
CY 2550 Foundations of
Cybersecurity

Signatures and PKI
February 6

Alina Oprea
Associate Professor, Khoury College

Northeastern University

Outline

• MACs for integrity
• Digital signatures
• Certificate authorities
• Secure web communication: TLS

• Announcements
• Distinguished Lecture by Laurel Riek, UCSD, on Feb 7 in ISEC Auditorium.

11:45am-1:00pm. “Human Robot Teaming in Healthcare ”

2

Recap

• Modes of operation for symmetric-key encryption
• CBC and CTR mode
• Both are IND-CPA secure

• RSA public-key encryption
• Textbook RSA is insecure
• Needs preprocessing for randomization (e.g. OAEP)

• How to exchange a key on untrusted channel
• Diffie-Hellman key exchange

• In the real world
• AES key encrypted with public key encryption
• AES key used for encrypting longer messages for performance reasons

3

Collision-resistant hash functions

a hash function
H with output n bits

short H(m)

long m

Requirement: it should be hard to find a pair (m,m’) such that
H(m) =H(m’)

a “collision”collision-resistance

4

Hash functions

5

Integrity

• Active adversaries
• Can modify messages/ciphertexts in transit
• Encryption alone (even IND-CPA secure) does not guarantee integrity!

• Protect message integrity
• Message received by Bob is the original one sent by Alice
• Message was not modified by adversary

• Scenarios
• Secure communication on network
• Protect files stored on disk

• Can be achieved in symmetric-key or public-key settings

6

Message Authentication
Alice Bob

(m, t=MACk(m))

Adversary can see (m, t=MACk(m))

She should not be able to compute a valid
MAC t’ on any other message m’.

k k

m
verifies if
t=MACk(m)

- Message was sent by Alice
- Message was not modified

Verk(m, t) = 1 if MACk(m)=t

7

Integrity requires a secret key

• Attacker can easily modify message m and re-compute the
hash.

• Hash designed to detect random, not malicious errors.

Alice Bob
message m tag

Generate MAC:
t ¬ H(m)

Verify MAC:
Ver(m, t) = `yesʼ?

8

Message Authentication Security

• Properties
• Correctness: If 𝑡 = 𝑀𝐴𝐶& 𝑚 , then 𝑉𝑒𝑟& 𝑚, 𝑡 = 1
• MAC		is a deterministic function
• The output of MAC	 is fixed size (n bits), independent of the length of the

input message

• Security (unforgeability)
• If an attacker has many pairs of messages and integrity tags, he cannot

compute a new tag on a message
• If A is given 𝑚1, 𝑡1 , … (𝑚4, 𝑡4) then A cannot output (𝑚6, 𝑡′) such that:
𝑉𝑒𝑟& 𝑚′, 𝑡′ = 1 and		𝑚6 ∉ {𝑚1,…𝑚=}

9

Example: protecting system files

Later malware infects system and modifies system files

User reboots into clean OS and supplies his password
• Then: secure MAC ⇒ all modified files will be detected

Suppose at install time the system computes:

F1

t1 =
MAC(k,F1)

F2

t2 =
MAC(k,F2)

Fn

tn =
MAC(k,Fn)

⋯ k derived from
user’s password
(e.g., using a hash)

filename filename filename

10

HMAC: Design a MAC from a hash function

h h

m[0] m[1] m[2] ll PB

h

h
tag

> > >h

k⨁ipad

IV
(fixed)

>

>IV
(fixed)

h
>

k⨁opadk1

k2

• Uses Merkle-Damgaard construction (chaining a collision-resistant hash function)
• Output: last hashed block (no need to recover the message)
• Most widely used MAC on the Internet

11

Replay attacks

12

Authenticated encryption

• Combines confidentiality and integrity
• Security properties

• Confidentiality: ciphertext does not leak any information about the plaintext
• Integrity: attacker cannot create new ciphertexts that decrypt properly

• Decryption returns either
• Valid messages
• Or invalid symbol (when ciphertext is not valid)

13

Some history

Authenticated Encryption (AE): introduced in 2000 [KY’00, BN’00]

Crypto APIs before then: (e.g. MS-CAPI)
• Provide API for CPA-secure encryption (e.g. CBC with rand. IV)
• Provide API for MAC (e.g. HMAC)

Every project had to combine the two itself without
a well defined goal
• Not all combinations provide AE …

14

Authenticated Encryption: Combining MAC and ENC
Encryption key k1. MAC key = k2

Option 1: (SSH)

Option 2: (SSL)

Option 3: (IPsec)

msg m

msg m

Enc(k1, m)
tag

MAC(k2, c)
msg m

Enc(k1 , m)

tag
MAC(k2, m)

Enc-then-MAC

Enc-and-MAC

msg m tag
MAC(k2, m) Enc(k1 , mlltag)

MAC-then-Enc

c

c

Always
Secure!

