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1. INTRODUCTION

Cloud computing is a service model that offers users (called herein
tenants) on-demand network access to a large shared pool of com-
puting resources ("the cloud"). By now the economic benefits of
cloud computing are widely recognized. Building and managing a
large-scale data center results in savings of a factor between five
and seven over a medium-sized one in terms of electricity, hard-
ware, network-bandwidth and operational costs [2]. From the ten-
ant’s perspective, the ability to utilize and pay for resources on de-
mand and the rapid elasticity of the cloud are strong incentives for
migration to the cloud.

Despite these economic benefits, public clouds still haven’t seen
widespread adoption, especially by enterprises. Most large orga-
nizations today run private clouds, in the sense of virtualized and
geographically distributed data centers, but rarely rely primarily on
externally managed resources. (Notable exceptions include Twitter
and The New York Times, which run on Amazon infrastructure).

Major barriers to adoption are the security and operational risks
to which existing cloud infrastructures are prone, including hard-
ware failures, software bugs, power outages, server misconfigura-
tion, malware, and insider threats, among others. Such failures and
attack vectors aren’t new, but their risk is amplified by the large
scale of the cloud [6]. Their impact can be disastrous, and can
include data loss and corruption, breaches of data confidentiality,
and malicious tampering with data. Therefore, strong protections
beyond mere encryption are a necessity for data outsourced to the
cloud. Two stand out as particularly important: integrity, meaning
assurance against data tampering, and freshness, the guarantee that
retrieved data reflects the latest updates.

Another concern hindering migration into public clouds is a lack of
availability and reliability guarantees. Well known cloud providers
have experienced episodes of temporary unavailability lasting at
least several hours [21, 11] and striking losses of personal customer
data (most notably the T-Mobile/Sidekick incident [23]). Tradi-
tional reliability models for hardware make certain assumptions
about failure patterns (e.g., independence of failures among hard
drives) that are not accurate in the new cloud computing world.
Without novel data reliability protections (beyond today’s RAID-5
and RAID-6, maintaining correctness of massive amounts of data
over long periods of time will be extremely difficult [5].

Another top concern for enterprises migrating into the cloud is col-
location with potentially malicious tenants [6]. In an Infrastructure-
as-a-Service (IaaS) model, tenants rent virtual machines (VMs) on
servers shared with other tenants; logical isolation among VMs is
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Figure 1: Extending trust perimeter from enterprise data cen-
ter into the public cloud.

enforced by hypervisors. In a Platform-as-a-Service (PaaS) model,
different tenants may run applications in the same operating sys-
tem, without clear isolation beyond basic OS-level protections (that
can be easily bypassed by advanced malware available today). Ris-
tenpart et al. [18] show that an attacker can collocate a VM under its
control on the same server as a targeted, victim VM in the Amazon
IaaS infrastructure. They also give evidence that such an attacker
can exploit side channels in shared hardware (e.g., the L2 cache) to
exfiltrate sensitive data from the victim.

Our research targets the challenge of migrating enterprise data into
the public cloud while retaining tenant trust and visibility. We
have devised cryptographic protocols that extend traditional trust
perimeters from enterprise data centers into the public cloud by
conferring strong protections on migrated data, including integrity,
freshness, and high availability. In addition, we propose an auditing
framework to verify properties of the internal operation of the cloud
and assure enterprises that their cloud data—and workloads—are
handled securly and reliably.

Adversarial model. In this paper, we are mainly concerned with
cloud providers that are subject to a diverse range of threats, but
are economically motivated. Cloud providers might deviate from




our protocols for cost savings or due to poor security practices,
but not with a pure malicious intent. In most cases, we can detect
deviations from our protocols by a misbehaving cloud provider, but
we do not provide remediation mechanisms against fully malicious
cloud providers. By using multiple cloud providers in the design
of HAIL described in Section 4, we show nevertheless that we can
also provide data integrity and availability in a setting in which a
fraction of providers are fully Byzantine.

Solution overview. Our vision of a more trustworthy cloud com-
puting model for enterprises is depicted graphically in Figure 1. A
small trusted gateway sitting within the enterprise intermediates all
communication from the internal data center to the external public
cloud. The gateway manages cryptographic keys (used for encrypt-
ing data for confidentiality requirements), maintains trusted storage
for integrity and freshness enforcement, and may add redundancy
to data for enhanced availability. Once the data and workloads of
a particular enterprise migrate into the cloud, an independent cloud
auditing service (run by the enterprise or, alternatively, by a third
party) continuously monitors the enterprise’s cloud resources. This
auditing service communicates bidirectionally with the gateway on
aregular basis. Updates on enterprise data and workloads migrated
into the cloud propagate from the enterprise to the auditing service.
The auditing service communicates the results of its audits back to
the enterprise, including for instance, scores of the health of various
resources (such as data repositories or virtual machines).

