
CY 2550 Foundations of 
Cybersecurity

Systems Security

Alina Oprea
Associate Professor, Khoury College

Northeastern University
March 26 2020



Announcements

• Social engineering and ethics projects are due today
• Forensics project will be released today, due on April 4
• Exploit project is the last one, due on April 17
• Final exam
• Take home
• Released on April 13 at 11:45am EST, due on April 14 at noon
• Submitted through Gradescope
• Questions on the material to test general understanding
• Might include questions from the “Countdown to Zero Day” book

2



Threat Model
Intro to Computer Architecture
Hardware Support for Isolation
Security Technologies 
Principles

Systems Security

3



Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Memory Unsafety

Problem: any process can 
read/write any memory

Infect the OS 
code with 

malicious code

Scan memory to find 
usernames, passwords, saved 

credit card numbers, etc.

4



Memory

0

128 MB
Hard DriveEthernet/Wifi

OS

Device Unsafety

Problem: any process can access 
any hardware device directly
Access control is enforced by the 
OS, but OS APIs can be bypassed

Send stolen data to the thief, 
attack other computers, etc.

Read/write/delete 
any file

5



Review

Old systems did not protect memory or devices
• Any process could access any memory
• Any process could access any device

Problems
• No way to enforce access controls on 

users or devices
• Processes can steal from or destroy each 

other
• Processes can modify or destroy the OS

On old computers, systems security was 
literally impossible
How do we fix these in modern architectures?



ISOLATION

7



Threat Model
Intro to Computer Architecture
Hardware Support for Isolation
Security Technologies
Principles

Systems Security

8



Modern Architecture

To achieve systems security, we need process isolation
• Processes cannot read/write memory arbitrarily
• Processes cannot access devices directly

How do we achieve this?
Hardware support for isolation

1. Protected mode execution (a.k.a. process rings)
2. Virtual memory

9



Most modern CPUs support protected mode
x86 CPUs support three rings with different privileges
• Ring 0: Operating System

• Code in this ring may directly access any device
• Ring 1, 2: device drivers

• Code in these rings may directly access some devices
• May not change the protection level of the CPU

• Ring 3: userland
• Code in this ring may not directly access devices
• All device access must be via OS APIs
• May not change the protection level of the CPU

Most OSes only use rings 0 and 3

Protected Mode

Ring 0
OS

Ring 1

Ring 2

Ring 3

Device Drivers

Device Drivers

Applications

10



System Boot Sequence

1. On startup, the CPU starts in 16-bit real mode
• Protected mode is disabled
• Any process can access any device

2. BIOS executes, finds and loads the OS
3. OS switches CPU to 32-bit protected mode
• OS code is now running in Ring 0
• OS decides what Ring to place other processes in

4. Shell gets executed, user may run programs
• User processes are placed in Ring 3

11



Changing Modes

Applications often need to access the OS APIs
• Writing files
• Displaying things on the screen
• Receiving data from the network
• etc…

But the OS is Ring 0, and processes are Ring 3
How do processes get access to the OS?
• Invoke OS APIs with special assembly instructions

• Interrupt: int 0x80
• System call: sysenter or syscall

• int/sysenter/syscall cause a mode transfer from Ring 3 to Ring 0

12



Memory

0

128 MB
Hard DriveEthernet/WifiProtection in Action

Protected mode stops direct access 
to devices
All device access must go through 
the OS
OS will impose access control checks

CPU Ring

0

Ring 3 = protected mode. 
No direct device access

Subject to access controls checks, 
e.g. file permissions and firewalls

OS

3
13



Status Check

At this point we have 
protected the devices 
attached to the system…

… But we have not 
protected memory

Memory

0

4 GB
Hard DriveEthernet/Wifi

OS

Infect the OS 
code with 

malicious code

Scan memory to find 
usernames, passwords, saved 

credit card numbers, etc.

