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Recent years have seen the rise of sophisticated attacks
including advanced persistent threats which pose severe risks
to organizations and governments. Additionally, new malware
strains appear at a higher rate than ever before. Since many
of these malware evade existing security products, traditional
defenses deployed by enterprises today often fail at detecting
infections at an early stage.

We address the problem of detecting early-stage enterprise
infection by proposing a new framework based on belief
propagation inspired from graph theory. We demonstrate that
our techniques perform well on two large datasets. We achieve
high accuracy on two months of DNS logs released by Los
Alamos National Lab (LANL), which include APT infection
attacks simulated by LANL domain experts. We also apply
our algorithms to 38TB of web proxy logs collected at the
border of a large enterprise and identify hundreds of malicious
domains overlooked by state-of-the-art security products.

I. INTRODUCTION

The cybersecurity landscape is evolving constantly. More
sophisticated attacks including Advanced Persistent Threats
(APTs) [13], [33], [1], [2] have emerged recently targeting or-
ganizations’ intellectual property, financial assets, and national
security information. Well-funded attackers use advanced tools
and manually orchestrate their campaigns to adapt to the
victim’s environment and maintain low profiles of activity.
Additionally there are also more malware than ever before.
A whitepaper published by Panda Labs [29] found 30 million
new malware strains in circulation in 2013 alone, at an average
of 82,000 malware a day. Many of these are variants of known
malware designed to evade existing security products, such that
existing defenses, e.g., anti-virus, firewalls, intrusion detection
systems, often fail at detecting early-stage infections [26].

However, certain infection patterns still persist across
malware variants and families due to the typical infection
vectors used by attackers. For example, during the malware
delivery stage, victim hosts often visit several domains under
the attacker’s control within a short period of time as a result of
redirection techniques employed by attackers to protect their
malicious infrastructures [36]. After delivery, backdoors are
installed on the compromised machines to allow footholds into
the targeted organization [26], where the machines initiate
outbound connections regularly to a command-and-control
server to receive instructions from the attacker. Malware com-
munications commonly take place over HTTP/HTTPS, since
web traffic is typically allowed by firewalls. More importantly,
domains used in the same attack campaign are often related,

sharing locality in either IP address space, time of access
or set of hosts contacting them. These patterns of infections
have been observed in targeted attacks (e.g., APT1 group [26],
Shady RAT [20], Mirage [11]), as well as botnet infections
(e.g., Zeus, Citadel [12] and ZeroAccess [23]).

In this work, we leverage these observations to detect early-
stage malware infections in enterprise networks, in particular
suspicious communications to external destinations initiated
by internal hosts. We propose a graph-theoretic framework
based on belief propagation [31] to identify small communities
of related domains that are indicative of early-stage malware
infections. We first restrict our attention to traffic destined
to rare destinations. These are “new” domains, not visited
before by any host in the organization within an observation
window (and thus more likely to be associated with suspicious
activity), and contacted by a small number of internal hosts.
In each iteration of our belief propagation algorithm, the
rare domains are scored according to several features and
similarity with domains detected in previous iterations. The
weight of each feature used in scoring a domain is computed
using linear regression during a training stage. Our techniques
are unique in combining unsupervised learning techniques
(belief propagation), with a supervised learning method (linear
regression) for detecting new infections when limited ground
truth is available.

Our algorithm can be applied either with “hints” (starting
from “seeds” of known compromised hosts or domains), or
without (without prior knowledge of malicious activity). In the
first case, seeds can be obtained from commercial blacklists
containing Indicators of Compromise (IOCs) that the enterprise
security operations center (SOC) has access to. Currently,
SOC security analysts manually investigate incidents starting
from IOCs, and we aim here to facilitate this process. In the
latter case, we first identify automated connections indicative
of C&C activity using both enterprise-specific and generic
features. Domains labeled as potential C&C servers are used as
seeds in the same belief propagation algorithm to detect other
related domains that belong to the same attack campaign.

We demonstrate the effectiveness of our techniques on two
different datasets, one containing DNS records and the other
web proxy logs. The first consists of two months (1.15TB)
of anonymized DNS records from Los Alamos National
Lab (LANL) in early 2013. This dataset also includes 20
independent APT-like infection attacks simulated by LANL
domain experts and was released along with a challenge (APT
Infection Discovery using DNS Data [14]) requesting methods
to detect compromised internal hosts and external domains
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in the simulated attacks. The challenge included “hints” of
varying details (e.g., one or multiple compromised hosts), as
well as answers for validation. Our techniques proved effective
at detecting the LANL simulated attacks achieving an overall
98.33% true detection rate, at the cost of low false positives.

Our second dataset contains two months of web proxy logs
collected from a large enterprise in early 2014 (38.41TB of
data). Through careful manual analysis in collaboration with
the enterprise SOC, we confirm that a large percentage of
domains identified by our algorithms (289 out of 375) are
related to malicious or suspicious activities (with false positive
rate on the order of 10−4%). Interestingly, a large number
of them (98) are entirely new discoveries, not yet flagged by
VirusTotal even several months after we detected them. This
demonstrates the ability of our techniques to detect entirely
new attacks overlooked by state-of-the-art security products.

To summarize our main contributions in the paper are:

Belief propagation framework for detecting enterprise
infection. We develop a graph-theoretic framework based
on belief propagation for detection of early-stage enterprise
infections. Given “seed” hosts or domains, we automatically
infer other compromised hosts and related malicious domains
likely part of the same campaign. Our approach uniquely
leverages relationships among domains contacted in multiple
stages of the infection process and utilizes a novel combination
of unsupervised and supervised learning techniques.

Detector of C&C communication in enterprise. By exploit-
ing novel enterprise-specific features and combining them with
features used in previous work, we build a detector of C&C
communication tailored to an enterprise setting. Domains la-
beled as potential C&C can be seeded in the belief propagation
algorithm to detect other related domains.

Solve the LANL challenge. We apply the belief propagation
algorithm to the LANL challenge and identify the malicious
domains in the 20 simulated campaigns with high accuracy
and low false positive and false negative rates.

Evaluate on real-world data from large enterprise. We
apply our solution to a large dataset (38.41 TB) of web proxy
logs collected at an enterprise’s network border. We identify
hundreds of domains contacted by internal enterprise hosts
not detected previously by state-of-the-art security products.
Through careful manual investigation, we confirm that a large
percentage (77.07% out of 375 domains) are related to var-
ious malicious or suspicious activities. While 191 domains
(50.93%) are also reported by VirusTotal (but unknown to
the enterprise), we identify 98 (or 26.13%) new discoveries
(domains not reported by VirusTotal or the enterprise).

