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Outline
• Boosting
– AdaBoost
– Properties of boosting
– Bagging vs Boosting

• Review of linear models
– Separating hyperplanes

• Support Vector Machines
– Linearly separable data
• Maximum margin classifier

– Non-linearly separable data
• Support vector classifier
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Ensemble Learning
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How to Achieve Diversity

• Avoid overfitting
– Vary the training data

• Features are noisy
– Vary the set of features

Two main ensemble learning methods
• Bagging (e.g., Random Forests)
• Boosting (e.g., AdaBoost)
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Bagging

5Majority Votes



Overview of AdaBoost
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Better classifiers will get 
higher weights• Mis-classified examples 

get higher weights
• Correct examples get 

lower weights

Uniform weights
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AdaBoost
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AdaBoost
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AdaBoost
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AdaBoost
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AdaBoost
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AdaBoost
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• Compute importance of hypothesis 𝛽!
• Update weights 𝑤!



AdaBoost
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AdaBoost
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• Compute importance of hypothesis 𝛽!
• Update weights 𝑤!



AdaBoost
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AdaBoost
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Train with Weighted Instances
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Properties

• If a point is repeatedly misclassified
– Its weight is increased every time
– Eventually it will generate a hypothesis that 

correctly predicts it

• In practice AdaBoost does not typically overfit
• Does not use explicitly regularization
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Resilience to overfitting
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Increases confidence in prediction when adding more rounds



Base Learner Requirements

20



AdaBoost with Decision Stumps
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AdaBoost in Practice
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Learn with Cross-Validation
Error less than ½ 



Boosted Decision Trees
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Bagging vs Boosting
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Applicable to complex 
models with low bias, 
high variance

Applicable to weak 
models with high bias, 
low variance



Review
• Ensemble learning are powerful learning methods
– Better accuracy than standard classifiers

• Bagging uses bootstrapping (with replacement), 
trains T models, and averages their prediction
– Random forests vary training data and feature set at 

each split

• Boosting is an ensemble of T weak learners that 
emphasizes mis-predicted examples
– AdaBoost has great theoretical and experimental 

performance 
– Can be used with linear models or simple decision trees 

(stumps, fixed-depth decision trees)
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Outline
• Boosting
– AdaBoost
– Properties of boosting
– Bagging vs Boosting

• Review of linear models
– Separating hyperplanes

• Support Vector Machines
– Linearly separable data
• Maximum margin classifier

– Non-linearly separable data
• Support vector classifier
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Linear models we’ve seen

Classifiers with linear decision boundary:

• Logistic regression
• Linear discriminant analysis
• Today: support vector classifier
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Hyperplane
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• Line (2-dimensions): 𝜃- + 𝜃.𝑥. + 𝜃/𝑥/ = 0
• Hyperplane (d-dimensions): 𝜃- + 𝜃.𝑥. +⋯𝜃0𝑥0 = 0



Linear separability
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Notation

• Training data 𝑥!, … , 𝑥" with 𝑥# = 𝑥#! , … , 𝑥#$
%

• Labels are from 2 classes: 𝑦# ∈ {−1,1}
• Goal: 
– Build a model to classify training data
– Test it on new vector 𝑥= 𝑥", … , 𝑥# $ to predict 

label 𝑦
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Separating hyperplane
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𝜃- + 𝜃.𝑥1. +⋯𝜃0𝑥10 > 0 if 𝑦1 = 1

𝜃- + 𝜃.𝑥1. +⋯𝜃0𝑥10 < 0 if 𝑦1 = −1

Perfect separation between the 2 classes

For all training 
data 𝑥1, 𝑦1
𝑖 ∈ {1,… ,𝑁}



Separating hyperplane
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𝑦1(𝜃- + 𝜃.𝑥1. +⋯𝜃0𝑥10) > 0
For all training 

data 𝑥1, 𝑦1,
𝑖 ∈ {1, … ,𝑁}



From separating hyperplane to 
classifier
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• Training data 𝑥", … , 𝑥% with 𝑥& = 𝑥&" , … , 𝑥&#
'

