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Abstract—We present an effective machine learning method
for malicious activity detection in enterprise security logs. Our
method involves feature engineering, or generating new features
by applying operators on features of the raw data. We generate
DNF formulas from raw features, extract Boolean functions
from them, and leverage Fourier analysis to generate new
parity features and rank them based on their highest Fourier
coefficients. We demonstrate on real enterprise data sets that
the engineered features enhance the performance of a wide
range of classifiers and clustering algorithms. As compared to
classification of raw data features, the engineered features achieve
up to 50.6% improvement in malicious recall, while sacrificing
no more than 0.47% in accuracy. We also observe better isolation
of malicious clusters, when performing clustering on engineered
features. In general, a small number of engineered features
achieve higher performance than raw data features according
to our metrics of interest. Our feature engineering method
also retains interpretability, an important consideration in cyber
security applications.

I. INTRODUCTION

In this paper, we introduce a feature engineering approach
that generates a small number of features with high in-
terpretability. Our features are generated with the intention
of improving the performance of supervised classification
algorithms, as well as unsupervised clustering algorithms. Our
method is based on Fourier analysis of Boolean functions
[1], [2]. We generate disjunctive normal form (DNF) formulas
with respect to the raw features and extract Boolean functions
from these formulas. We then apply Fourier analysis to these
Boolean functions to generate new Boolean features and to
select the most important features. While our method is
generically applicable, we focus our approach toward detecting
malicious activity in enterprise log data.

A. Enterprise security

Enterprises are targeted by increasingly sophisticated
threats. To counteract these, organizations deploy a variety
of security controls on their networks, including firewalls,
anti-virus (AV) software, intrusion detection systems, and
web proxies. These devices generate security logs, resulting
in terabytes of log data collected daily by large organiza-
tions [3]–[6]. At the same time, large enterprises leverage
teams of security analysts in Security Operations Centers
(SOCs), whose role is to identify suspicious activities and
complement existing security controls. Irrespective of whether
alerts are generated by machine learning algorithms or other
approaches, the role of human experts is irreplaceable and

crucial to the security process. Security analysts manually
investigate alerts, identify false positives, find the attack root
cause, and remedy their effects in a time and resource inten-
sive process. Through personal communication and systemic
experimentation, we found out that security analysts highly
value easily interpretable features when analyzing outputs of
machine learning algorithms.

The value of classification or clustering methods in detect-
ing malicious activity, then, is critically reliant on high quality
features. Manually generated features are the de facto standard
used by existing machine learning algorithms in security
(e.g., [3]–[5], [7]). However, manual feature generation is
focused on known attributes of the network. With increasing
variability of malware attacks, security research has found it
more efficient to extract features [7], and recently to generate
new features [8] from the network traffic data. However, the
engineered features in approaches like [8] are not human
interpretable, limiting their deployment in industrial practice.

Security related data, particularly large scale log data, have
two distinguishing characteristics. Firstly, the data tends to be
highly imbalanced in practice, with a small number of positive
(malicious) examples and a vast majority of benign examples
[8]. This is due to the malicious traffic being a small fraction of
overall network traffic, and even lesser being labeled as such.
Secondly, precision/accuracy measurements are relatively easy
to optimize for in this data, but malicious recall tends to be
low. Most classifiers achieve high precision by a low number
of false alerts. However, their detection is limited to the known
samples in the training data, causing them to have low recall.
Current methods prioritize high precision in a small number of
detected malicious activities, while sacrificing recall [4], [5].

B. Our feature engineering solution
Our feature engineering method leverages Fourier analysis

of Boolean functions [1], [2]. We generate disjunctive normal
form (DNF) formulas for the raw features, extract Boolean
functions from these formulas, and apply Fourier analysis
to generate new parity features, as well as rank the most
important ones.

We demonstrate experimentally that our methods improve
malicious recall significantly for a broad range of classification
and clustering algorithms. Our experiments are performed on
two real datasets with labeled malicious activities collected
from a large organization. These datasets are highly imbal-
anced and representative of real enterprise data. Due to the



lack of publicly available enterprise log data, we focus on
these real enterprise data sets, wherein we present in depth
analyses.