Organization. In this paper, we describe several research projects
that form components of this broad vision. We start by present-
ing in Section 2 our design of an authenticated file system called
Iris that allows migration of existing internal enterprise file systems
into the cloud. Iris offers strong integrity and freshness guarantees
of both file system data and meta-data accessed while users perform
file system operations. Iris is designed to minimize the effects of
the network latency on file system operations and carefully opti-
mized for typical file system workloads (sequential file accesses).

We then introduce our auditing framework in Section 3. Within this
framework, in Section 3.1 we present Proofs of Retrievability (PoR)
and related protocols that cryptographically verify the correctness
of all cloud-stored data with minimal communication. (Remark-
ably, even against a cheating cloud, PoRs show that every bit of
the data stored in the cloud is intact.) We describe a dynamic PoR
architecture in Section 3.2 that supports data updates in Iris. We
turn to audit of physical-layer storage properties in Section 3.3. We
show how to verify that cloud data is replicated across multiple
hard drives with the RAFT protocol.

For further data protection we address the challenge of data avail-
ability in the face of cloud service failures, including potentially
malicious ones. In Section 4, we describe HAIL, a protocol that
distributes data redundantly across different cloud providers. HAIL
is a cloud extension of the RAID principle, building reliable storage
systems from inexpensive, unreliable components. We conclude in
Section 5 with discussion of some remaining challenges in securing
cloud data.

2. INTEGRITY CHECKING WITH IRIS

It’s common for tenants to assume that encrypting their data before
sending it to the cloud suffices to secure it. Encryption provides
strong confidentiality against a prying or breached cloud provider.
But it doesn’t protect against corruption of data due to software
bugs or configuration errors. These challenges require enforcement

of a different property:

- Data integrity ensures that data retrieved by a tenant is authentic,
i.e., hasn’t been modified or corrupted by an unauthorized party.

On its own, data integrity is relatively easy to achieve with cryp-
tography (typically by means of Message-Authentication Codes
(MACs) on data blocks). But a critical, subtle, related security
property of data is often overlooked: Freshness. This enures that
latest updates are always propagated to the cloud and prevents against
rollback attacks (in which stale versions of the data are presented
to tenants).

- Data freshness ensures that retrieved data always reflects the most
recent updates and prevents rollback attacks.

Achieving data freshness is essential to protect against mis-configuration

errors or rollbacks caused intentionally. It’s the main technical
challenge in building the Iris system that we now describe.

2.1 Iris design goals

Iris is an authenticated file system that supports the migration of
an enterprise-class distributed file system into the cloud efficiently,
transparently, and in a scalable manner. It’s authenticated in the
sense that Iris enables an enterprise tenant to verify the integrity and
freshness of retrieved data while performing file system operations.

A key design requirement for Iris is that it imposes on client ap-
plications no changes to file system operations (file read, write,
update, and delete operations, as well as creation and removal of
directories). That is, Iris doesn’t require user machines to run mod-
ified applications. Our design also aims to achieve a slowdown in
operation latency small enough to go unnoticed by users even when
a large number of clients in the enterprise (on the order of hundreds
and even thousands) issue file-system operations in parallel.

2.2 Iris architecture

One of the main challenges we faced when designing Iris is the typ-
ically high network latency between an enterprise and the cloud. To
reduce the effect of network latency on individual operation latency
and the cost of network transfer to and from the cloud, Iris employs
heavy caching at the enterprise side.

In Iris, a trusted gateway residing within the enterprise trust bound-
ary (as in Figure 1) intermediates all communication from enter-
prise users to the cloud. The gateway caches data and meta-data
blocks from the file system recently accessed by enterprise users.
The gateway computes integrity checks, namely Message Authen-
tication Codes (MAC), on data blocks. It also maintains integrity
and freshness information for cached data, consisting of parts of a
tree-based authenticated data structure stored on the cloud.