II. PROBLEM STATEMENT

Our goal is to detect early-stage malware infection within
an organization, in particular suspicious communications to
external destinations initiated by internal hosts. We describe
below characteristics of common enterprise infections, why
existing solutions fail against such threats and the challenges
we had to overcome to detect them.

Fig. 1: Timeline of common infection patterns on a compro-
mised host. Red (darker) circles are connections to malicious
domains, and green (lighter) circles to legitimate ones.

A. Enterprise Infections

Common infection vectors used in targeted attacks are so-
cial engineering [26] and compromise of legitimate sites [39].
In the case of social engineering, attackers craft spear-phishing
email addressed to several employees within the targeted
organization including a malicious attachment or a hyperlink
to a malicious file. Attack vectors employed by mainstream
malware include spam emails, USB drives, and a variety
of web-based attacks (e.g., drive by download, clickjack-
ing, malvertising, etc.). Many of these attacks (both targeted
and mainstream) include similar stages in the infection pro-
cess [26], [20], [11], [12] depicted in Figure 1:

Delivery stage: During delivery, the victim machine gets
the malicious payload, for example by an email attachment,
or drive-by-download attack, etc. Typically the victim visits
several malicious domains within a short time interval as a
result of redirection employed by attackers [36]. Many times,
the initial malware is generic (e.g., performs system recon-
naissance) and downloads additional second-stage malware
specifically crafted for the victim environment [38].

Establishing foothold: After delivery a backdoor is usually
installed on the victim’s machine and the attacker establishes
a foothold within the organization [26]. In almost all cases,
backdoors initiate outbound connections to evade firewalls that
block connections from outside the network. Most communica-
tions go through HTTP or HTTPs since these ports are allowed
by most enterprise firewalls [34], [28].

Command-and-control (C&C): Typically, backdoors con-
nect regularly to the command-and-control center operated by
attackers to receive further instructions and allow attackers
backdoor access into the victim environment [26], [12].

Based on a thorough analysis of many published reports,
and discussion with the SOC, we extract several common
characteristics of enterprise infections:

Uncommon domains: Attackers tend to use domains under
their control for different stages of the campaign (e.g., delivery,
C&C) [26]. These domains are uncommon destinations, with
low volume of traffic directed to them globally. Additionally,
[26] points out that attackers use more frequently domain
names rather than direct IP connections for their C&C com-
munication so that they can dynamically flux the domains.

Communities of domains: A compromised host usually con-
tacts several malicious domains within a relatively short time
interval. For instance, a user clicking on an embedded link in
an email might visit the front-end attacker site, get redirected to
a site hosting malicious payload and shortly after the backdoor
is established will initiate the first connection to the C&C
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server. These domains form small communities exhibiting
similarity in connection timing, set of hosts contacting them
(if multiple hosts are infected in the same campaign) and
sometimes proximity in IP address space [19], [26].

Automated C&C communication: Backdoors typically com-
municate with C&C servers on a regular basis to allow attack-
ers access into the victim environment. In many publicized
APT campaigns (e.g., NightDragon [10], Mirage [11], Shady
RAT [20]) as well as botnet infections (e.g., Zeus, Citadel [12],
ZeroAccess [23]), C&C communication occurs at fairly reg-
ular time intervals (minutes or hours) with small amount of
randomization. We also examined malware samples provided
by Mandiant on the APT1 group. Among 43 backdoor samples,
the vast majority (39) exhibit fairly regular timing patterns.

HTTP/HTTPs Communication. The communications to
C&C servers is typically done through HTTP or HTTPs since
other ports are blocked by enterprise firewalls [34], [28].

B. Current Defenses

Enterprises deploy different security products (anti-virus,
intrusion-detection, etc.), most of which perform signature-
based detection: they extract signatures from malware samples
(e.g., MD5 of binary file) and match them against new activity.
Additionally, the enterprise SOC relies heavily on commer-
cial blacklists to block destinations with known malicious
activities. Both signature-based detection and blacklisting can
be easily evaded by attackers, e.g., by obfuscating malicious
binaries or registering new domains. However, attackers tend
to reuse code and successful infiltration techniques across
different campaigns [15]. It is this observation that we leverage
to propose new behavior-based detection methods that capture
most common infection patterns reported in the literature.

C. Challenges

There were several challenges we had to overcome in
the process of developing our detection methodology. First,
security products deployed within the enterprise perimeter
record large volumes of data daily. For example, the two
datasets we used to evaluate our system are 1.15 TB and 38.14
TB, respectively. To perform efficient analysis, we describe
in §IV-A a suite of techniques that reduce the data volume by
an order of magnitude while retaining the valuable information
about communication of internal hosts to external domains.

Second, sophisticated attacks are stealthy and easily blend
in with millions of legitimate requests. There is an inherent
tension between detecting stealthy attacks and reducing false
positives. We carefully selected parameters of our various
algorithms to achieve extremely low false positives (on the
order of 10−4%). This results in a manageable number of
incidents referred to the SOC for further analysis.

Finally, limited ground truth is available for enterprise
infections since the only way they are identified is when they
are detected and blocked (by anti-virus, intrusion detection
tools, or blacklists). To overcome this problem, we propose
a novel combination of unsupervised and supervised learning
techniques described in §III-A. The evaluation shows that our
approach is successful at identifying new, unknown infections
not detected by state-of-the-art security products.

III. METHODOLOGY

In this section, we provide an overview of our approach to
detecting early-stage enterprise infection. Our system analyzes
log data collected at the enterprise border on a regular basis
(e.g., daily), maintains profiles of normal activity within the
enterprise, and detects malware infections by exploiting the
relationship between suspicious external destinations used in
different infection stages. We first introduce our main frame-
work based on belief propagation, then describe the two modes
of operation, and conclude with an overview of the system.
Details on our techniques are given in §IV.

A. Belief propagation framework

We model the communication between internal hosts in
the enterprise and external domains with a bipartite graph,
in which there are two types of vertices, hosts and domains.
An edge is created between a host and a domain if the
host contacts the domain at least once during the observation
window (e.g., one day). The communication graph is created
from either the DNS or web proxy logs captured at the border
of the enterprise.

To detect the infection patterns depicted in Figure 1, our
main insight is to apply a graph theoretic technique called
belief propagation [31]. Belief propagation is a graph inference
method commonly used to determine the label of a graph node
given prior knowledge about the node itself and information
about its graph neighbors. The algorithm is based on itera-
tive message-passing between a node and its neighbors until
convergence or when a specified stopping condition is met.