• Labels are from 2 classes: 𝑦& ∈ {−1,1}
• Let 𝜃(, … , 𝜃# (will be learned) such that:

• Classifier 
𝑓 𝑧 = sign 𝜃! + 𝜃"𝑧" +⋯𝜃#𝑧# = sign(𝜃$z)

• Classify new test point 𝑥
– If 𝑓 𝑥 > 0 predict y= 1
– Otherwise predict y= −1

𝑦1(𝜃- + 𝜃.𝑥1. +⋯𝜃0𝑥10) > 0



Separating hyperplane

• If a separating hyperplane exists, there are 
infinitely many

• Which one should we choose?
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Intuition
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Classifier Margin Define the margin of a 
linear classifier as the 
width that the 
boundary could be 
increased by before 
hitting a datapoint.
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Maximum Margin
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Define the margin of a 
linear classifier as the 
width that the 
boundary could be 
increased by before 
hitting a data point.

Choose the maximum 
margin linear 
classifier: the linear 
classifier with the 
maximum margin.



Support Vectors (informally)
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• Support vectors = points “closest” to hyperplane
• If support vectors change, classifier changes
• If other points change, no effect on classifier



Finding the maximum margin classifier
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• Training data 𝑥", … , 𝑥% with 𝑥& = 𝑥&" , … , 𝑥&#
'

• Labels are from 2 classes: 𝑦& ∈ {−1,1}

maximize M

𝑦& 𝜃( + 𝜃"𝑥&" +⋯𝜃#𝑥&# ≥ 𝑀 ∀𝑖
𝜃

)
= 1

Normalization constraint
(to have unique solution)

Each point is on the 
right side of hyper-

plane at distance ≥ 𝑀



Properties of solution

• The solution to the optimization provides a 
convenient way to rewrite the decision 
function using new variables 𝛼#
– Originally: 𝑓 𝑧 = sign 𝜃( + 𝜃"𝑧" +⋯𝜃#𝑧#
= sign(𝜃$z)

– Equivalent to: 𝑓 𝑧 = 𝜃( + ∑& 𝛼& < 𝑧, 𝑥& >
• For test point z, the inner product < 𝑧, 𝑥1 > = 𝑧2𝑥1 with 

each training instance 𝑥1 in turn.
• And 𝛼1 ≠ 0 only for support vectors! For all other 

training points 𝛼1 = 0.
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Linear separability
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(but almost)



Non-separable case
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Optimization problem has no solution!



Support vector classifier

• Allow for small number of mistakes on training 
data

• Soft margin classifier
max M

𝑦# 𝜃& + 𝜃!𝑥#! +⋯𝜃$𝑥#$ ≥ 𝑀 1 − 𝜖# ∀𝑖
𝜃

'
= 1

𝜖# ≥ 0,∑# 𝜖# ≤ 𝐶

43Error Budget (Hyper-parameter)

Slack



max M
𝑦! 𝜃" + 𝜃#𝑥!# +⋯𝜃$𝑥!$ ≥ 𝑀(1 − 𝜖! ) ∀𝑖
𝜃 % = 1
𝜖! ≥ 0,∑! 𝜖! = 𝐶
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Error 
Budget

Slack

𝜖1 = 0
Correct side 

of margin

0 < 𝜖1 < 1
Violates margin

Correct label

𝜖1 > 1
Incorrect label
At most C data 

points



Error Budget and Margin
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Larger C Smaller C

Find best hyper-parameter C by cross-validation



Support vectors
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Support vectors: all points within the margin of the 
classifier



Support vector classifier

• Just like in separable case, gives solution of the form:

𝑓 𝑧 = 𝜃- +>
1

𝛼1 < 𝑧, 𝑥1 >

Where 𝛼1 ≠ 0 for support vectors (and 𝛼1 = 0 for all other 
training points)

• This model is called 
– Support Vector Classifier
– Linear SVM
– Soft-margin classifier
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Properties

• Maximum margin classifier
– Classifier of maximum margin
– For linearly separable data

• Support vector classifier
– Allows some slack and sets a total error budget 

(hyper-parameter)
• For both, final classifier on a point is a linear 

combination of inner product of point with 
support vectors
– Efficient to evaluate
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