The cloud maintains the distributed file system, consisting of all
enterprise files and directories. Iris is designed to use any existing
back-end cloud storage system transparently, without modification.
The cloud also stores MACs for block-level integrity checks. And
it stores a tree-based cryptographic data structure needed to ensure
the freshness of data blocks and the directory tree of the file system.

2.3 Integrity and freshness verification
To guarantee data integrity and freshness for the entire file system,
Iris employs an authentication scheme consisting of two layers (de-



picted in Figure 2). At the lowest layer, it stores a MAC for each
file block (file blocks are fixed-size file segments of typical size
4KB). This enables random access to file blocks and verification of
individual file block integrity without accessing full files. For fresh-
ness, MACs are not sufficient. Instead, Iris associates a counter or
version number with each file block that is incremented on every
block update (as in [15]) and included in the block MAC. Different
versions of a block can be distinguished through different version
numbers. But for freshness, block version numbers need to be au-
thenticated too!
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Figure 2: Authentication data structure in Iris.

The upper layer of the authentication scheme is a Merkle tree tai-
lored to the file system directory tree. The leaves of the Merkle
tree store block version numbers in a compacted form. The au-
thentication of data is separated from the authentication of block
version numbers to enable various optimizations in the data struc-
ture. Internal nodes of the tree contain hashes of their children as
in a standard Merkle tree. The root of the Merkle tree needs to be
maintained at all times within the enterprise trust boundary at the
gateway.

The tenant can efficiently verify the integrity and freshness of a
file data block by checking the block MAC and the freshness of the
block version number. The tenant verifies the latter by accessing the
sibling nodes on the path from the leaf storing the version number
up to the root of the tree, re-computing all hashes on the path to
the root and checking that the root matches the value stored locally.
With a similar mechanism, the tenant can additionally verify the
correctness of file paths in the file system and, more generally, of
any other file system meta-data (file names, number of files in a
directory, file creation time, etc.).

This Merkle-tree-based structure has two distinctive features com-
pared to other authenticated file systems: (1) Support for existing
file system operations: Iris maintains a balanced binary tree over
the file system directory structure to efficiently support existing
file system calls; and (2) Support for concurrent operations: The
Merkle tree supports efficient updates from multiple clients oper-
ating on the file system in parallel. Iris also optimizes for sequen-
tial file-block accesses: Sequences of identical version counters are
compacted intoa single leaf.

The authentication mechanism in Iris is practical and scalable: in
a prototype system, the use of a Merkle tree cache of only 10MB
increases the system throughput by a factor of 3 (compared to no
caching employed), the throughput is fairly constant for about 100
clients executing operations on the file system in parallel and the

operation latency overhead introduced by processing at the gate-
way (including the integrity checking mechanism) is at most 15%.
These numbers are reported from a user-level implementation of
Iris evaluated on commonly used benchmarks including I0Zone,
sequential file reads and writes, and archiving of an entire directory
structure [20].

3. AUDITING FRAMEWORK

Tools like Iris enable tenants to deploy their own security protec-
tions for data migrated to the cloud. But tenant self-protection is
only effective up to a point. Even with Iris in place, for instance, a
tenant’s data isn’t safe against wholesafe service-provider failure.
And while Iris enables a tenant to detect data loss resulting from a
drive crash, it doesn’t give a tenant early warning of the probable
precondition: A dangerous lack of provider storage redundancy.

A strong auditing framework is, we believe, the cornerstone of ten-
ant confidence in a service provider. Regulatory, reputational, and
contractual assurances of provider safeguards are important. But
ongoing technical assurances of solid security are irreplaceable.

Our research envisions a tenant-provider auditing relationship in
which a tenant (or an external auditing service acting on tenant’s
behalf as in Figure 1) can continuously audit a provider to prove
compliance with a given security policy. The provider responds
to a challenge with a compact, real-time proof. Auditing of this
kind draws on the structure of a cryptographic challenge-response
protocol: The tenant can rigorously verify the provider’s response,
obtaining a technically strong guarantee of policy compliance.

The challenge-response-style protocols we describe cover a range
of security properties, from data correctness to availability in face
of provider failures. We give a high-level overview of how they
work and what guarantees they offer. We also briefly discuss their
place in a larger vision, one in which trusted hardware can comple-
ment our auditing framework.

For concreteness, we mimic the cryptographic literature and re-
fer in this section to our canonical tenant as Alice and the cloud
provider as Bob. In our description here, Alice also acts as the
auditor verifying properties of cloud-stored data, but in our more
general framework from Figure 1 the auditing protocol could be
executed by a separate entity (the auditing service).