We compare the performance (accuracy, recall and Area
Under the Curve (AUC)) of various algorithms using our top
few ranked engineered features with the performance of the
same algorithms using the raw data features. Our experiments
show that most classifiers and clustering algorithms have a
low recall (as low as 20% and no greater than 70%) with
raw data features. With feature engineering methods, malicious
domain recall rises to as high as 92.85% while maintaining
the accuracy at an acceptable level and improving AUC for
some classifiers. We are able to achieve such high performance
with much fewer engineered features compared to the number
of raw data features (less than 15 most of the time). With
clustering algorithms, we show that the clusters with raw data
features are not “pure”; i.e., not even a single cluster has a
majority of malicious examples. In contrast, our engineered
features generate up to 6 “pure” clusters. To the best of our
knowledge, ours is the first feature engineering approach that
improves the performance of both clustering and classification
algorithms. We demonstrate through feedback provided by
security experts that our top ranked engineered features have
high explainability.

II. RELATED WORK

A. Feature engineering and feature transformation

Research in feature space has focused on (1) feature selec-
tion, or selecting the best set of features from the raw features;
(2) feature transformations, or numerical transformations of
raw features through weighted sums or matrix operations; and
recently (3) feature engineering, or generating new features
with a focus to improve classification performance.

Popular feature selection methods include convex function
optimization [9]–[11], Lasso [12], ReliefF [13], FCBFK [14]–
[16], and online feature selection [17], [18]. However, feature
selection relies on the raw feature space, and is therefore
limited by the quality of raw features. Feature transformation
methods such as Principal Component Analysis (PCA) [19]
and Independent Component Analysis [20] are very popular,
but they typically do not preserve meaning of the combined
features.

Recently, several automated feature engineering methods
have shown promise in improving classification accuracy for
different data sets. ExploitKit [21] proposes a framework for
generating many candidate features using common operators
(e.g., max, min, average, standard deviation, count). However,
to find important features, it needs a ranking classifier that
requires additional training data and is computationally ex-
pensive to train. AutoLearn [22] designs a regression method
between feature pairs for feature generation and applies feature
selection for identifying the top relevant features. Neither
AutoLearn nor ExploitKit are designed to generate features
that retain interpretability and are understandable by human
experts.

Fig. 1: Our Fourier-analysis feature engineering approach

The definition of feature interpretability in some methods
like Lasso [23] means quantifying the impact of a feature on
the prediction outcome of the overall model. This is distinct
from our definition of interpretability, which refers to seman-
tically meaningful features, which are easily understandable
by human experts.

B. Related security research

Improving enterprise security through machine learning
techniques has been recognized as an interesting research
direction recently. A number of papers propose using web
proxy logs for detecting malware activities in enterprises,
for example Beehive [3], ExecScent [24], WebWitness [7],
BAYWATCH [5], and MADE [6]. All the above methods
leverage manually defined features by domain experts, and
thus retain the interpretability of the machine learning al-
gorithms. However, most of them are optimized for high
precision, and suffer from low recall of malicious activities.

In the context of security applications, several systems
propose automated feature representations. Dahl et al. [37]
use random projections of system calls and feed-forward
neural networks for malware classification of a large malware
corpus. Pascanu et al. [38] use recurrent neural networks for
feature representation of malware system calls, and apply them
to malware classification. Bartos et al. [8] design a system
for malware detection that classifies legitimate and malicious
enterprise flows using feature representations invariant to
common malware behavior changes. These systems do not
aim to preserve feature interpretability, and thus have limited
value in practical deployment. To the best of our knowledge,
we propose the first method for automated feature engineering
for enterprise security that achieves the important goals of low
dimensional feature space and interpretability. Our method is
applicable to both classification and clustering algorithms and
maximizes malicious recall.

III. OUR METHOD FOR FEATURE ENGINEERING

Figure 1 shows the outline of our feature engineering
approach. Each step is discussed in the following subsections.