As described in Section II-A, our main goal is to detect
communities of malicious domains with similar features that
are likely part of the same campaign. We adapt the general
belief propagation framework to this task, by starting from
a seed of known malicious domains or hosts, and iteratively
computing scores for other rare domains contacted by known
compromised hosts. The score for a domain is computed
based on 1) the degree to which the domain exhibits C&C-
like behavior (described in §IV-C), and 2) its similarity to
labeled suspicious domains from previous iterations of the
algorithm. The final domain score is computed as a weighted
sum of features, where the weights are determined through a
supervised approach (based on linear regression). More details
about domain similarity scoring are provided in §IV-D.

The algorithm proceeds iteratively and builds the commu-
nication graph incrementally (for efficiency reasons). In each
iteration, the algorithm computes scores for those rare domains
contacted by compromised hosts, and labels the domains with
the highest scores as suspicious. These domains are added
to the graph together with the set of hosts contacting them.
The algorithm terminates when the score of the top-ranking
domain is below a threshold, or when the maximum number
of iterations is reached, and returns a list of labeled malicious
domains ordered by suspiciousness level.

An example of applying the algorithm to detecting the
campaign on one day’s logs in the LANL dataset is given in
Figure 2. Starting from compromised host 74.92.144.170 given
as seed, in the first iteration C&C communication to domain
rainbow-.c3 is detected. The domain is labeled malicious
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Fig. 2: Application of belief propagation to the 3/19 campaign.

and the host 252.90.88.2 contacting it is added to the graph. In
the following three iterations, three rare domains of maximum
score are labeled malicious based on similarity with previously
labeled malicious domains (their scores are given on the right).
The algorithm stops at the fifth iteration when the maximum
score is below a threshold, at which point all labeled domains
are confirmed malicious.

B. Modes of operation

Our detection method operates in two modes. In the first,
called SOC hints, we use the incidents that the enterprise SOC
investigated as starting points (or seeds) in the belief propaga-
tion algorithm. Given either hosts or domains confirmed mali-
cious, the algorithm identifies other related malicious domains
(likely part of the same campaign) and internal compromised
hosts that were unknown previously. This mode automates the
manual investigation process that the SOC team performs and
captures relationships between domains used by attackers in
different stages of a campaign.

In the no-hint mode, we don’t leverage existing seeds
of known malicious activity. Our insight here is that C&C
communications are automated, high-frequency activities dis-
tinctive from human-generated behavior (e.g., user visiting a
site or clicking a link in an email). We develop a new C&C
communication detector (whose details are given in §IV-C)
that utilizes a combination of enterprise-specific and generic
features. Interestingly, the detected C&C domains and the hosts
contacting them can be used to seed the same algorithm and
identify related suspicious domains and compromised hosts.

C. Putting it all together

Our system for detecting early-stage enterprise infection
consists of two main phases: training (during a one-month
bootstrapping period) and operation (daily after the training
period). An overview diagram is presented in Figure 3.

Training. During the training period a benchmark of normal
activity for a particular enterprise is created. It consists of
several steps.

(1) Data normalization and reduction: The first stage processes
the raw log data (either HTTP or DNS logs) used for training
and applies normalization and reduction techniques.

(2) Profiling: Starting from normalized data, the system pro-
files the activity of internal hosts. It builds histories of external
destinations visited by internal hosts as well as user-agent
(UA) strings used in HTTP requests (when available). These

histories are maintained and incrementally updated during the
operation stage when new data is available.

(3) Customizing the C&C detector: The detector of C&C
communication is customized to the particular enterprise.

(4) Customizing the domain similarity score: The domain sim-
ilarity score used during belief propagation is also customized
to the enterprise during the training phase.

Operation. After the initial training period, the system enters
into daily operation mode. Several stages are performed daily:

(1) Data normalization and reduction: The system performs
normalization and reduction for new log data.

(2) Profile comparison and update: New data is compared with
historical profiles, and rare destinations, as well as rare UAs
(used by a small number of hosts) are identified. Histories are
updated with new data, to capture drift in normal behavior.

(3) C&C detector: The C&C detector is run daily, and scores
of automated domains are computed with weights determined
during training. Automated domains with scores above a
threshold are labeled as potential C&C domains.

(4) Belief propagation: The belief propagation algorithm is
run in either of two modes. The output is an ordered list of
suspicious domains presented to SOC for further investigation.

IV. SYSTEM DETAILS

After providing an overview of our system for detecting
early-stage enterprise infection, we give here more technical
details of our methods.

A. Datasets, normalization and reduction

LANL dataset. The first dataset we used consists of
anonymized DNS logs collected from the LANL internal
network over 2 months (February and March 2013). It includes
DNS queries initiated by internal hosts, responses from the
LANL DNS servers, event timestamps, and IP addresses of the
sources and destinations. All of the IP addresses and domain
names are anonymized consistently. The dataset also includes
20 simulated attack campaigns representative of the initial
stages of APT infection.

The LANL dataset consists of 3.81 billion DNS queries
and 3.89 billion DNS responses, amounting to 1.15 TB. To
allow efficient analysis, we employ a number of data reduction
techniques. We first restrict our analysis only to A records, as
they record the queries to domain names and their responses
(IP addresses) and information in other records (e.g., TXT)
is redacted and thus not useful. This step prunes 30.4% of
DNS records on average per day. We also filter out queries
for internal LANL resources (as our focus is on detecting
suspicious external communications), and queries initiated by
mail servers (since we aim at detecting compromised hosts).

AC dataset. The second dataset AC consists of two months
(January and February 2014) of logs collected by web proxies
that intercept HTTP/HTTPs communications at the border of
a large enterprise network with over 100,000 hosts. The logs
include the connection timestamp, IP addresses of the source
and destination, full URL visited, and additional fields specific
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Fig. 3: Overview of training and operation stages in our system for detecting enterprise infection. Training stage is on the left
and operation on the right. Input data is shown in red, processing steps in blue and various outputs in black.

to HTTP communications (HTTP method, status code, user-
agent string, web referer, etc.). We also obtained a list of
domain IOCs used by the enterprise SOC.

Analyzing the AC web proxy dataset proved difficult due
to its large scale and various inconsistencies. There are on
average 662GB of log data generated daily, resulting in a
total of 38.14TB of data over two months. This dataset is
33 times larger than the LANL dataset, and much richer in
information. However, the AC dataset has some inconsistencies
due to multiple time zones of collection devices and dynamic
assignment of IP addresses. We omit here a description of our
normalization procedure, but we converted all timestamps into
UTC and IP addresses to hostnames (by parsing the DHCP
and VPN logs collected by the organization). We then extract
the timestamp, hostname, destination domain, destination IP,
user-agent string, web referer and HTTP status code fields
for our analysis. We do not consider destinations that are IP
addresses.
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Fig. 4: The number of domains encountered daily in LANL
after data reduction for the first week of March.