3.1 Auditing data retrievability

When Alice (the tenant) stores data with Bob (the cloud), the most
basic assurance she’s likely to seek is that her data remains intact.
She wants to know that Bob hasn’t let her data succumb to bit rot,
storage-device failures, corruption by buggy software, or myriad
other common threats to data integrity. Because even a well mean-
ing Bob may be vulnerable to infection by malware, Alice also
needs such assurance to be robust even if Bob cheats.

One strong, cryptographic approach to such assurance is what’s
called a Proof of Retrievability (PoR) [12]. A PoR is challenge-
response protocol in which Bob proves to Alice that a given piece
of data D stored in the cloud is intact and retrievable. While the
Iris system enables verification of data integrity for data retrieved
from the cloud in the course of performing regular file-system oper-
ations, a PoR enables verification of an entire data collection with-
out retrieving it from the cloud.

This goal seems at first counterintuitive, even impossible to achieve.



A PoR can demonstrate with a compact proof (on the order of, say,
hundreds of bytes) that every single bit of the data is intact and ac-
cessible to Alice, even if the data is very large (gigabytes or more).

3.1.1 Building a PoR, step by step

To give a sense of how a PoR works, we’ll develop a construction in
stages. An obvious candidate approach is for Alice simply to store
a cryptographic hash ¢ = h(D) of data D in the cloud. To verify
that D is intact, then, she challenges Bob to send her c. There are
two problems with this idea. First, Bob can cheat. He can store ¢
and throw away D. (A refinement incorporating a secret “nonce”
into the hash can address this problem.) Efficiency considerations
present a more fundamental drawback: To generate ¢ from D au-
thentically, Bob must hash all of D, a resource-intensive process if
D is big.

An alternative approach is for Alice to sample data blocks and ver-
ify their correctness, in effect spot-checking her data. Let r; denote
the ¢*" data block (blocks are fixed-size segments of data with typi-
cal sizes 4KB). Before storing the data into the cloud, Alice locally
retains a randomly selected block ;. To challenge Bob, she sends
him the block index 7, and asks him to transmit r;, which she veri-
fies against her local copy. (To amplify the probability of detecting
data corruption, Alice can request multiple blocks with indepen-
dent random indices %1, 72, . . . , i, Simultaneously.)

Now Bob only has to touch a small portion of the data to respond to
a challenge, solving the resource-consumption problem with hash-
ing. If D, or a large chunk of D, is missing or corrupted, Alice will
detect the fact with high probability, as desired. There are still a
couple of drawbacks to this scheme, though.

First, while Alice can detect large corruptions with high proba-
bility, she is unlikely to detect small corruptions (say, limited bit
rot)—even with multiple challenge blocks. Suppose her data has
1,000,000 blocks, and Alice challenges Bob on ten randomly se-
lected blocks. Then the probability of Alice’s detecting a one-bit
error is less than 0.001%. Second, Alice must use fresh blocks for
every challenge, so that Bob can’t predict future challenges from
past ones. So if Alice plans to challenge Bob many times, she must
store a considerable amount of data locally.

To solve the first problem, we can appeal to an error-correcting
code. This is a technique for adding redundancy to some piece of
data D (called message), yielding encoded data D* (called code-
word). Often D* is constructed by appending what are called “par-
ity blocks” to the end of D. If a limited portion of the encoded
data D* is corrupted or erased, it’s still possible to apply a de-
coding function to restore the original data D. The expansion
ratio (|D*|/|D|) and amount of tolerable corruption depend on
the code parameters. For the sake of example, though, we might
consider an error-correcting code that expands data by 10% (i.e.,
|D*|/|D| = 1.1) and can successfully decode provided that at
most 10% of the blocks in D™ are corrupted.

Now, if Alice stores D* instead of D, she is assured that her data
will be lost only if a significant fraction of her data is corrupted or
erased. Put another way, for a single bit of D to be irretrievably
corrupted, a large chunk of D* must be. Use of error-correcting
effectively amplifies the power of Alice’s challenges. Suppose, for
instance, that she uses a code that can correct up to 10% corrup-
tion. Now, issuing ten challenges against a 1,000,000-block data
collection will result in detection of any irretrievably corrupted bits

in D with probability more than 65%—a vast improvement over
0.001%!