A. Boolean feature generation

The first step is to convert numeric or nominal raw features
into new Boolean features, in order to apply the Fourier



transform. Unlike other feature transformation methods, our
Boolean conversion technique does not convert all raw fea-
tures into Boolean features, but identifies useful features for
classification, and then converts only those features.

We use the RIPPER classifier [25] on raw data to generate
classification rules first. The classification model generated by
RIPPER is a formula in Disjunctive Normal Form (DNF). For
example,

(A > 5) ∧ (B < 7) ∧ (D > 10)→ Class = TRUE

(A > 8) ∧ (C < 15) ∧ (E = “html”)→ Class = TRUE

All others→ Class = FALSE

where A,B,C,D,E are original numerical or nominal fea-
tures, and the values are thresholds generated by the RIPPER
algorithm.

Each conjunction in the DNF consists of several Boolean
features such as (A > 5) and (B < 7), and any example is
classified as TRUE or FALSE on such propositions. To ensure
that the Boolean features are potentially useful, the accuracy
of RIPPER’s output should be relatively high. Since RIPPER
is a rule-based classifier, it can reach 100% accuracy if not
pruned (as it could lead to over-fitting). We select a small
number of relevant features, and therefore our method is not
affected by the large number of rules and features generated
by RIPPER. We restrict pruning, such as the classification
accuracy generated by RIPPER is higher than labeling all
examples as “Benign”. For this setting RIPPER successfully
distinguishes the two classes and achieves 98% accuracy.

Other rule-based classifiers could be substituted for RIPPER
in this step. Our motivation for using RIPPER is that the
generated Boolean features from DNF rules are interpretable
and have semantic meaning. In tree-based classifiers such
as decision trees, every proposition is influenced by all the
ancestors of a node in the tree. RIPPER is not constrained by
previously generated rules and can thus generate a broader set
of Boolean features.

B. Fourier analysis

1) Fourier transform and coefficients: Fourier Transform
on Boolean variables [1] is a method to learn Boolean func-
tions. Its target is to learn a Boolean function f(x) with n
Boolean variables x = (x1, ..., xn) ∈ {0, 1}n as input and
a label y ∈ {−1, 1} as output: f : {0, 1}n → {−1, 1}. If
f is learned to satisfy f(x) = y,∀x in the training set, then
f(x) becomes a classifier. In our task, x is a training example,
x1, ..., xn ∈ {0, 1} are n Boolean features of example x, and
y ∈ {−1, 1} is the label of the example.

Just like Fourier expansion in signal processing that uses
sine and cosine functions, the Fourier transform here uses
parity function of subsets as the orthonormal basis. For any
subset of Boolean variables S ⊆ {1, 2, ..., n}, the parity
function χS(x) identifies odd or even parity of set S on
example x. If there are odd 1’s in subset S of example x,

then χS(x) = −1; otherwise, χS(x) = +1, shown as follows:

χS(x) =
∏
i∈S

(−1)xi =

{
+1 if

∑
i∈S xi mod 2 = 0

−1 if
∑
i∈S xi mod 2 = 1

(1)
The output of parity function is also a Boolean value as
χS(x) ∈ {−1, 1}. Since there are 2n subsets of {1, ..., n},
there will be 2n selections of S and thus 2n parity functions on
each example x. Each such χS(x) represents a parity feature
that we can generate from example x.

The Boolean function f(x) expands to:

f(x) =
∑

S⊆{1,...,n}

aSχS(x) (2)

The Fourier coefficient aS for a given χS is computed across
all training examples x ∈ {0, 1}n, as equation (3).

aS =
1

2n

∑
x∈{0,1}n

χS(x)f(x) (3)

As χS(x) ∈ {−1, 1}, f(x) ∈ {−1, 1}, we can easily get
−1 ≤ aS ≤ 1.

This can also be used for reconstructing and thereby learn-
ing function f(x) (as in (2)). In this paper, we do not use a
Fourier transform based classifier. We use this method only
for computing coefficients as in (3).

In practice, computing 2n parity functions of different fea-
ture subsets is computationally hard. Hence, an approximation
can be used by computing fewer than 2n subsets. The error
due to this approximation can be bounded as described in [1].