Rare destinations. In the analysis and results presented in
the following sections, we focus on “rare” destinations in
our datasets. Our insight is that popular legitimate websites
(visited by a large user population) are better administered and
less likely to be compromised, but connections to uncommon
destinations may be indicative of suspicious behavior. More
specifically, we define rare destinations as: new domains (not
visited before by any internal hosts) that are also unpopular
(visited by a small number of internal hosts). We set the
threshold at 10 hosts based on discussion with the SOC.

To determine the rare destinations, we use the first month
of data for profiling and build a history of external destinations
visited by internal hosts. We “fold” the domain names to
second-level (e.g., news.nbc.com is folded to nbc.com),

assuming that this captures the entity responsible for the
domain. We maintain a history of (folded) destinations queried
by internal hosts, updated at the end of each day to include
all new domains from that day. A domain is considered new
on a particular day if it is not in the history.

Following the steps detailed above, we greatly reduce the
volume of data as shown in Figure 4. On average, starting from
80K hosts and 400K domains in the LANL dataset, we retain
only 3.3K hosts and 31.5K domains after reduction. In the AC
dataset, we reduce from 120K hosts and 600K domains to an
average of 20K hosts and 59K rare domains daily.

B. Belief Propagation Algorithm

The goal of the belief propagation (BP) algorithm, as
explained in Section III-A, is to detect communities of ma-
licious domains that belong to the same attack campaign. The
BP algorithm can be applied in two modes: with hints of
compromised hosts provided by SOC, or without hints. In the
latter case the C&C communication detector is run first to
identify a set of potential C&C domains and hosts contacting
them. These are given as seeds to the same BP algorithm.
Algorithm 1 gives pseudocode for BP starting from a set of
compromised hosts H, and set of malicious domains M.

The algorithm maintains several variables: R the set of
rare domains contacted by hosts in H and N the set of
newly labeled malicious domains (in a particular iteration).
In each iteration, the algorithm first detects suspicious C&C-
like domains among set R using function Detect C&C whose
exact implementation will be provided next section. If no
suspicious C&C domains are found, the algorithm computes
a similarity score for all rare domains in R with function
Compute SimScore. The domain of maximum score (if
above a certain threshold Ts) is included in set M. Finally
the set of compromised hosts is expanded to include other
hosts contacting the newly labeled malicious domain(s). The
algorithm iterates until the stopping condition is met: either no
new domains are labeled as malicious (due to their scores being
below the threshold) or the maximum number of iterations has
been reached. The output is an expanded lists of compromised
hosts H and malicious domains M.

It’s important to note that domain scores are computed as
weighted sums of features, where the weights are determined
through supervised learning (using linear regression). Thus,
the algorithm is a novel combination of belief propagation,
an unsupervised graph inference algorithm, with a supervised
learning method.
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Algorithm 1 [Belief Propagation]
/* H ← set of seed hosts */
/* M← set of seed domains */
/* dom host is a mapping from a domain to set of hosts contacting it */
/* host rdom is a mapping from a host to set of rare domains visited */
function BELIEF PROPAGATION(H,M):
R ← set of rare domains contacted by hosts in H
while stop condition do
N ← Φ /* set of newly labeled malicious domains */
for dom in R \M do

if Detect C&C(dom) then
N ← N∪ {dom}
R ← R\ {dom}

if N = Φ then
for dom in R \M do

score[dom] ← Compute SimScore(dom)
max score ← max[score[dom]]
max dom ← dom of maximum score
if max score ≥ Ts then
N ← N∪ {max dom}

if N 6= Φ then
M←M∪N
H ← H∪ (∪d∈N dom host[d])
R ← R∪ (∪h∈H host rdom[h])

C. Detection of C&C communication

Dynamic histograms. As discussed in §II-A backdoors initiate
automated communication with C&C domains to allow attack-
ers access into the victim environment. We aim at detecting
automated connections with fairly regular timing patterns, but
be resilient to outliers (e.g., large gaps in communication) and
randomization between connections. For every rare domain
contacted by a host with a certain minimum frequency (set
at 4) during the observation window (daily) we generate the
histogram of inter-connection intervals and compare it to a
periodic distribution.

To be resilient to bin alignment we propose a dynamic
histogram method. We set up a maximum bin width W and
cluster the inter-connection intervals of successive connections
from a host to a domain (using a Greedy approach). We
then define the bins dynamically from the generated clusters.
We compare the resulting histogram with that of a periodic
distribution with period equal to the highest-frequency interval.
For comparing the two histograms we choose the Jeffrey
divergence metric motivated by the fact that it is “numerically
stable and robust to noise and size of histogram bins” [35].
Finally we label the communications between a host and a
domain automated if the statistical distance between the two
histograms is at most JT . The bin width W and threshold JT
control the resiliency of the method to outliers and randomiza-
tion between connections. We discuss their selection according
to the LANL dataset in §V-B.

Additional features. For each rare automated domain we
extract six additional features for the C&C detector:

Domain connectivity features: We consider the number of hosts
contacting the domain (NoHosts) called domain connectivity
and the number of hosts with automated connections to the
domain (AutoHosts). The intuition here is that most rare
legitimate domains are contacted by only one host, but the
probability of multiple hosts contacting a rare domain increases
when the hosts are under the control of the same attacker.

Web connection features: Based on discussions with SOC,
web connections with no referer may indicate automated
connections (not initiated by a user). To capture this, we

include a feature NoRef denoting the fraction of hosts (among
all hosts contacting that domain) that use no web referer.

Software configurations in an enterprise are more homoge-
nous than in other networks (e.g., university campus), and as
such we expect that most user-agent strings are employed by
a large population of users. With this intuition, the rare user-
agent strings, those used by a small number of hosts, might
indicate unpopular software installed on the user machine
which can potentially be associated with suspicious activities.
We consider a feature RareUA denoting the fraction of hosts
that use no UA or a rare UA when contacting the domain.

To determine the popularity of UA strings, we maintain a
history of UAs encountered across time and the hosts using
those UAs. The UA history is built during the training phase
for a period of one month and then updated daily based on
new ingested data. A UA is considered rare (after the training
period of one month) if it is used by less than a threshold of
hosts (set at 10 based on SOC recommendation).

Registration data features: Attacker-controlled sites tend to use
more recently registered domains than legitimate ones [25]. In
addition, attackers register their domains for shorter periods of
time to minimize their costs in case the campaign is detected
and taken down. We query WHOIS information and extract
two features: DomAge (number of days since registration), and
DomValidity (number of days until the registration expires).