Solving the problem of excessive local storage is fairly easy. Using
a locally stored secret key x, Alice can compute message authen-
tication codes (MACs) —secret-key digital signatures—over data
blocks r1,72,...,7n. She can safely have Bob store these MACs
c1,¢2,...,cpy alongside D*. To verify the correctness of a block
ri, Alice uses x and ¢;. So all Alice needs to store is the key k.

Figure 3 shows the data stored by Alice and Bob in this PoR con-
struction.
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Figure 3: Data stored by Alice and Bob in a PoR. To is-
sue a challenge to Bob, Alice indicates positions i1, ...,i,, to
Bob. Bob returns data blocks r;,,...,r;,,, along with MACs
Ciys- -+ Ci,» Alice verifies the correctness of r;; against MAC
cij,forall j € {1,...,m} using secret key &.

There are other challenges in constructing a practical PoR that we
haven’t discussed. For instance, Alice can send a PRF key dur-
ing a challenge, based on which Bob can infer the position of all
challenged blocks. It’s also possible for Bob to aggregate multi-
ple response blocks into one, rendering transmission and verifica-
tion more efficient. Additionally, making error-correcting practical
for large data collections requires some coding and cryptographic
tricks. But the solution presented here gives much of the intuition
behind a full-blown PoR construction.

A PoR can be used to verify the integrity and correctness of any
type of data collection stored in the cloud, including file systems
or key-value stores. Its salient property is that it gives Alice strong
guarantees about the correctness of an entire data collection using
minimal computation and bandwidth for auditing. The auditing
protocol could be performed by a third-party auditing service.

3.1.2  Variants

There are several variants for auditing data integrity. A Proof of
Data Possession (PDP) [3] enables public verification of data in-
tegrity by employing public-key cryptography. Compared with PoRs,
PDP provide only detection of large amounts of data corruption,
without a recovering mechanism. PDP and PoR protocols can be
either privately or publicly verifiable. In a privately-verifiable pro-
tocol, the auditing can be performed only by the party that knows
the secret key used for encoding the data. In contrast, in a publicly-
verifiable protocol, auditing can be performed by any third-party
service, at the cost of more computationally expensive encoding
and auditing protocols. The term Proof of Storage (PoS) [4] has
evolved as a convenient catchall term for PoRs and PDPs. Most



PoS protocols can be combined with other cryptographic protec-
tions, e.g., encryption for data confidentiality, to achieve a suite of
cloud data protections [13].

3.2 PoRsin Iris

A basic PoR, as described above, has one notable limitation: It
doesn’t handle data updates gracefully. Changing a single data
block in D requires propagation of changes across the parity blocks
of D*. So a basic PoR is only efficient for checks on static data,
such as archived data. The situation is somewhat better without er-
ror correction; researchers have proposed (asymptotically efficient)
PDP systems that support data updates [9]. But then support for
updates rules out recovering from small data corruption.

It’s natural, then, to ask whether we can have the best of both
worlds: A PoR for dynamically changing data. The answer is that
we can.

Check values (MACs or digital signatures) pose the first major chal-
lenge in supporting a dynamic PoR / PDP. Not only must they be
updated in conjunction with data-block updates, but when Alice
verifies them, she must be able to determine both that they’re cor-
rect and that they’re fresh.

The Iris system, as explained above, is designed precisely to tackle
the tricky problem of efficient freshness verification for file sys-
tems. So it’s an ideally suited platform for building a dynamic PoR.

An even more formidable challenge, though, is that of updating
error-correcting blocks as data blocks change. Briefly, to protect

against targeted corruption by Bob, the structure of the error-correcting

code, and thus the the pattern of parity block updates, must be hid-
den from him. Encryption doesn’t help: Basic encryption hides
data, not access patterns.

The way out of this conundrum is a model shift, inspired by the
deployment objectives of Iris. While PoR designers generally aim
to keep Alice’s storage to a minimum, Iris aims at enterprise-class
cloud deployments. When Alice is a company, not an individual,
substantial tenant-side resources are a reasonable expectation.

Thus the key idea for dynamic PoR layered on Iris: Have Alice
cache parity blocks locally, on the enterprise side, and periodically
back them up to the cloud. This approach conceals individual par-
ity block updates from Bob and hides the code structure. It has an-
other advantage too. Alice’s updates to parity blocks can be made
locally. As a single data block update results in multiple parity-
block updates, the ability to make updates locally greatly reduces
communication between Alice to Bob.

