DS 4400

Machine Learning and Data Mining |
Spring 2021

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

March 11 2021

Outline

* Boosting
— AdaBoost
— Properties of boosting
— Bagging vs Boosting

* Review of linear models
— Separating hyperplanes
e Support Vector Machines

— Linearly separable data

 Maximum margin classifier

— Non-linearly separable data
e Support vector classifier

Ensemble Learning

Consider a set of classifiers 4, ..., hy

Idea: construct a classifier H(x) that combines the
individual decisions of 4, ..., hy
e e.g., could have the member classifiers vote, or

* e.g., could use different members for different regions of the
instance space

Successful ensembles require diversity

* C(Classifiers should make different mistakes
e (Can have different types of base learners

How to Achieve Diversity

* Avoid overfitting
— Vary the training data

* Features are noisy

— Vary the set of features

Two main ensemble learning methods
* Bagging (e.g., Random Forests)
* Boosting (e.g., AdaBoost)

Bagging

Original
D Training data

Step 1:
Create Multiple D

Data Sets !

Step 2:

Build Multiple / c.

Classifiers

)

L

<

—~

Step 3.
Combine
Classifiers

1* :
¢ 4

Majority Votes

Overview of AdaBoost

T

6() = sign()_ fehe(x))
i=1
v

Better classifiers will get
Mis-classified examples higher weights
get higher weights

Correct examples get ¥ = hg(x)

lower weights I

— - ®

T ha()

|

... . S

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
stons of the dataset, and then combined to produce a final prediction.

Uniform weights

AdaBoost

1: Initialize a vector of n uniform weights wy

2: fort=1,..., T
3: Train model h; on X,y with weights wy
4: Compute the weighted training error of A
5: Choose 3¢ = = 1In (ﬂ)
, 5 <

6: Update all instance weights:

W41, = Wwei €XP (—Bryihe(Xq))
7 Normalize w11 to be a distribution

8: end for
9: Return the hypothesis

T
H(x) = sign <Z Jtht(x))
t=1

* Size of point represents the instance’s weight

AdaBoost

1: Initialize a vector of n uniform weights wy
2: fort=1..... T
3: Train model h; on X,y with weights wy
4 Compute the weighted traming error of /i
5: Choose 3; = £+ In (l_—et)
. 5 p

6: Update all instance weights:

Wy, = Wi exp (—Pryihi(X;))
7 Normalize w;, to be a distribution
8: end for
9: Return the hypothesis

T
H(x) = sign Z Behi(X)
t=1

N

AdaBoost

. Initialize a vector of n uniform weights wy

cfort=1.....T

3: Train model h; on X,y with weights wy
4 Compute the weighted traming error of /i
5: Choose 3; = +In (1_—6‘)
. 5 .

6: Update all instance weights:

Wy, = Wi exp (—Pryihi(X;))
7 Normalize w;11 to be a distribution
8: end for

: Return the hypothesis

T
H(x) = sign (Z .3tht(x)>
t=1

* [, measures the importance of h,

e If €t < 05, then /81‘ > 0

(can trivially guarantee)

AdaBoost

1: Initialize a vector of n uniform weights wy
2: fort=1,..., T
3: Train model h; on X,y with weights wy
4: Compute the weighted training error of h;
5: Choose 3; = +In (1;—?)
6: Update all instance weights:
w14 = Wy i exp (—Lryihe(Xi))
7 Normalize w;11 to be a distribution
8: end for
9: Return the hypothesis

T
H(x) = sign Z Behe(X)
t=1

10

AdaBoost

1: Initialize a vector of n uniform weights wy
2: fort=1,..., T
3: Train model h; on X,y with weights wy
4: Compute the weighted training error of h;
5% Choose 3; = £ In (ﬂ)
‘ 5 <