Homework

15

Padding
oracle
attacks

Signature Schemes

Alice Bob

k k

Alice Bob

(m, t=Signsk(m))

sk pk

m message

(pk,sk)

Verpk(m) є {yes,no}

16

Public key equivalent of MAC

Digital Signatures

Alice Bob

PaSa Pa

M

• What can you infer about a signed message?
• The holder of Sa must have produced the signature
• The message was not modified, otherwise the hash would not match
• Assuming hash is collision resistant

H(M)M’

H(M’) ?= H(M)

M, Sign Sa
(H(M))

17

Advantages of signature schemes

Digital signatures are equivalent of MACs in public-key world
Provide message integrity
Additional properties (compared to MACs):

1. Publicly verifiable: anyone with PK can verify (not for MAC)
2. Transferable: can be transferred to another user and verified
3. Provide non-repudiation: cannot deny that you signed a message

18

Before computing the RSA function – apply hash function H.

N = pq, such that p and q are large random primes
e is public key such that gcd(e, φ(N)) = 1
d is secret key such that ed = 1 (mod φ(N))

Sign: ZN
* → ZN

* is defined as:
Sign(m) = σ = H(m)d mod N.

Ver is defined as:
Ver(m,σ) = yes iff σe = H(m) (mod N)

Hash-and-sign paradigm

RSA Signature

19

Encryption vs. Signatures

Encryption
• What does encryption give you?

• Confidentiality – only the holder of the
private key can read the message

• What does authenticated encryption
give you in addition?

• Integrity – if the ciphertext is modified, it
will no longer decrypt properly

• What does encryption not give you?
• Authentication – you have no idea who

used your public key to encrypt the
message

Digital Signatures
• What do signatures give you?

• (Weak) Authentication – only the holder
of the private key could have signed the
message

• Integrity – if the message is modified, the
signature will be invalid

• What do signatures not give you?
• Confidentiality – the message is not

encrypted, it’s public

20

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key

21

PKI: Public Key Infrastructure
• Public announcement or public directory

• Risks: forgery and tampering

• Public-key certificate
• Signed statement specifying the key and identity

• SigCharlie(“Bob”, PKBob)
• Could Bob sign his own certificate?
• Web of trust (PGP): users signing each other’s keys

• Common approach: certificate authority (CA)
• An agency responsible for certifying public keys
• It generates certificates for domain names (example.com) on the web

22

Trusted Certificate Authorities

23

Warning

24

CA Hierarchy or PKI
• Browsers, operating systems, etc. have trusted root certificate

authorities
• Firefox 3 includes certificates of 135 trusted root CAs

• A Root CA signs certificates for intermediate CAs, they sign certificates
for lower-level CAs, etc.

• Certificate “chain of trust”
• SigVerisign(“neu.edu”, PKNEU), SigNEU(“ccs.neu.edu”, PKCCS)

• CA responsibilities
• Verify that someone buying a cert for a domain (e.g., example.com) actually

controls the domain
• Verify that buyer knows the secret key associated with the public key
• Protect its own secret key

25

Comodo

What if CA secret key is compromised?
26

Certificate Hierarchy - PKI

Root CA

Intermediate
CA

Users

SigCA(“neu.edu”, PKNEU)

SigNEU(“ccs.neu.edu”, PKCCS)

PKCA ,SKCA

PKCA

.edu

neu.edu

ccs.neu.edu

27

Acquiring a Certificate

BofA

Verisign
PBofA

CSR
bofa.com

PBofA

1. Generate a new keypair

2. Generate a Certificate
Signing Request (CSR).

Contains BofA’s details,
the DNS name for the
cert, and PBofA

3. Verify that the requestor
owns the domain in the CSR

4. Generate a new certificate
using the data in the CSR,
sign it with the CA’s private
key

SBofA SVerisign

- Serial number
- Owner’s domain
- Owner’s public key
- CA public key
- Expiration date