The end result is an enhancement such that Iris not only verifies
file integrity and freshness, but can also check efficiently whether
an entire file system is intact—down to the last bit. In addition, if
corruptions to data are found (either through auditing or through
integrity verification using the Merkle tree structure described in
Section 2), Iris can recover corrupted blocks from the additional re-
dundancy provided by the erasure code. Thus, Iris provides strong
guarantees of detection and remediation of data corruption, result-
ing in retrievability of an entire file system stored in the cloud. A
great benefit of Iris is that its parameters for the erasure code and
the communication during an audit can be adjusted for a desired
level of recoverability.

While the construction in Iris provides the first practical solution to
a dynamic PoR protocol, it relies on some amount of local stor-
age maintained by the tenant (in our Iris instantiation the client
maintains O(y/n) local storage). The problem of constructing a
dynamic PoR protocol with constant storage at the client side is the
major remaining theoretical research challenge.

3.3 Auditing of drive-failure resilience
Detecting data loss via Proofs-of-Storage is helpful. Preventing
it would be better. One of the major causes of data loss is drive
crashes. In a large data center with hundreds of thousands of drives,
drive failures is the norm rather than the exception. With 2-3% an-
nual failure rates published by manufactures and even higher num-
bers observed in the field [19], a large data center experiences thou-
sands of drive failures every year.

Services such as Amazon S3 claim to store files in triplicate. How
can this claim be verified remotely? At first glance, it seems im-
possible. Suppose Alice wants to verify that Bob is storing three
copies of her data. Downloading the three copies obviously won’t
work: If Bob is cheating and storing just one copy of the data, he
can simply transmit that one copy three times!

There’s a very simple solution. Alice can encrypt each copy of
her data under a separate key, yielding three distinct encryptions.
Executing a PoS against each encrypted version, then, ensures the
existence of three distinct copies.

In many cases, though, Alice doesn’t want to have to store her data
in encrypted form. She may want Bob to be able to process her data
for her or make it available to her friends. More importantly, the
existence of three distinct copies per se doesn’t ensure resilience to
drive crashes. All three copies could be sitting on the same drive,
after all. So the real problem is this: How can Alice verify that there
are three distinct copies of the data, each on a different drive?

A striking feature of this problem is that it’s primarily physical,
not logical. The objective is not to verify the encoding or mere
existence of data, but its disposition on a physical substrate.

A system called RAFT (Remote Assessment of Fault Tolerance) [8]
solves this problem. It allows Alice to verify that Bob has stored
some piece of data D so that it can survive up to ¢ drive failures,
for a desired parameter ¢t. RAFT allows D to be dispersed using
erasure coding, a more space-efficient technique than maintaining
full file copies.

RAFT operates specifically on data stored in rotational drives. It
exploits the performance limitations of these drives as a bounding
parameter. The more drives across which Bob has striped D, the
faster he can respond to a challenge. In particular, RAFT makes use
of bounds on the seek time of a rotational drive. Alice transforms
her data D using an erasure code into encoded data D*. D* can be
striped across c drives such that if any ¢ fail, it’s possible to recover
D. She asks Bob to store D™ across c drives.

To verify resilience to ¢ drive failures, Alice challenges Bob to fetch
a set of n randomly distributed blocks from D*. Suppose that Bob
stores D* on d drives. Each block fetch incurs a seek (assuming
that the random blocks are spread apart at large distance). So on
average, if a seek takes time p, Bob’s total fetch time is pun/d. If
d < ¢, then his response time will take pn(1/d — 1/c) longer than
expected, on average. By measuring Bob’s response time, then,



Alice (Tenant) ,/ Bob

$ /
/
/ /
y
™ /

/  Challenge: (ri, r)?

I, )

//
V4 Response: /

(Cloud Provider)

Alice (Tenant) /’ Bob

(Cloud Provider)
//
/
K .
/

/' Challenge: (r;, r)?

/,
. ) r.
/7 Response: ;

Figure 4: Responding to challenges from one disk on the left and two disks on the right.

Alice can determine whether he’s indeed using c drives, as required.
A graphical representation is given in Figure 4.

While we do not go into many details here, in a real-world set-
ting, many complications arise. Variations in drive performance
and also in network latency between Alice and Bob need to be
carefully measured. Sensitive statistical analysis and structuring
of challenges is required to accommodate these variations.