6: Update all instance weights:

w14 = Wy i exp (—Lryihe(Xi))
7 Normalize w;11 to be a distribution

end for
: Return the hypothesis

T
H(x) = sign (Z .3tht(x)>
t=1

« Weights of correct predictions are multiplied by e~ <1
* Weights of incorrect predictions are multiplied by ePt > 1

11

AdaBoost

1: Initialize a vector of n uniform weights wy
2: fort=1,..., T
3: Train model h; on X,y with weights wy
4: Compute the weighted traming error of hy
5% Choose 3; = 1 In (ﬂ)
‘ 2 €t

6: Update all instance weights:

Wwii1,; = Wi Xp (—Beyihe(Xi))
7 Normalize w;11 to be a distribution
8: end for
9: Return the hypothesis

T
H(x) = sign (Z 3t/1t(X))
t=1

* Compute importance of hypothesis f;
* Update weights w,

12

AdaBoost

. Initialize a vector of n uniform weights wy

DO |

cfort=1.....T

CU W

O‘.v

Train model h; on X,y with weights wy
Compute the weighted training error of h;

Choose 3y = %h] (ﬂ)

€t
Update all instance weights:
Wi41,i = Wt €XP (—,Bt,yz' ht(xi))
Normalize w¢.1 to be a distribution
end for
: Return the hypothesis

T
H(x) = sign [> Bhi(x)
t=1

13

AdaBoost

1: Initialize a vector of n uniform weights wy
2: fort=1.....T
3: Train model h; on X,y with weights wy
4: Compute the weighted training error of hy
5% Choose f3; = + In (1_—6‘)
: Z €t

6: Update all instance weights:

Wty1,4 = Wty exp (—;‘_)’ty‘,;ht(xi))
7 Normalize w¢11 to be a distribution
8: end for
9: Return the hypothesis

T
H(x) = sign (Z ,3tht(x))
t=1

* Compute importance of hypothesis f;
* Update weights w,

14

AdaBoost

1: Initialize a vector of n uniform weights wy

2: fort=1,....T
3: Train model h; on X,y with weights wy
4: Compute the weighted training error of h;
5: Choose 3; = %ln (ﬂ)
. p

6: Update all instance weights:

Wt41,i = Wt 3 €XP (—Btﬂyiht(xi))
7 Normalize w11 to be a distribution
8: end for

9: Return the hypothesis

T
H(x) = sign (Z ,x?tht(x))

t=1

* Final model is a weighted combination of members

— Each member weighted by its importance

15

N =

o0

AdaBoost

INPUT: training data X,y = {(x;,vi) }i—q,

the number of iterations 71’

o

. Initialize a vector of n uniform weights w; = [7—11 .
cfort=1.....T

Train model h; on X,y with instance weights wy

Compute the weighted training error rate of h;:

€t — E "wt’z-
iy Fhe(x;)
Choose f; = 1 1n (ﬂ)
. <,

Update all instance weights:
Wiy = we; exXp (—Pyihe(x;)) Yi=1,....n

Normalize w1 to be a distribution:

u"‘t-l-].,i .
Wit = S Vi=1,...,n
Zj:l u't"‘la]
- end for

: Return the hypothesis
T

H(x) = sign Zﬂth.t(x)

t=1

Train with Weighted Instances

* For algorithms like logistic regression, can simply
incorporate weights w into the cost function

— Essentially, weigh the cost of misclassification differently
for each instance

n

Jeea(0) = = > wi [yilog he(x;) + (1 = yi) log (1 — he(x:))] + All6p1.qll5
1=1

* For algorithms that don’t directly support instance

weights (e.g., ID3 decision trees, etc.), use weighted
bootstrap sampling

— Form training set by resampling instances with
replacement according to w

17

Properties

* |f a pointis repeatedly misclassified
— Its weight is increased every time

— Eventually it will generate a hypothesis that
correctly predicts it

* |n practice AdaBoost does not typically overfit
* Does not use explicitly regularization

Resilience to overfitting

20-

: AdaBoost on OCR data with
- Test

C4.5 as the base learner

—

percent error
—

($))

Q...