CPU Ring

3
14



Virtual Memory

Modern CPUs support virtual memory
Creates the illusion that each process runs in its own, empty memory 
space
• Processes can not read/write memory used by other processes
• Processes can not read/write memory used by the OS

In later courses, you will learn how virtual memory is implemented
• Base and bound registers
• Segmentation
• Page tables

Today, we will do the cliffnotes version…

15



Physical
Memory

0

4 GB

OS

Virtual Memory
Process 1

0

4 GB

Virtual Memory
Process 2

0

4 GB

Chrome 
believes it is the 

only thing in 
memory

Skype believes 
it is the only 

thing in 
memory

16



Physical
Memory

0

4 GB

OS

Virtual Memory
Process 1

0

4 GB

CPU

Physical 
Address: 

81102

Virtual Addr. Physical Addr.
16732 81100
16734 81102
16736 93568
16738 93570

Read 
Address 
16734

Page Table

17



Virtual Memory Implementation

Each process has its own virtual memory space
• Each process has a page table that maps in virtual space into physical space
• CPU translates virtual address to physical addresses on-the-fly

OS creates the page table for each process
• Installing page tables in the CPU is a protected, Ring 0 instruction
• Processes cannot modify their page tables

What happens if a process tries to read/write memory outside its page 
table?
• Segmentation Fault or Page Fault
• Process crashes
• In other words, no way to escape virtual memory

18



Threat Model
Intro to Computer Architecture
Hardware Support for Isolation
Security Technologies
Principles

Systems Security

19



Review

At this point, we have achieved process isolation
• Protected mode execution prevents direct device access
• Virtual memory prevents direct memory access

Requires CPU support
• All moderns CPUs support these techniques

Requires OS support
• All moderns OS support these techniques
• OS controls process rings and page tables

Warning: bugs in the OS may compromise 
process isolation

20



Towards Secure Systems

Now that we have process isolation, we can build more complex 
security features

File Access Control

Firewall

Anti-virus

Secure Logging

21



File Access Control

Hard Drive

Process 1 Process 3Process 2

OS

All disk access is mediated 
by the OS
OS enforces access 
controls

22



Limitations

Hard Drive

OS

Malware can still cause 
damage
Discretionary access 
control means that 
isolation is incomplete

23



Anti-virus

Hard Drive

OS

Anti-virus process is 
privileged
• Often runs in Ring 0

Scans all files looking for 
signatures
• Each signature uniquely 

identifies a piece of 
malware

Files scanned on creation 
and access

Anti-virus

24



Anti-virus

Hard Drive

OS

Anti-virus process is 
privileged
• Typically runs in Ring 0

Scans all files looking for 
signatures
• Each signature uniquely 

identifies a piece of 
malware

Files scanned on creation 
and access

Anti-virus

Process 1

25



Example: Zeus Yara signature

26



Example: 
Cryptolocker Yara 
signature

27



Signature-based Detection

Key idea: identify invariants that correspond to malicious code or data
Example – anti-virus signatures
• List of code snippets that are unique to known malware

• Zero-day malware: malware for which signatures are not available 
(not yet known and analyzed)

Problems with signatures
• Must be updated frequently
• May cause false positives

• Accidental overlaps with good programs and benign network traffic

28



29



Evasion: Avoiding Anti-virus

Malware authors go to great length to avoid detection by AV
Polymorphism
• Viral code mutates after every infection

Packing
• Malware code is encrypted, key is changed every infection
• Decryption code is vulnerable to signature construction
• Polymorphism may be used to mutate the decryption code

b = a + 10 b = a + 5 + 5 b = (2 * a + 20) / 2

30



Firewall

OS

Firewall process is 
privileged
• Often runs in Ring 0

Selectively blocks network 
traffic
• By process
• By port
• By IP address
• By packet content

Inspects outgoing and 
incoming network traffic

Firewall

Ethernet/Wifi

31



Network Intrusion Detection Systems

NIDS for short
Snort
• Open source intrusion prevention system capable of 

real-time traffic analysis and packet logging
• Identifies malicious network traffic using signatures

Bro / Zeek
• Open source network monitoring, analysis, and logging 

framework
• Can be used to implement signature based detection
• Capable of more complex analysis
• ML-based threat detection

32



Threat Model
Intro to Computer Architecture
Hardware Support for Isolation
Security Technologies
Principles

Systems Security

33



Security Principles

At this point, we’ve explored the basics of secure systems architecture
• Device and memory isolation
• Basis for all higher-level functionality