Scoring automated domains. We employ a supervised learn-
ing model for computing domain scores. We found 841
automated rate domains in the AC dataset in February. We
split this data into two sets, the first two weeks used for
training and the last two weeks for testing. We also extract
the six features described above and query VirusTotal to get
an indication of the domain’s status. Domains with VirusTotal
score greater than 1 are labeled as “reported” and other
domains as “legitimate”.

Using the set of domains in the training set, we train a
linear regression model (implemented using the function lm
in the R package). The regression model outputs a weight for
each feature, as well as the significance of that feature. The
final score for each automated domain is a linear combination
of feature values weighted by regression coefficients. Among
all six features, the only one with low significance was
AutoHosts, which is highly correlated with NoHosts and we
decide to omit it. The most relevant features found by the
model are DomAge and RareUA. DomAge is the only one
negatively correlated with reported domains (as they are in
general more recently registered than legitimate ones), but all
other features are positively correlated.

Based on the trained model, we select a threshold for
domain scores above which a domain is considered potential
C&C. The graph in Figure 5 shows the difference between
the scores of automated domains reported by VirusTotal and
legitimate ones on the training set. For instance, selecting a
threshold of 0.4 for labeling an automated domain suspicious
results in 57.18% true detection rate on the training set, and
54.95% true detection rate on the testing set (at the cost of
labeling about 10% of legitimate domains suspicious). Our
final goal is not identifying all automated domains reported
by VirusTotal, but rather a significant fraction to bootstrap the
BP algorithm.
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Fig. 5: CDFs of automated reported/legitimate domain scores.

Thus we implement function Detect C&C from Algorithm
1 as returning 1 if the domain score is above the threshold
selected during training and 0 otherwise. We emphasize that
the selection of feature weights and threshold on automated
domain scoring is customized to each enterprise.

D. Domain similarity

With the goal of capturing infection patterns from Figure 1,
we consider a number of features when computing similarity
of a domain D with a set of domains S labeled malicious in
previous iterations of BP.

Domain connectivity. We use the domain connectivity as
defined above.

Timing correlations. Second, we consider features related to
the time when the domain D was visited by internal hosts.
During initial infection stage of a campaign, we suspect that a
host visits several domains under the attacker’s control within
a relatively short time period (as explained in §II-A). We thus
consider the minimum timing difference between a host visit
to domain D and other malicious domains in set S. The shorter
this interval, the more suspicious D is.

IP space proximity. Third, we consider proximity in IP space
between D and domains in set S. Proximity in the IP /24
and /16 subnets is denoted by IP24 and IP16 respectively. The
intuition here is that attackers host a large number of malicious
domains under a small number of IP subnets [19], [26].

We provide measurement of the timing and IP proximity
features on the LANL dataset in Section V-B.

Finally, the domain similarity score is tailored to the
particular enterprise during the training stage. To obtain a list
of (non-automated) rare domains and their features, we start
from a set of compromised hosts (contacting C&C domains
confirmed by VirusTotal). We include each rare domain con-
tacted by at least one host in this set, extract its features,
query VirusTotal to get an indication of its status (reported
or legitimate), and divide the data into training and testing set,
covering the first and last two weeks of February, respectively.

We apply again linear regression on the training set to
determine feature weights and significance. Among the eight
features described above, the only one with low significance
was IP16, as it’s highly correlated with IP24. The most relevant
features identified by the model are RareUA, DomInterval, IP24
and DomAge. The threshold for domain score similarity is

Case Description Dates Hint Hosts
1 From one hint host detect the 3/2, 3/3, 3/4, One per day

contacted malicious domains. 3/9, 3/10
2 From a set of hint hosts detect 3/5, 3/6, 3/7, 3/8, Three or four

the contacted malicious domains. 3/11, 3/12, 3/13 per day
3 From one hint host detect the 3/14, 3/15, 3/17, One per day

contacted malicious domains and 3/18, 3/19, 3/20,
other compromised hosts. 3/21

4 Detect malicious domains and 3/22 No hints
compromised hosts without hint.

TABLE I: The four cases in LANL challenge problem.

selected based on the balance between true detection and false
positives (we omit the score PDF due to space limitations).

We implement function Compute SimScore from Algo-
rithm 1 as returning 1 if the domain similarity score is above
the chosen threshold and 0 otherwise.

V. EVALUATION ON THE LANL DATASET

We start by describing the four cases in the LANL chal-
lenge. Then we discuss how we adapt the techniques developed
for enterprise infection to the anonymized LANL dataset.
Still, using fewer features, we demonstrate that our belief
propagation framework achieves excellent results on the LANL
challenge.

A. The LANL Challenge Problem

The LANL dataset includes attack traces from 20 indepen-
dent infection campaigns simulated by LANL domain experts.
Each simulation is an instance of the initial first-day infection
stage of an independent campaign. LANL issued the APT
Infection Discovery Challenge to the community requesting
novel methods for the detection of malicious domains and
compromised hosts involved in these attacks [14]. Each of the
simulated attacks belongs to one of four cases in increasing
order of difficulty, described in Table I. Cases 1-3 include
“hints” about the identity of one or multiple compromised
hosts, while no hint is given in case 4. Answers (i.e., the
malicious domains) in each attack are provided for validation.

B. Parameter selection

When selecting various parameters for our algorithms, we
separate the 20 simulated attacks into two equal-size sets, and
use one for training (attacks from 3/2, 3/3, 3/4, 3/5, 3/7, 3/12,
3/14, 3/15, 3/17, and 3/18), and the other for testing. We try
to include attacks from each case in both training and testing
sets, with the only exception of case 4, simulated only on one
day (3/22). We deliberately add this most challenging attack (in
which no hint is provided) to the testing set. We use the training
set for selecting parameters needed for different components
of the algorithm. We show that parameters chosen according
to the training set perform well on new data (testing set).

Thresholds for dynamic histograms. As described in §IV-C
the dynamic histogram method can be configured with two
parameters: bin width (W ), and the threshold (JT ) denoting
the maximum Jeffrey distance between the two histograms.
A connection with histogram at distance less than JT from
the periodic histogram is considered automated. Intuitively,
the larger W and JT , the more resilience the method pro-
vides against randomization and outliers, but more legitimate
connections are labeled automated.
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Bin width Jeffrey distance Malicious Malicious All automated
W threshold pairs in pairs in pairs in

JT training testing testing days
5 seconds 0.0 12 15 7495

0.034 14 15 8070
0.06 15 17 8579
0.35 15 18 34719

10 seconds 0.0 12 16 15611
0.034 14 16 16224
0.06 15 18 16803

20 seconds 0.0 12 15 23352
0.034 14 16 23964
0.06 15 18 24597

TABLE II: Number of automated malicious (host, domain)
pairs in training and testing sets, as well as the number of
automated pairs for all days in testing set.
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Fig. 6: The CDFs between first connection to two malicious
domains and a malicious and legitimate domain by a host.