Equation (3) assumes that the training data set for comput-
ing coefficients is a complete set that contains all x ∈ {0, 1}n.
However, this is seldom the case in practice. We need to
approximate (3) in the absence of a complete training set.
When there’s only an incomplete training data set T including
m < 2n examples, the approximation of Fourier coefficient of
subset β is

âβ =
1

m

∑
x∈T

χβ(x)f(x) (4)

Algorithm 1 Calculating Fourier coefficients for small subsets

1: function FCOEFF(x(1)
1 , ..., x

(i)
j , ..., x(m)

n , y(1), ..., y(m), k)
2: for S ⊆ {1, ..., n}, |S| ≤ k do
3: for i = 1 to m do
4: χS(x(i)) =

∏
j∈S(−1)x

(i)
j

5: end for
6: aS = 1

m

∑m
i=1 χS(x(i))y(i)

7: end for
8: Return aS ∀S ⊆ {1, ..., n}, |S| ≤ k
9: end function

2) Scaling the Fourier coefficient computation: There will
be 2n parity features in total since a set with n elements has
2n subsets. To scale the computation of Fourier coefficients, it
is important to identify and select a subset of Boolean features
from 2n possible subsets. A claim in [1] shows that, if f(x)
can be expressed as a decision list, then it is sufficient to
concentrate on a small set k � n of the feature variables. For



this subset of k feature variables, Fourier coefficients can be
approximated for every subset of this set.

We obtain, through RIPPER, disjunctive normal form
(DNF) formulas on raw features with a high overall accuracy
(over 98.5%) in Boolean conversion. Since DNF is a proper
subset of decision lists, it is reasonable to consider only the
small subsets in our task. We only need to focus on some
small subsets with high |aS |, since negating them will cause
2|aS | difference on (2). In other words, these subsets are
the most important features for classification because they
are most likely to influence the function output (label). We
will use these absolute values of coefficients as importance
measurements of features. Algorithm 1 shows how to calculate
Fourier coefficients for small subsets |S| ≤ k from the training
data examples x and labels y.

C. Selecting the top-ranked features using Fourier coefficients

We need to select the most important features among the nu-
merous engineered parity features. We continue using Fourier
coefficients for this purpose. Calculation of the coefficients of
parity features is the same as in (4). Here, we do not know
the function f(x), but for each example x, there is a label- a
value in {−1, 1}. We use the label as the value of f(x) for
each example. As we do not have all examples in {0, 1}n, we
use the whole training set as T .

We then pick only a few important features for evaluation.
We use the absolute value of coefficients |aS | to rank the
features in the descending order of |aS |. After ranking, we
select a few features with the largest |aS | values. We use up
to 30 engineered features in each experiment, which is much
smaller than the total number of features. Fourier-transform
based classification needs more features to be effective. We
therefore use other classification and clustering algorithms
for our purpose. Clustering algorithms, in particular, perform
better with fewer dimensions than higher dimensions, as
shown in our experiments.

IV. DATA SETS

A. Enterprise log data sets

We obtained access to two data sets of enterprise logs
collected over four months, containing information about
connections between local machines and external web domains
in a large enterprise. Information such as URL, domain name,
sent and received bytes, web referrer, and content type is
recorded for each connection. The data is pre-processed by
extracting features for each external domain contacted by
enterprise machines as in MADE [6]. Each example (domain)
is labeled as malicious, benign, or unknown. The examples
are labeled using Alexa ranking and VirusTotal score. For
our purposes, all domains in Alexa top 100K are considered
benign, while all domains with a VirusTotal score at least 3
are malicious (this is consistent with security methodology,
e.g., [4], [6]). We only consider here benign and malicious
domains, and ignore unknown domains from the dataset.

Data set 1 includes 242,074 domains with 63 features
each. Among these, 45,928 examples are successfully labeled:

43,753 are benign (95.26%) and 2,175 are malicious (4.74%).
Data set 2 has 1,116,516 examples with 91 features each.
Among these, 196,522 examples are successfully labeled:
191,355 are benign (97.37%) and 5,167 are malicious (2.63%).
Our goal is to use classification algorithms to train a model
that can predict benign or malicious domains in the future
and prevent users from connecting to malicious ones. In
our experiments, malicious domains are labeled positive, and
benign ones are labeled negative.