28

X.509 Certificate
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

0c:00:93:10:d2:06:db:e3:37:55:35:80:11:8d:dc:87
Signature Algorithm: sha256WithRSAEncryption

Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert SHA2 Extended Validation Server CA
Validity

Not Before: Apr 8 00:00:00 2014 GMT
Not After : Apr 12 12:00:00 2016 GMT

Subject: businessCategory=Private
Organization/1.3.6.1.4.1.311.60.2.1.3=US/1.3.6.1.4.1.311.60.2.1.2=Delaware/serialNumber=5157550/street=5
48 4th Street/postalCode=94107, C=US, ST=California, L=San Francisco, O=GitHub, Inc., CN=github.com

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)
Modulus:

00:b1:d4:dc:3c:af:fd:f3:4e:ed:c1:67:ad:e6:cb:

Issuer: who generated this
cert? (usually a CA)

Certificates expire Used for revocation

• Subject: who owns this cert?
• This is Github’s certificate
• Must be served from github.com

Github’s public key

Recover from secret key compromise
• Revocation is very important
• Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key has
been compromised

• User stopped paying his certification fee to the CA and the
CA no longer wishes to certify him

• CA’s certificate has been compromised!

• Methods
• Certificate expiration
• Certificate revocation

• Certificate Revocation Lists (CRL)
• Online Certificate Status Protocol (OCSP)

30

Expiration
• Certificate expiration is the simplest,

most fundamental defense against
secret key compromise

• All certificates have an expiration date
• A stolen key is only useful before it

expires

• Ideally, all certs should have a short
lifetime

• Months, weeks, or even days

• Problem: most certs have multi-year
lifetimes

• This gives an attacker plenty of time to
abuse a stolen key

Validity
Not Before: Apr 8 00:00:00 2014 GMT
Not After : Apr 12 12:00:00 2016 GMT

X.509 Certificate

31

Revocation

• Certificate revocations are another fundamental mechanism for mitigating
secret key compromises

• After a secret key has been compromised, the owner is supposed to revoke the
certificate

• CA’s are responsible for hosting databases of revoked certificates that they
issued

• Clients are supposed to query the revocation status of all certificates they
encounter during validation

• If a certificate is revoked, the client should never accept it
• Two revocation protocols for TLS certificates

1. Certificate Revocation Lists (CRLs): download list of revoked certificated
2. Online Certificate Status Protocol (OCSP): API to query status of certificate

32

Transport Layer Security (TLS)

What Is SSL / TLS?
• Secure Sockets Layer and

Transport Layer Security protocols
• Same protocol design, different crypto algorithms

• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide privacy and data

integrity between two communicating applications”

• Deployed in every Web browser; also VoIP, payment systems,
distributed systems, etc

34

SSL / TLS Guarantees
• End-to-end secure communications at transport layer in the

presence of a network attacker
• Attacker completely owns the network: controls Wi-Fi, DNS,

routers, his own websites, can listen to any packet, modify packets
in transit, inject his own packets into the network

• Properties
• Authentication of server (optionally, client authentication)
• Confidentiality of communication
• Integrity against active attacks

35

History of the Protocol

• SSL 1.0 – internal Netscape design, early 1994
• Lost in the mists of time

• SSL 2.0 – Netscape, Nov 1994
• Several weaknesses

• SSL 3.0 – Netscape and Paul Kocher, Nov 1996
• TLS 1.0 – Internet standard, Jan 1999

• Supersedes SSL: SSL is known to be insecure
• Based on SSL 3.0, but not interoperable (uses different cryptographic

algorithms)

• TLS 1.1 – Apr 2006
• TLS 1.2 – Aug 2008

36

TLS Basics

• TLS consists of two protocols
• Handshake protocol

• Session initiation by client
• Uses public-key cryptography to establish several shared secret keys

between the client and the server
• Server must have an asymmetric keypair

• X.509 certificates contain signed public keys rooted in PKI

• Record protocol
• Uses the secret keys established in the handshake protocol to protect

confidentiality and integrity of data exchange between the client and the
server

37

