 Conclusions

Motivated by the practical problem of efficient key management for cryptographic
file systems that adopt lazy revocation, we define formally the notion of key-updating
schemes for lazy revocation and its security. In addition, we give two methods for ad-
ditive and multiplicative composition of two secure key-updating scheme into a new
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scheme which can handle a larger number of user revocations, while preserving se-
curity. We also prove the security of two slightly modified existing constructions and
propose a new construction, the binary-tree scheme, that balances the tradeoffs of the
existing constructions. Finally, we provide a systematic analysis of the computational
and communication complexities of the three constructions.

We can extend the definition of key-updating schemes to support user keys for inter-
val t, from which only keys of the time intervals between i and t can be extracted, for
any 1 ≤ i ≤ t. This is useful in a model in which users joining the group at a later time
interval should not have access to past information. The extension can be incorporated
in the tree construction without additional cost, but the chaining and trapdoor permuta-
tion constructions do not work in this model because the user key reveals all previous
keys.

In a companion paper [5], we show how to extend secure key-updating schemes to
cryptosystems with lazy revocation, and introduce the notions of symmetric encryp-
tion, message-authentication codes, and signature schemes with lazy revocation. Fur-
thermore, we demonstrate that using these cryptosystems in some existing distributed
cryptographic file systems improves their efficiency and security.
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