3.4 Hardware roots of trust

Another approach to assurance within the challenge-response frame-
work explored here is use of a hardware root of trust, as supported,
for instance, by Trusted Platform Modules (TPMs). These permit a
tenant to verify remotely, via a challenge-response protocol, that a
provider is executing a particular software stack.

But hardware roots of trust can’t directly enforce guarantees on
storage integrity or reliability. Even if Bob’s servers are configured
precisely as specified by Alice, and even if Alice controls their op-
eration, she obtains no direct guarantees about their corresponding
storage subsystem. For instance, the only way for Alice to deter-
mine that a file F' is intact in storage without full-file inspection
remains to perform a PoR. The same holds for properties verified
by Iris, HAIL, and RAFT: they can not be guaranteed solely by use
of trustworthy execution environments.

4. ENHANCING DATA AVAILABILITY WITH

HAIL

We’ve described an auditing framework that offers tenants visibility
into the operations of the cloud and verification of some properties
of their cloud-side data. But what happens if the cloud provider
fails to respond correctly to an audit because of data loss? A ma-
jor impediment to cloud adoption by enterprises is the danger of
provider temporary unavailability or even permanent failure. This
is a real threat, as illustrated by catastrophic provider failures re-
sulting in customer data loss [23].

We have designed a system called HAIL [7] (High-Availability
and Integrity Layer) specifically to address this challenge. HAIL
is predicated on the idea that it’s wise to distribute data across
multiple cloud providers for continuous availability. HAIL thus
leverages multiple cloud providers to construct a reliable and cost-
effective cloud storage service out of unreliable components. This
idea is similar in flavor to RAID [16]. RAID creates reliable stor-

age arrays from unreliable hard drives. HAIL extends this idea into
the cloud, the main differences being its support of a stronger ad-
versarial model and a higher-level abstraction.

HAIL works by promptly detecting and recovering from data cor-
ruption. The tenant (or a third-party service) periodically audits in-

dividual cloud providers toward this end. HAIL auditing is lightweight

in terms of both bandwidth and computation. Using the redundancy
embedded across different cloud providers, the tenant (or third-
party) remediates corruptions detected in a subset of providers.
HAIL is reactive, rather than proactive, meaning that it only re-
mediates data upon detected corruption.

4.1 System model

In HAIL a tenant distributes her data with embedded redundancy
to a set of n cloud providers: Si, ..., S,. In our model, data gen-
erated by all enterprise users is transmitted to the gateway (as in
Figure 1). The gateway performs some data encoding, described
below, optionally encrypts data, and distributes a data fragment to
each cloud provider.

HAIL operates in an adversarial model in which a strong mobile
adversary can corrupt all cloud providers over time. But within a
single epoch (a pre-determined period of fixed length) the adver-
sary can corrupt at most b out of n servers, for some b < n.

4.2 HAIL encoding

The encoding of data in HAIL is depicted in Figure 5. To provide
resilience against cloud provider failure, the gateway splits the data
into fixed-sized blocks, and encodes the data with a new erasure
code called dispersal code. Figure 5 shows a matrix-representation
of the data on the left, which results in an encoded matrix on the
right. Each row in the encoded matrix is a stripe or codeword ob-
tained by applying the dispersal code. It contains the original data
blocks, as well as new parity blocks obtained with the dispersal
code. Each matrix column is stored at a different cloud provider.
The dispersal code guarantees that the original data can be recon-
structed given up to b cloud provider failures (and n — b intact
columns).

A single layer of encoding, however, doesn’t suffice in HAIL’s
strong adversarial model. Consider the following attack: the ad-
versary corrupts b new servers in each epoch, picks a particular
row index 7 and corrupts the corresponding block 7; ; at server .S;.
After [n/b] epochs, the adversary corrupts all servers and the en-
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for both the server and dispersal codes.

tire row ¢ in the encoded matrix from Figure 5. In this case, the
redundancy of the dispersal code is not helpful in recovering the
corrupted row and the entire data D is permanently corrupted.

How can this creeping-corruption attack be prevented? By simply
auditing a few randomly selected blocks at each server, the proba-
bility that the tenant discovers the corruption of blocks in a single
row of the encoded matrix is very low. For this reason, within each
server is needed another encoding layer, called a server code. The
server code adds additional redundancy (parity blocks) to each col-
umn in the encoded matrix representation. The role of the server
code is to recover from a small amount of corruption at each cloud
provider, undetectable through the auditing protocol.