B. Applying feature engineering to data sets

After Boolean conversion via RIPPER, we obtain 77
Boolean features for Data Set 1, and 98 Boolean features for
Data set 2, for example (Max Conn ≥ 9) or (Reg Age ≤ 37).

We use Algorithm 1 for generating parity features. The
number of parity features depends on k. When k = 1, we
only look at original Boolean features in isolation. When
k = 4, we look at subsets of 1, 2, 3, or 4 features. Using
98 raw features in Data Set 2, we obtain 98 parity features
for k = 1, 4,851 parity features for k = 2, 3,769,277 parity
features for k = 4, while k = 6 generates 1,124,298,483
parity features! The number of features for k = 6 is nearly
300 times higher than for k = 4, resulting in huge in-
crease in computational and memory cost. Interestingly, the
largest coefficients appear in subsets of 2, 3 or 4 features.
Therefore, we use k ∈ {2, 3, 4} in our experiments. When
using k = 4 we start from k = 1 and add features one by
one, and keep only subsets with |aS | higher than a threshold
(set at 0.7) at each step, in order to keep the number of
features manageable. Here are some examples of the parity
subsets: {(Num ASNs ≤ 0), (UA Popularity ≥ 0.013514)}
with coefficient of −0.7650, and {(Reg Age ≤ 135),
(ASN = UnknownIP), (Dom Level ≤ 2), (Reg Validity ≤
1826)} with coefficient of −0.8634.

Since the data sets are imbalanced, accuracy mainly reflects
the prediction result of benign domains. For example, if we
classify all examples as benign in Data Set 2, we still get
accuracy as high as 97.37%, but this is meaningless for
malicious domains. In our task, malicious examples are more
important than benign ones, since a false positive classification
of a malicious domain only causes delay in access, but a
false negative classification of a malicious domain would cause
damage to the enterprise. We can tolerate false positives more
than false negatives in this application.

We use three metrics to evaluate the results: the overall
accuracy TP+TN

All , recall of positive (malicious) class TP
TP+FN ,

and Area Under the Receiver Operating Characteristic Curve
(AUC). Malicious recall is more important than overall accu-
racy, but it is very low in our data set when using raw features
for classification (between 28% and 70%). Interestingly, both
accuracy and AUC can easily reach 98% using raw features.
We can therefore tolerate a decrease in accuracy and AUC if it
does not lead to many false positives, provided that we obtain
a substantial increase in recall.



V. EXPERIMENTS

A. Experimental setup

For classification, we use six algorithms (SVM, AdaBoost,
RIPPER, decision tree (DT), random forest (RF), and PEBL
[26]) to train models, and evaluate them according to our
metrics using 3-fold cross validation. These algorithms are
widely popular classifiers based on different core techniques
and optimization. We use all of them to test if our new features
can be used for different types of classifiers. We compare the
accuracy and malicious recall of our engineered features versus
raw features for the same classifier. For SVM, AdaBoost,
RIPPER, DT, and RF, we use the default parameters of Weka
3.7.12 [27] to build the classifiers. Note that the same set of
default parameters is used for both our method and the baseline
methods, so the comparison is fair, even without performing
in-depth parameter tuning and optimization.

We implement PEBL according to [26]. PEBL is a semi-
supervised method that needs to be initialized with “strong
negative” examples. We use the top-ranked parity features to
select these negative examples. For example, assume that we
use top 5 features for classification. If the coefficient of feature
1 (F1) is positive, then it is more likely that χF1(xi) and label
yi are both positive or both negative. On the other hand, if the
coefficient of F1 is negative, then it is more likely that one
of χF1

(xi) and label yi is positive and the other is negative,
i.e., χFj

= −1 if aFj
> 0 or χFj

= 1 if aFj
< 0. For strong

negative examples, we pick those for which all 5 features are
more likely to make the label negative. However, to identify
“strong negative” examples in raw data, a classifier needs to
be trained to identify examples from the negative class. Hence,
PEBL does not work with raw features, and PEBL results are
presented only on parity features.