10 100 1000
rounds of boosting
* Empirically, boosting resists overfitting
* Note that it continues to drive down the test error
even AFTER the training error reaches zero

Increases confidence in prediction when adding more rounds

19

Base Learner Requirements

 AdaBoost works best with “weak” learners
— Should not be complex
— Typically high bias classifiers

— Works even when weak learner has an error rate just
slightly under 0.5 (i.e., just slightly better than random)

* Can prove training error goes to 0 in O(log n) iterations

 Examples:

— Decision stumps (1 level decision trees)
— Depth-limited decision trees

— Linear classifiers

20

AdaBoost with Decision Stumps

Training data Classified data

AdaBoost in Practice

Strengths:
* Fast and simple to program
* No parameters to tune (besides T) Learn with Cross-Validation

* No assumptions on weak learner Error less than %

When boosting can fail:

* Given insufficient data
* Overly complex weak hypotheses
* Can be susceptible to noise

* When there are a large number of outliers

22

Boosted Decision Trees

. Error Rates on 27
* Boosted decision trees are one of Benchmark Data Sets

the best “off-the-shelf” classifiers
— i.e., no parameter tuning

* Limit member hypothesis
complexity by limiting tree depth
* Gradient boosting methods are

typically used with trees in R IR W
practice boosting C4.5

“AdaBoost with trees is the best off-the-shelf classifier in the world” -Breiman, 1996
(Also, see results by Caruana & Niculescu-Mizil, ICML 2006)

23

Bagging vs Boosting

Bagging

Resamples data points

Weight of each classifier
is the same

Only variance reduction

Applicable to complex
models with low bias,
high variance

VS.

Boosting

Reweights data points (modifies their
distribution)

Weight is dependent on
classifier’s accuracy

Both bias and variance reduced —
learning rule becomes more complex
with iterations

Applicable to weak
models with high bias,
low variance

24

Review

* Ensemble learning are powerful learning methods

— Better accuracy than standard classifiers

* Bagging uses bootstrapping (with replacement),
trains T models, and averages their prediction

— Random forests vary training data and feature set at
each split
* Boosting is an ensemble of T weak learners that
emphasizes mis-predicted examples

— AdaBoost has great theoretical and experimental
performance

— Can be used with linear models or simple decision trees
(stumps, fixed-depth decision trees)

Outline

* Boosting
— AdaBoost
— Properties of boosting
— Bagging vs Boosting

* Review of linear models
— Separating hyperplanes
e Support Vector Machines

— Linearly separable data

 Maximum margin classifier

— Non-linearly separable data
e Support vector classifier

Linear models we’ve seen

Classifiers with linear decision boundary:

27

Hyperplane

* Line (2-dimensions): 8y + 01x1 + 0,x, =0
* Hyperplane (d-dimensions): 8y + 61x1 + - 04x4 = 0

FIGURE 9.1. The hyperplane 1 + 2X, + 3X2 = 0 is shown. The blue region is
the set of points for which 1 +2X,; +3Xs > 0, and the purple region is the set of
points for which 1+ 2X, + 3X, < 0.

28

Linear separability

® o L
I A
linearly %S o. RN
separable ° o, A AAA 4
* .. ® A AAA
A AA @
A
o
A
A
o o A A A‘ AAA
not © e A%a oo 4
_ ® eho 4AA, 0:: o
linearly :.o o A kA 00, A
separable o * A A4

29

Notation

T
* Training data x4, ..., xy with x; = (xl-l, ...,xl-d)
* Labels are from 2 classes: y; € {—1,1}

e Goal:

— Build a model to classify training data

— Test it on new vector x= (x4, ..., x4)! to predict
label y

Separating hyperplane

Og + 01x;; + - 04x;4 >0 ify; =1 For all training
data x;, y;
90-|—91xl.1 +...deid<0 lfyl=_1 l E{l,,N}

Perfect separation between the 2 classes .