We experiment with 3 bin widths (5, 10, 20 seconds) and
choose JT according to the training set of malicious automated
connections. We manually labeled automated 15 (host, domain)
pairs in training set and 18 pairs in testing set (belonging to 18
distinct domains). Table II shows the number of malicious pairs
labeled automated (in training and testing), as well as all pairs
labeled automated in testing for several choices of W and JT .
For our purposes, we aim at capturing all malicious pairs in
the training and testing sets, while labeling fewest legitimate
connections automated. Based on Table II, we choose a bin
size of 10 seconds and a threshold distance of 0.06.

Timing and IP Features. We measure the relevance of the
timing and IP similarity features among malicious domains.
For compromised hosts in the training set, we extract the
timestamp of their first connection to every rare domain visited.
We plot in Figure 6 CDFs of the distributions of the time
difference between visits to malicious domains and a legitimate
and malicious domain by the same host. The graph confirms
that connection intervals between two malicious domains are
much shorter than between a malicious and a legitimate
domain. For example, 56% of visits to two malicious domains
happen at intervals smaller than 160 seconds, while only 3.8%
of malicious-to-legitimate connection intervals are below this
threshold (similar results are observed on testing dataset).

Next we measure similarity in IP space for malicious
and legitimate domains in the training set. We found that 7
malicious domain pairs are in the same /24 subnet, while
18 share a /16 subnet. We observed few cases of legitimate
domains residing in the same subnet with malicious ones. With
the exception of 3/7, when more than 2000 pairs of malicious

and legitimate domains share the same /24 or /16 subnet (due
to a single malicious domain belonging to a popular service),
the rest of days we observe 20 pairs in the same /24 subnet
and 155 pairs in the same /16 subnet.

Domain scoring. Since domain names in the LANL dataset
are anonymized and the data contains only DNS requests,
we have access to a smaller number of features than in the
AC web proxy datset. We thus apply simple heuristics for
domain scoring. We label an automated domain as C&C if it
is contacted by at least 2 hosts at similar time periods (within
10 seconds). For computing domain similarity, we employ a
simple additive function of three features: domain connectivity,
timing correlation with a known malicious domain (value 1 if
the domain is contacted close in time to a malicious domain
and 0 otherwise), proximity in the IP space with malicious
domains (value 2 if same /24 subnet with a malicious domain,
1 if same /16 subnet with a malicious domain and 0 otherwise).

C. Results

We omit description of cases 1 and 2 due to space limits.

Starting from a hint host (case 3). We ran the BP algorithm
for a maximum of five iterations starting from the provided
hint host, but we stop the algorithm if the maximum domain
score is below the threshold Ts.

The algorithm detects all 12 labeled malicious domains
in training days (with no false positives) and all 12 labeled
malicious domains in testing days at the cost of one false
positive for 3/21.

No hints (case 4). In the most challenging case no hint is
provided to seed the BP algorithm. We thus identify first C&C
communication and use those domains as seeds. Interestingly,
the BP algorithm trained on case 3 delivered very good results
on case 4, where we did not have an opportunity for training
(case 4 was simulated only on one day). All the five domains
identified by BP were confirmed malicious, and the algorithm
did not have any false positives.

Summary. The summary of our results on the four cases of
the LANL challenge are given in Table III. We define several
metrics of interest: true detection rate (TDR) is the fraction of
true positives among all detected domains, false positive rate
(FPR) is the fraction of false positives among all domains;
and false negative rate (FNR) is the fraction of malicious
domains labeled as legitimate by our detector. Overall, we
achieve TDR of 98.33% (97.06% on the testing set), with FPR
of 3.72·10−5% over all 2.7M domains (5.76·10−5% over 1.7M
domains in the testing set) and FNR of 6.35% (2.94% on the
testing set).

Case True Positives False Positives False Negatives
Training Testing Training Testing Training Testing

Case 1 6 4 0 0 2 0
Case 2 8 12 0 0 1 1
Case 3 12 12 0 1 0 0
Case 4 - 5 - 0 - 0
Total 26 33 0 1 3 1

TABLE III: Results on LANL challenge.
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VI. EVALUATION ON ENTERPRISE DATA

We implemented a fully operational system running in
production starting from January 1 2014 to process the web
proxies logs from the AC dataset. We use the data collected
in January for training various components of the system
(e.g., the C&C detector, the domain scoring module, etc.)
and profiling external destinations and user-agent strings used
by enterprise hosts in HTTP communication. Starting from
February 1 the system enters into the daily operation mode, in
which it processes new web proxies logs, applies normalization
and reduction techniques, compares the data with the profiles
(which are also updated) and applies our detection techniques.

The algorithm is first run in the SOC hints mode, where
we use malicious domains from the IOC list provided by
SOC as seeds. Second, we run our C&C detector to identify
suspicious domains with automated activities. Third, these
domains are given as seed to belief propagation in the no-hint
mode. The detection results are thoroughly validated through
a combination of tools and manual analysis. The system is
configurable with different parameters (e.g., scoring thresholds,
number of iterations in belief propagation, etc.) according
to the SOC’s processing capacity. We present our validation
methodology and the results in different modes of operation.

A. Validation methodology

The domains output by our detector in both modes were
validated as follows. We first query VirusTotal and the IOC
domain list to verify their status (three months after they were
detected – to allow anti-virus and blacklists to catch up). If
the domain is alerted upon by at least one scanner used by
VirusTotal or it’s an IOC we consider it known malicious.
For other domains, we collect additional information and hand
them to a security analyst for manual investigation.

Specifically, the analyst retrieves the associated URLs from
the log data and crawls them to examine the responses. The
URLs are also manually submitted to McAfee SiteAdvisor.
Based on the URLs, the response to our crawler and the
result from SiteAdvisor, the analyst classifies the remaining
domains into four categories: new malicious (e.g., same URL
patterns as known malicious domains, returning malicious
content or flagged by SiteAdvisor), suspicious (not resolvable
when crawled, parked or having some questionable activities),
legitimate (no suspicious behavior or code observed) and
unknown (504 HTTP response code, a sign of server error).
Since we only have a few unknowns (6 in total), we remove
them from the final results. When reporting our results we use
several metrics of interest: TDR and FPR defined in §V-C, and
new-discovery rate (NDR) defined as the percentage of new
malicious and suspicious domains detected. Here TDR is the
percentage of both known and new malicious and suspicious
domains among all detected domains.