For clustering, we use Expectation Maximization (EM)
and the k-means algorithm. We are the first to consider the
benefit of engineered features in unsupervised learning meth-
ods. Clustering is extremely useful in security applications
to identify machines infected by the same malware, or web
domains with similar network activity. Here our metric of
interest is different. We look for “pure clusters”, defined as
clusters consisting of a majority of malicious domains. A
clustering algorithm that generates more pure clusters is better
at distinguishing malicious domains from the legitimate ones.

B. Performance of propositional (Boolean) features

In this experiment, we considered the top 1-20 ranked
individual Boolean features (equivalent to k = 1). Figures 2a
and 2b show the accuracy and malicious recall of the classifiers
using top 1-20 features, compared with raw features, on Data
Set 2. Note that the last point of each line is the result of using
raw features on the classifiers. SVM has similar malicious
recall as DT for engineered data, but 40% lower recall for
raw features.

We find that the accuracy of SVM, RIPPER, DT, and RF are
similar for engineered features compared to raw features. We
find that a small number of engineered features can get higher

TABLE I: Comparison of AUC (malicious) using 5 classifiers
with top 5 parity features and all raw features from Data Set
2. Values with asterisks are the best ones among that column.
Proposed method wins in 3 out of 5 classifiers.

AUC (Malicious) SVM AdaBoost RIPPER DT RF
Parity Features 0.885* 0.884 0.884* 0.884* 0.884
Raw Features 0.729 0.976* 0.863 0.867 0.984*

recall than using 20 raw features for all 5 classifiers other
than PEBL. PEBL is an outlier that gets much higher recall
and much lower accuracy compared to the other 5 classifiers.
It discovers nearly all the positive examples, but also leads to
false positives.

We conclude that we can get higher recall (around 20%
higher recall of malicious domains on average) and nearly
same accuracy when we use far fewer engineered features
(between 1 and 3) than raw features (91).

C. Performance of parity features

In this experiment, we consider parity features (k > 1) gen-
erated by the Fourier expansion method. The k values are set
through empirical validation to provide the best performances
on our data sets. The optimal value of k for Data Set 1 was
k = 2 and for Data Set 2 was k = 4. The top 5-30 engineered
features were used for classification.

Figures 3a and 3b show the accuracy and malicious recall
of the 6 classifiers using top 5-30 parity features (k = 4)
on Data Set 2. The recall achieved with 5 parity features is
already higher than the recall with all raw features. The same
observations hold for the similar experiment done on Data Set
1. Although the accuracy is slightly lower, it is still acceptable
for our application.

Figure 4 shows the extent of improvement in recall, as well
as the corresponding change in accuracy for parity features
compared to raw features on both Data Set 1 and Data Set
2. It is clear that engineered features achieve a significant
improvement in recall while not sacrificing too much accuracy.
Among all the considered classification models, the engineered
features work best with SVM. We conjecture this to be
because of SVM’s kernel calculation that benefits from the
representation of Boolean and parity features.

Table I shows the AUC of 5 classifiers using top 5 parity
features and raw features on Data Set 2. AUC is improved in
three out of five classifiers. Although AUC is not consistently
improved with parity features for all classifiers, the recall
improvement of using the parity features is always much more
significant than the drop in AUC.

We conclude that we achieve higher recall, similar accuracy,
acceptable if not higher AUC with far fewer engineered
features than raw features for both data sets.

D. Clustering with engineered features

We compare the clusters obtained from raw features and
engineered features. The evaluation method is to look at
the fraction of positive (malicious) examples in each cluster
according to the labels. If the majority of a cluster is positive,



(a) Overall accuracy (b) Recall of malicious domains

Fig. 2: Accuracy and malicious recall of 6 classifiers of our top 1-20 propositional features compared with raw features on
Data Set 2. PEBL has 96.96% recall and 88.15% accuracy, while other methods have up to 78.61% recall and 97.9%-98.6%
accuracy.