Separating hyperplane

yi(6p + 01x;1 + - 04%;4) >0

X,

For all training
data Xi» Vi,
i €{1,.., N}

32

From separating hyperplane to
classifier

T
Training data x4, ..., xy with x; = (xl-l, ...,xl-d)
Labels are from 2 classes: y; € {—1,1}

Let B, ..., 8, (will be learned) such that:

Yi(0o + O1x;1 + -+ 0qx;q) > 0
Classifier
f(z) =sign(0y + 012, + -+ 0,42z4) = sign(87z)
Classify new test point x

— If f(x) > 0 predicty=1
— Otherwise predict y= —1

Separating hyperplane

* |f a separating hyperplane exists, there are
infinitely many

e Which one should we choose?

Intuition

Which of these linear classifiers is the best?

35

Classifier Margin

Define the margin of a
linear classifier as the
width that the
boundary could be
increased by before
hitting a datapoint.

36

Maximum Margin

Define the margin of a
linear classifier as the
width that the
boundary could be
increased by before
hitting a data point.

Choose the maximum
margin linear
classifier: the linear
classifier with the
maximum margin.

37

Support Vectors (informally)

e Support vectors = points “closest” to hyperplane
e If support vectors change, classifier changes

* If other points change, no effect on classifier

38

Finding the maximum margin classifier

T
* Training data x4, ..., xy with x; = (xl-l, ...,xl-d)

* Labels are from 2 classes: y; € {—1,1}

maximize M
Yi(0o + 011+ 04x;q) = M Vi
lol], = 1

Normalization constraint
(to have unique solution)

Each pointis on the
right side of hyper-
plane at distance = M

Properties of solution

* The solution to the optimization provides a
convenient way to rewrite the decision
function using new variables «;

— Originally: f(z) = sign(8y + 61z, + - 0,42,)
= sign(6'z)
— Equivalentto: f(z) =0y + X ; < z,x; >

* For test point z, the inner product< z,x; > =2z
each training instance x; in turn.

Txl- with

@ o And a; # 0 only for support vectors! For all other
; training points a; = 0.

Linear separability

) ® o L
linearly % .. IR
separable ° o, A AAA 4
* .. ® A AAA
A AA @
A
o
A
A
o o A A A‘ AAA
not © e A%a oo 4
_ ® eho 4AA, 0:: o
linearly :.o o A kA 00, A
separable o * 4 A4 i a

(but almost)

41

Non-separable case

Optimization problem has no solution!

42

Support vector classifier

* Allow for small number of mistakes on training
data

e Soft margin classifier

max M
yl'(eo —+ leil + .- del'd) = M(l — €)Vl
loll, =1 |
€,=>0,2;6,<C Slack

|

!

Error Budget (Hyper-parameter)

43

max M

yi(HO + Hlxi1 + - deid) = M(l — €) Vi

e; =0 ®
Correct side 2 -
of margin

e, = 1 |
€; = O:Zi €, =C Bir(;(g);t Slack
0< Ei<1

Violates margin
Correct label

€ > 1
Incorrect label
At most C data
points

44

Error Budget and Margin

Larger C Smaller C

Find best hyper-parameter C by cross-validation

45

Support vectors

Support vectors: all points within the margin of the
classifier

46

Support vector classifier

e Just like in separable case, gives solution of the form:
f(Z) = 00+2ai < Z,X; >
i

Where a; # 0 for support vectors (and a; = 0 for all other
training points)

* This model is called
— Support Vector Classifier
— Linear SVM
— Soft-margin classifier

Properties

e Maximum margin classifier
— Classifier of maximum margin
— For linearly separable data

e Support vector classifier

— Allows some slack and sets a total error budget
(hyper-parameter)

* For both, final classifier on a point is a linear
combination of inner product of point with

support vectors
— Efficient to evaluate

Acknowledgements

e Slides made using resources from:
— Andrew Ng
— Eric Eaton
— David Sontag
— Andrew Moore

* Thanks!