B. Results for the SOC hints mode

We first present results in Figure 7(a) for the belief
propagation algorithm in SOC hints mode seeded with 28
IOC domains. The graph shows the total number of detected
domains and their categories for different domain similarity
score thresholds. We do not include the seed domains in the
final results. When computing domain registration features,

we can not parse WHOIS information for 27% of domains.
For these domains, we set default values for the DomAge and
DomValidity features at average values across all other domains.

When we vary the domain similarity score threshold be-
tween 0.33 and 0.45, we detect between 137 and 73 domains,
with TDR ranging from 78.8% to 94.6%. Among the 137
detected domains, 108 turn out to be malicious (either known
or new) and suspicious, which is about four times larger than
the malicious set of domains used for seeding. The FPR is low
at 8.58 · 10−4% over 7.3M domains.

Among the 108 malicious and suspicious domains, 79
domains are confirmed by SOC or VirusTotal, leaving 29
domains as our new findings. We inspect the new findings and
identify an interesting group of domains generated through
DGA. This group consists of 10 domains under TLD .info
and the name for each domain has 20 characters (e.g.,
f0371288e0a20a541328.info). Surprisingly, the registra-
tion dates for most of the domains are later than the detection
time. For example, one domain is detected on 02/13 but
registered on 02/18. Attackers use DGA domains to increase
the robustness of their C&C centers against take-downs, and
they only register a portion of the domains to reduce the
cost. Our detector is able to detect the malicious domains
before registration and obtain an advantage in the arm-race.
We present a case study for this mode in the Appendix.

C. Results for C&C detector

To evaluate the C&C detector, we compute scores for all
automated domains encountered daily. We vary the domain
score threshold for labeling automated connections from 0.4 to
0.48 and present results for domains detected as C&C domains
(with score above the threshold) in Figure 7(b). The results
demonstrate that as we increase the threshold on automated
domain scores from 0.4 to 0.48 the number of domains labeled
as C&C drops from 114 to 19, while accuracy increases (TDR
increases from 85.08% to 94.7%). Though FPR is higher for
threshold 0.4, more malicious domains (including 23 new ones
not known to VirusTotal or SOC) are detected.

D. Results for the no-hint case

We fix the automated domain score threshold at 0.4 to
evaluate belief propagation in the no-hint mode. We vary the
domain similarity score threshold from 0.33 to 0.85 and the
result (Figure 7(c)) shows that the number of all detected
domains varies from 265 to 114, with TDR ranging from
76.2% to 85.1%. Altogether in the most challenging case
(when no hint is available), we detect 202 malicious and
suspicious domains in February, associated with 945 hosts.
Though the majority of the detected domains are already
alarmed by SOC and VirusTotal (132 for threshold 0.33), only
13 are reported in the IOC list and the remaining ones are
unknown to the enterprise. More interestingly, we identified
many new malicious and suspicious domains not known to
the community (a total of 70 new domains for threshold
0.33 resulting in an NDR of 26.4%). This result suggests
that our detector could complement existing security tools by
discovering new suspicious activities. Its main advantage is
that it has the ability to detect new campaigns without traces
of known malicious behavior.
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Fig. 7: Statistics on detected domains. (a) SOC hints. (b) C&C communication. (c) No hints.

We thoroughly examined the domains labeled as new ma-
licious and suspicious and found several prominent and inter-
esting clusters. Among the new malicious domains, we found
5 domains hosting URLs with the same pattern /logo.gif?
later confirmed by the SOC as related to Sality worm. We
also found 15 domains with the same URL pattern reported
by VirusTotal. Moreover, we identified a cluster of 10 DGA
domains with none of them reported by VirusTotal and SOC,
demonstrating our detector’s ability in capturing new mali-
cious campaigns. All the malicious domains are under the
TLD .info and their names have 4 or 5 characters (e.g.,
mgwg.info). 9 out of the 10 domains hosts URLs with
pattern /tan2.html and visiting them will be redirected to
the remaining domain 1.tv990.info.

We labeled legitimate 63 domains belonging to categories
like Ad-network, Gaming, Toolbar and Torrent Tracker, re-
sulting in a FPR of 3.41 · 10−4% over 7.3M domains. They
are captured by our detector because they exhibit suspicious
features, like automated connections or are registered recently.
Though they do not pose serious harm to the enterprise, some
of them are policy violations (e.g., Gaming, Torrent Tracker).
We did not discover any suspicious activities from examining
log data, but we believe these domains still need to be vetted.

E. Comparison and performance

We compare the results of the two modes of operation.
Only 21 domains are detected in both modes, which is a
small percentage compared to 202 and 108 domains detected
separately. When deployed by the enterprise, we suggest our
detector configured to run in both modes, in order to have
better coverage. As we have shown, starting from a seed of
known malicious domains or hosts, the algorithm in SOC hints
mode can identify suspicious domains with high accuracy.
The C&C communication detector has the unique capability
of identifying C&C domains used in new attack campaigns.
To reduce the false positive rate in the no-hint mode, we
recommend that the detected C&C domains are first vetted
by the SOC and then belief propagation is seeded only with
confirmed malicious C&C domains.

In terms of performance, our system proves scalable to the
logs generated by a large enterprise (average of 662GB of web
proxy logs daily). Due to aggressive data reduction (restriction
to rare destinations), the normalization and profiling stages
take around 2 hours every day (this includes the time to read
the logs from the database, create normalized representations
and write the normalized data to disk). Belief propagation is
extremely fast (taking on average 5 seconds) since we build the

bipartite graph incrementally and only add to the graph a small
number of suspicious domains and hosts in each iteration.

Both variants of our detector include configurable options
for various parameters (e.g., thresholds for domain scoring).
These parameters can be chosen by the SOC according to
the capacity of the team performing manual investigation, and
various tradeoffs between accuracy and larger coverage.

VII. RELATED WORK

Our work focuses on detecting early-stage infections within
enterprise perimeters, including communications related to
malware delivery and C&C. There has been a large body of
work in this area, but to the best of our knowledge, we are
the first to exploit the relationship between malicious domains
associated with the same attack campaign, and to detect them
by a graph-theoretic framework based on belief propagation.
We describe here related work in the literature.