(a) Overall accuracy (b) Recall of malicious domains

Fig. 3: Accuracy and malicious recall of 6 classifiers using the top 5-30 parity features on Data Set 2. AdaBoost, RIPPER,
and RF are very close in accuracy to DT for engineered features, and their accuracy for raw features ranges from 96.65% to
98.56%. Recall of AdaBoost, RIPPER and RF are nearly the same as DT for engineered features, and 69.70%, 39.2% and
59.5% for raw features. PEBL gets up to 87.25% recall with 95.87% accuracy, while others get 60.8%-78.6% recall.

then we can say this cluster is a “pure” positive cluster,
and its characteristic (cluster centroid) is a representative of
positive examples. In the same way, if the majority of a
cluster is negative, then it is a “pure” negative cluster, and its
characteristic (cluster centroid) is a representative of negative
examples.

We first used the EM algorithm to find the proper number
of clusters, then used k-means algorithm with fixed number of
clusters. Figure 5 shows the fraction of positive examples in
each cluster when using 63 raw features in Data Set 1. There
are many “pure” negative clusters, but no positive clusters.
Meanwhile, each cluster contains from 1.26% to 10.11% of
all examples. This is a poor result, since the examples are
distributed into 18 clusters that are not “pure” enough to
distinguish them as malicious or benign.

Figure 6 shows the fraction of positive examples in each
cluster when using the top 10 parity features (limited k = 2)
of Data Set 1. Now, there are 6 “pure” positive clusters: cluster
#1, #7, #9, #11, #13, #15. The biggest cluster #0 contains
89.99% of the examples, and is a “pure” negative cluster.

A similar experiment was done on Data Set 2: 91 raw
features compared to top 20 parity features (limited k = 4).

The number of “pure” positive clusters increased from 0 to
1, and 95.07% of negative examples are grouped in a large
“pure” cluster, while the fractions of positive examples are
2.99% to 19.17% in clusters with raw features.

We conclude the engineered features contribute to “pure”
positive clusters (1-6 more than using raw features) and can
thus isolate malicious domains better than raw features.

E. Processing times for raw and engineered features

The time taken by the considered 5 classifiers using raw
features is compared to the time taken by 30 parity features
on Data Set 2. For raw features, the reported timing is just the
time taken for classification. For parity features, the timing
includes Boolean conversion, Fourier ranking, and classifica-
tion.

Typically, Boolean conversion takes the same time for all
tests on the same data set, but Fourier ranking using parity
features of k = 4 can take up to 6.5 times longer than k = 1
and up to 18 times longer than raw feature processing. We saw
in sections V-B and V-C that even with k = 1, it is possible
to get a significant improvement in recall over raw features.
As we discussed in section III-B2, the number of features is(
n
1

)
+
(
n
2

)
+ ... +

(
n
k

)
∼ nk for k � n. If the application is



Fig. 4: Change in accuracy (A) and recall of malicious domains (R(+)) compared with raw features, when getting highest
recall with engineered features. Improvement in recall is much more significant than small accuracy change.

Fig. 5: Raw features Fig. 6: Engineered features

Fig. 7: Comparison of fraction of malicious domains in each
cluster between raw features and engineered features on Data
Set 1. “Pure” positive clusters are shown by dotted circles.

performance-sensitive, k = 1 is recommended over k = 4 for
higher recall and faster computation.

F. Interpretability of parity features

Table II shows our top-ranked features and a security
domain expert interpretation of how they are related with
identifying malicious domains. Some parity features have
more than one proposition and they should be interpreted by
using AND among propositions. AND here means that all
propositions within the same parity feature should be satisfied
together. The domain expert confirmed that the generated
features are aligned with typical attack indicators. This exper-
iment indicates that our feature engineering method has the
potential to generate top-ranked features that are meaningful
to domain experts. This is the advantage of our technique in
comparison to existing feature selection and transformation
approaches.

G. Comparison with other feature selection methods

Finally, we compare our Fourier-analysis feature engineer-
ing method with five popular feature selection methods: Lasso,
RFI, FCBFK, ReliefF, and CIFE. The Fourier method selects
the top ranked parity features, while other feature selection
methods select from a larger set of parity features.