But, designing secure systems (and breaking them) remains an art
Security principles help bridge the gap between art and science
• Developed by Saltzer and Schroeder
• “The Protection of Information in Computer Systems”, 1975

34



Example

Built-in security features of Windows 10
• Secure boot: cryptographically verified bootup process
• Bitlocker full-drive encryption
• Kernel protections, e.g. Address Space Layout Randomization (ASLR)
• Cryptographic signing for device drivers
• User authentication
• User Account Control: permission check for privileged operations
• Anti-virus and anti-malware
• Firewall
• Automated patching
• System logs

35



Defense in Depth

Don't depend on a single protection 
mechanism, since they are apt to fail

Even very simple or formally verified 
defenses fail
Layering defenses increases the 
difficulty for attackers
Defenses should be complementary!

High walls

Moat

Drawbridge Dude with a 
crossbow

36



Principles Overview

1. Fail-safe Defaults
2. Separation of Privilege
3. Least Privilege
4. Open Design
5. Economy of Mechanism
6. Complete Mediation
7. Compromise Recording
8. Work Factor

37



Principle 1: Fail-safe Defaults

The absence of explicit permission is equivalent to no 
permission

Systems should be secure "out-of-the-box"
• Most users stick with defaults
• Users should "opt-in" to less-secure configurations

Examples. By default…
• New user accounts do not have admin or root privileges
• New apps cannot access sensitive devices
• Passwords must be >8 characters long
• Etc.

38





Principle 2: Separation of Privilege

Privilege, or authority, should only be distributed to subjects that 
require it

Some components of a system should be less privileged than others
• Not every subject needs the ability to do everything
• Not every subject is deserving of full trust

• Examples
• Not every user should have access to all enterprise machines
• Should use a different admin account for every machine

40



Principle 3: Least Privilege

Subjects should possess only that authority that is required to operate 
successfully

Closely related to separation of privilege
Not only should privilege be separated, but subjects should have the 
least amount necessary to perform a task

Examples
• Do not use sudo if command can be executed without 
• Mobile apps should only have the permissions they need

41



Privilege Over Time

All users 
and 

processes

OS

Users and 
Processes 

with System 
Privileges

OS
Users and 

Processes with 
System Privileges

Users and 
Processes

Unprivileged 
Processes

DOS, Windows 3.1 Win 95 and 98
Win NT, XP, 7, 8, 10

Linux, BSD, OSX

42



Privilege Hierarchy

OS
Users and Processes with 

System Privileges

Users and Processes

Unprivileged Processes

Ring 0

Ring 3

• Device drivers, kernel 
modules, etc.

• sudo, “administrator” 
accounts, OS services 

• Everything that is isolated and 
subject to access control

• chroot jails, containers

43



Principle 4: Open Design

Kerckhoff's Principle: A cryptosystem should be secure even if everything 
about the system, except the key, is public knowledge

Generalization: A system should be secure even if the adversary knows 
everything about its design

• Design does not include runtime parameters like secret keys
Contrast with “security through obscurity”

Examples:
• Crypto algorithm is known
• Authentication method is known
• Attacker knows network topology 

44



Principle 5: Simplicity of Design

Also called “Economy of Mechanism”
Simplicity of design implies a smaller 
attack surface

Correctness of protection mechanisms 
is critical
• We need to be able to trust our 

security mechanisms
• Easier to verify and trust simpler design

45



Principle 6: Complete Mediation

Every access to every object must be checked for authorization

Incomplete mediation implies that a path exists to bypass a security 
mechanism
In other words, isolation is incomplete

46



By default, user could 
click Cancel to bypass 
the password check :(

47

Example



Principle 7: Compromise Recording

Concede that attacks will occur, but 
record the fact

Auditing approach to security
• Detection and recovery

"Tamper-evident" vs. "tamper-proof"

48



Principle 8: Work Factor

Increase the difficulty of mounting 
attacks

Sometimes utilizes non-
determinism
• e.g. increasing entropy used in ASLR

Sometimes utilizes time
• Increase the lengths of keys
• Wait times after failed password 

attempts

49