To prevent adversarial data corruption, the tenant also needs to store
MAC:s on data blocks in the cloud. With a new technique called an
integrity-protected dispersal code, it’s possible to use parity blocks
of the dispersal code themselves as MACs on the rows, and thus
reduce the storage overhead for integrity protection.

4.3 Auditing and recovering from failures

In HAIL, the gateway (or an external auditing service as shown in
Figure 1) periodically audits the correctness of the cloud data, by
contacting all cloud providers. The gateway sends a random row
index ¢ as a challenge to each cloud provider, and verifies, upon re-
ceiving the responses r; ;, for j € {1,...,n} the correctness of the
entire row. It’s also possible to aggregate multiple responses (mul-
tiple randomly selected blocks) from each server to reduce band-
width and amplify the probability of failure detection.

When data corruption at one or several cloud providers is detected,
the corrupted data can be reconstructed at the tenant side using the
two encoding layers: the dispersal and server code. Data recon-
struction is an expensive protocol, one that will be rarely invoked
(only upon detection of data corruption).

With its encoding, auditing and recovery mechanisms, HAIL pro-
vides resilience against a strong mobile adversary that can poten-
tially corrupt all providers over time. A limitation of HAIL is that
as designed, it doesn’t gracefully handle file updates. It’s most
suited to archival data, data stored in the cloud for retention pur-
poses and not regularly modified. We believe that more efficient
versions of HAIL can be constructed under a weaker adversarial
model that may be practical for short-term data storage.

5.  CONCLUSIONS AND OPEN PROBLEMS

We have described new techniques that secure cloud data by ensur-
ing a range of protections from integrity and freshness verification
to high data availability. We’ve also proposed an auditing frame-
work that offers tenants visibility into the correct operation of the
cloud. These techniques enable an extension of the trust perimeter
from enterprise internal data centers into public clouds as shown in
Figure 1. It is our hope that these techniques will alleviate some of
the concerns around security in the cloud and facilitate the migra-
tion of enterprise resources into public clouds.

We conclude by mentioning of some remaining issues and open
problems of interest in this context:

Performing computations over tenants’ encrypted data Our em-
phasis here has been on data integrity and availability, but data con-
fidentiality remains a major open problem. General computation
over a tenant’s encrypted data is possible using a technique called
fully-homomorphic encryption (FHE). A recent breakthrough [10],
FHE is not yet practical. Weaker, custom techniques can achieve
specific functionalities, though, such as searches [14] and general
SQL queries [17] over encrypted data.

The impossibility of general computations over multiple tenants’
encrypted data using only cryptographic techniques and no inter-
action among tenants is shown in [22]. A promising area of re-
search is the design of custom protocols for applications involving
multiple tenants’ data, e.g., data mining over multiple institutions’
medical records or financial transactions. We believe that combin-
ing secure hardware architectures with cryptography (e.g., secure
multi-party computation protocols) offers huge potential.

Ensuring tenant isolation Cloud co-tenancy with attackers can
jeopardize tenant data, as shown in [18] which explores cache-
based side channels for data exfiltration. The risks of co-tenancy
in storage systems, e.g., storage-system side channels, is an unex-
plored vector of attack deserving investigation in our view.

One approach to co-tenancy risks is to isolate tenants by imple-
menting Virtual Private Cloud (VPC) abstractions within a public
cloud. HomeAlone [24] enables a tenant to verify remotely that
a VPC is strongly enforced at the host level, in the sense of cre-
ating physical isolation of a tenant’s workloads. While this offers
a solution for extremely sensitive workloads, it can undercut the



economic benefits of tenant sharing of computing resources. For
this reason, we believe that solutions offering tenant isolation and
enabling sharing of cloud resources at the same time are extremely
important. Trusted hardware may play an important role, as well as
tight enforcement of logical isolation abstractions throughout the
software stack (hypervisor, OS, etc.) and across the cloud fabric.

Geolocation of data An open problem of particular commercial
interest is remote verification of the geographical location of cloud
data. The motivation is regulatory compliance: many laws require
providers to keep customer data within national boundaries [1], for
instance. Given the challenge of ensuring that data isn’t duplicated,
any solution will probably require a trusted data management plane
(via, e.g., trusted hardware). Localizing the pieces of this plane,
though, is an interesting challenge. Geolocation of trusted hard-
ware via remote timing from trusted anchor points seems a key
avenue of exploration.
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