Specifically, we generate all parity features for k = 4 on
Data Set 2. Since the number of parity features becomes
large, we select the top 1000 parity features ranked by Fourier

coefficients and pass them to the competing feature selection
methods. We run existing feature selection methods to select
5 and 30 features given these 1000 features as input. We com-
pare these with the top 5 and 30 selected by highest Fourier
coefficients and use SVM, decision trees, and AdaBoost as
classifiers.

The results are shown in Table III. We observe that top
parity features selected by our method outperform existing
feature selection methods in 5 out of 6 experiments. We
find that the difference in recall between the top 5 and 30
features is very large in some cases for competing feature
selection methods, sometimes reaching as high as 64.6% for
ReliefF and AdaBoost. The reason might be that these methods
do not compute feature importance consistently. In this way,
top features may not be truly important, whereas a lower-
ranked feature may drastically improve the recall. This is
unsuitable for building a robust classifier. We conclude that
our method obtains a maximum of 79% and an average of
29% higher recall of malicious domains compared to other
feature selection methods.

VI. CONCLUSION

In conclusion, we propose a method based on the RIPPER
classifier and Fourier coefficients for automated feature engi-
neering in security applications. We show that the feature en-
gineering approach benefits a wide range of classification and
clustering algorithms used for enterprise malware detection. It
produces higher malicious recall with respect to raw features
and existing feature selection approaches, while reducing the
dimensionality of the problem significantly. We showed that a
small number of engineered features are able to produce high
recall of malicious domains in the enterprise log data, while
retaining interpretability by human experts.

In future work, we plan to extend and apply our feature
engineering method to other security applications, for instance
malware detection from system call data. We are also in-
terested in adapting our methods to other application areas
with different constraints, metrics of interest, and optimization
objectives.



TABLE II: Interpretability of top-ranked features.

Features Interpretations by Security Analysts
Dom Sub ≤ 1 Most legitimate domains have many sub-domains on second-level, but malicious domains have few of them.
{(ASN=UnknownIP),
(Dom Level ≤ 2),
(Reg Validity ≤ 1826),
(Reg Age ≤ 135)}

Cannot resolve domain at the time query was done. Possibly the domain is inactive or was taken down; Domain has 2 levels, while
most legitimate domains will have more than 2 levels; Domain has a registration validity less then 1826 days, while by default domains
are registered for at least 3 years; Domain is relatively recently registered (4 months ago) while most legitimate domains have a longer
registration age.

{(UA Popularity ≥ 0.01),
(Num ASNs ≤ 0)}

User agent string is used by at least 1% of the machine population (it has popularity above 1%); Cannot resolve domain at the time
query was done since possibly the domain is inactive or was taken down;

Avg URL Length ≥ 13 Long URLs are more suspicious since they might be used for malware communication to a command-and-control center.
Avg ratio rbytes ≥ 103.63 The ratio of bytes sent over bytes received. For legitimate web sites, usually more content is received than sent by end hosts.
Update Validity ≤ 365 Number of days from update till expiration. Malicious domains have lower expiration dates than legitimate ones.

TABLE III: Comparison of malicious recall using 3 classifiers
with top 5 and 30 parity features ranked by Fourier method,
Lasso, random forest, CIFE, ReliefF, and FCBFK importance.
RME: Recall of malicious examples, DT: Decision tree, AB:
AdaBoost, PF: Parity features. Results should be compared
in columns. Bold values indicate results of our proposed
algorithm, and values with asterisks are the best in that
column. Fourier method wins in 5 out of 6 experiments.

RME (%) SVM DT AB
T5 T30 T5 T30 T5 T30

PF

Fourier 78.6* 78.6* 78.6* 77.6* 78.6* 60.8
RFI 0.00 23.4 11.3 69.9 0.00 37.3

Lasso 78.6 66.6 42.9 71.3 65.7 58.3
CIFE 78.6 74.1 56.4 64.6 69.3 52.1

ReliefF 32.7 65.7 32.7 67.4 0.00 64.6
FCBFK 78.6 61.1 78.6 65.0 41.6 53.9
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