Detection of C&C communication. Some of the previous
work detecting C&C domains in botnets require malware
samples as input to detect connections with similar patterns
(e.g., BotFinder[37], Jackstraws[22]). Anomaly-based botnet
detection systems (e.g., BotMiner[16], BotSniffer[18] and
TAMD [41]) typically detect clusters of multiple synchronized
hosts infected by the same malware. In contrast to these, our
approach does not require malware samples and can detect
campaigns with few hosts communicating to a C&C server.

DISCLOSURE [7] identifies C&C traffic using features
extracted from NetFlow records but incorporates external in-
telligence sources to reduce false positives. Our C&C detector
is different in that it leverages enterprise-specific features
extracted from HTTP connections. From that perspective, Ex-
ecScent [28] is close to our work in detecting C&C communi-
cations in large enterprise network. However, ExecScent needs
malware samples to extract templates representing malicious
C&C connections. The templates are adapted to a specific
enterprise considering the popularity of different features (URL
patterns, user-agent strings, etc.). Our work complements
ExecScent in detecting new unknown malware that can be
provided as input to the template generation module.

Detection of malware delivery. Nazca [21] analyzes web
requests from ISP networks to identify traffic related to mal-
ware delivery and unveils malicious distribution networks.
CAMP [32] determines reputation of binary downloads in
the browser and predicts malicious activities. BotHunter [17]
identifies sequences of events during infection, as observed
from a network perimeter. Our approach does not depend
on specific events occurring during infection (which can be
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changed easily or may not be observable), but is more focused
on detecting related malicious domains and compromised
hosts.

Detection of malicious domains. Domains used in malicious
activities are backed by highly resilient infrastructures to deal
with takedowns or blacklisting, and hence exhibit unique char-
acteristics distinct from benign sites. Another branch of work
detects domains involved in malicious activities by patterns
observed in DNS traffic (e.g., EXPOSURE [8], Notos [4],
Kopis [5], and Antonakakis et al. [6]). Paxson et al. [30] detect
malicious communication established through DNS tunnels.
Carter et al. [9] use community detection for identifying highly
localized malicious domains in the IP space.

Anomaly detection in enterprise network. Beehive [40]
is an unsupervised system identifying general anomalies in
an enterprise setting including policy violations and malware
distribution. Our work is specifically targeting enterprise in-
fections which pose high risk and potential financial loss.

Targeted attacks. The threats in cyberspace keep evolving and
more sophisticated attacks recently emerged. Some targeted
attacks (APT) are well-funded, carefully orchestrated and
persist in the victim environments for years before detection.

Detecting targeted attacks in general is a very challenging
task. These attacks are usually very stealthy and able to evade
existing defenses [3]. However during the automated infection
stage many campaigns (e.g., Shady RAT [20], Mirage [11],
APT1 [26]) exhibit similar infection patterns. Recent studies
have shown that even though in theory APTs could be ar-
bitrarily sophisticated, in practice goal-oriented attackers use
relatively low levels of sophistication [38], [27], [24]. We
leverage some common patterns observed during the infection
stage to build a detector tailored to an enterprise. Our detection
result on the LANL’s APT infection discovery challenge indi-
cates that our techniques have potential in detecting infections
originated from targeted attacks.

VIII. LIMITATIONS AND DISCUSSION

As reported in [26], the infection patterns that we detect
are quite prevalent in many attacks. Nevertheless, attackers
could in principle use a number of techniques to evade our
detectors. For instance, they may communicate through differ-
ent channels than HTTP/HTTPs but other ports are commonly
blocked at enterprise borders. Attackers could also add more
randomization to the timing of C&C communications. Our
dynamic histogram method is resilient to some (configurable)
amount of randomization between connections. As another
evasion technique, attackers can add arbitrary delays between
different stages of infection. However, the majority of features
used by our detectors (rare domains, rare UAs, no web referer,
domain registration, validity, etc.) are resilient to manipulation.

The proposed approach is meant to complement existing
tools rather than replace them. The results from §VI demon-
strate that our belief propagation algorithm in both variants
(SOC hints and no-hint) detects new suspicious activities
overlooked by deployed defense mechanisms. These include
both domains associated with existing malware campaigns
(and identified by VirusTotal), but with new presence in the
enterprise of our study, as well as entirely new malware cam-
paigns (not yet detected by anti-virus technologies). Since our

methods are focused on detecting the initial infection stages
of a campaign it is difficult to determine how many of these
suspicious activities are related to more advanced attacks, and
how many are mainstream malware variants. We believe that
monitoring activity to these suspicious domains over longer
periods of time, as well as correlating with information from
other data sources will answer this question, and we leave this
as an interesting avenue for future work.
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APPENDIX

As a case study, Figure 8 illustrates a community of
domains detected in the SOC hints mode on 2/10. We use IOC
domain xtremesoftnow.ru, a Zeus C&C server, as seed.
The domain is accessed by compromised Host 5 confirmed by
the SOC. Host 5 contacted 7 domains registered under TLD
.org. Four of them are confirmed by SOC and also reported
by Sophos as contacted by different malware (Troj Ramdo-B,
Troj Ramdo-K, Troj Ramdo-V and Troj Symmi-S). This
indicates that the compromised machine downloaded addi-
tional malware after the initial compromise. Two of the remain-
ing .org domains are not confirmed by SOC but flagged by
VirusTotal. Interestingly, domain uogwoigiuweyccsw.org
has a similar naming pattern with other malicious domains,
but is not picked up by either SOC or VirusTotal. This is an
example of newly discovered domain. The second iteration
of belief propagation discovers six additional hosts visiting
similar domains as Host 5, indicating that they could be
infected with the same malware. Besides, four other domains
contacted by these hosts have high score, with three of them
confirmed by VirusTotal (including one automated domain)
and only one (cdn.tastyreview.com) being legitimate.

Hosts

Domains

Host1

cdn.tastyreview.com

kuqcuyqmaggguqum.org

aaukqiooaseseuke.org

aaimomuiqqqkikiy.org

uogwoigiuweyccsw.org

cegauoqsykgqecqc.org

eimqqakugeccgwak.org

kucmcamaqsgmaiye.org

Host2

Host3

Host4

Host5

xtremesoftnow.ru

Seed

molenerin.com

Beacon with 120s

Host6

Host7

seedn.outside-cooking.com

outside-cooking.com

Fig. 8: Example community of compromised hosts and de-
tected domains in SOC hints mode on 2/10. The yellow
diamond-shape domain is used as seed, purple ellipse-shape
domains are detected by VirusTotal and red hexagon-shape
domains are confirmed malicious by SOC. The grey rectangle-
shape domains are not confirmed by any existing tools at
the time of detection. The hostnames are anonymized. Red
hexagon-shape hosts are confirmed by SOC and purple ellipse-
shape ones are other compromised hosts.
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