
CY 2550 Foundations of
Cybersecurity

Exploits and Patches

Alina Oprea
Associate Professor, Khoury College

Northeastern University
March 30 2020

Announcements

• Forensics project released today, due on April 4
• Exploit project is the last one, due on April 17
• Final exam
• Take home
• Released on April 13 at 11:45am EST, due on April 14 at noon
• Submitted through Gradescope
• Questions on the material to test general understanding
• Might include questions from the “Countdown to Zero Day” book

2

Focus on Attacks

• Software is notorious for having bugs
• Functionality that doesn’t work as intended, or at all
• Crashes that cause unreliability, data loss

• To an attacker, software bugs are opportunities
• Exploits
• Weaponized software bugs
• Use programming errors to an attacker’s advantage

• Typical uses
• Bypass authentication and authorization checks
• Elevate privileges (to admin or root)
• Hijack programs to execute unintended, arbitrary code
• Enable unauthorized, persistent access to systems

3

Outline

•Program Execution Basics
• Buffer Overflows Attacks
• C examples

•Mitigations
•Web-based attacks
• SQL Basics
• SQL Injection
•Patches

4

Program Execution
Code and Data Memory
Program Execution
The Stack

5

Compilers

• Computers don’t execute source code
• Instead, they execute machine code
• Compilers translate source code to machine code
• Assembly is human-readable machine code

6

#include <stdio.h>

int main(int argc, char** argv) {
int i;
if (argc > 1) {
for (i = 1; i < argc; ++i) {
printf(“%s\n”,argv[i]);

}
}
else {

printf(“%s\n”, "Hello world");
}
return 1;

}

000000000040052d <main>:
40052d: 55 push rbp
40052e: 48 89 e5 mov rbp,rsp
400531: 48 83 ec 20 sub rsp,0x20
400535: 89 7d ec mov DWORD PTR [rbp-0x14],edi
400538: 48 89 75 e0 mov QWORD PTR [rbp-0x20],rsi
40053c: 83 7d ec 01 cmp DWORD PTR [rbp-0x14],0x1
400540: 7e 36 jle 400578 <main+0x4b>
400542: c7 45 fc 01 00 00 00 mov DWORD PTR [rbp-0x4],0x1
400549: eb 23 jmp 40056e <main+0x41>
40054b: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]
40054e: 48 98 cdqe
400550: 48 8d 14 c5 00 00 00 lea rdx,[rax*8+0x0]
400557: 00
400558: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]
40055c: 48 01 d0 add rax,rdx
40055f: 48 8b 00 mov rax,QWORD PTR [rax]
400562: 48 89 c7 mov rdi,rax
400565: e8 a6 fe ff ff call 400410 <puts@plt>
40056a: 83 45 fc 01 add DWORD PTR [rbp-0x4],0x1
40056e: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]
400571: 3b 45 ec cmp eax,DWORD PTR [rbp-0x14]
400574: 7c d5 jl 40054b <main+0x1e>
400576: eb 0a jmp 400582 <main+0x55>
400578: bf 14 06 40 00 mov edi,0x400614
40057d: e8 8e fe ff ff call 400410 <puts@plt>
400582: b8 01 00 00 00 mov eax,0x1
400587: c9 leave
400588: c3 ret

C Source Code
x84-64 machine

code in hexadecimal

x86-64
assembly

7

Computer Memory

• Running programs exists in memory
• Program memory – the code for the program
• Data memory – variables, constants, and a few

other things, necessary for the program
• OS memory – always available for system calls

• E.g. to open a file, print to the screen, etc.

Memory
4 GB

0

Operating System

Data Memory
(Variables)

Program Memory
(Code)

8

Program Memory

int fcount(char s[], char c) {

int cnt;

int pos;

for (pos = 0; pos < strlen(s); pos = pos + 1) {

if (s[pos] == c) cnt = cnt + 1;

}

return cnt;

}

void main(int argc, char* argv[]) {

fcount(“testing”, “t”); // should return 2

}

Memory
High

Low

Program Memory

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

The CPU keeps track of
the current Instruction

Pointer (IP)

9

Data Memory
Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

Data Memory

10

int fcount(char s[], char c) {

int cnt;

int pos;

for (pos = 0; pos < strlen(s); pos = pos + 1) {

if (s[pos] == c) cnt = cnt + 1;

}

return cnt;

}

void main(int argc, char* argv[]) {

fcount(“testing”, “t”); // should return 2

}

The Stack

• Data memory is laid out using a specific data structure
• The stack

• Every function gets a frame on the stack
• Frame created when a function is called
• Contains local, in scope variables
• Frame destroyed when the function exits

• The stack grows downward
• Stack frames also contain control flow information
• More on this in a bit…

11

int fcount(char s[], char c) {
int cnt;
int pos;
for (pos = 0; pos < strlen(s); pos = pos + 1) {

if (s[pos] == c)
cnt = cnt + 1;

}
return cnt;

}

void main(int argc, char* argv[]) {
int cnt = fcount(“testing”, “t”); // should return 2

}

Stack Frame Example
Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

IP

argv

argc

“testing”
“t”

pos
cnt

Stack grows
downward

m
ai
n(
)

fc
ou

nt
()This example is almost correct. But

something very important is missing…

12

int fcount(char s[], char c) {
int cnt;
int pos;
for (pos = 0; pos < strlen(s); pos = pos + 1) {

if (s[pos] == c)
cnt = cnt + 1;

}
return cnt;

}

void main(int argc, char* argv[]) {
int cnt = fcount(“testing”, “t”); // should return 2

}

Problem
Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

IP

argv

argc

“testing”
“t”

pos
cnt

m
ai
n(
)

fc
ou

nt
()

IP needs to go back to line 9.
But how does the CPU know

that?

13

Stack Frame Example
Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

9:

IP

argv

argc

“testing”
“t”

pos
cnt

m
ai
n(
)

fc
ou

nt
()

IP = …

IP = 9

14

int fcount(char s[], char c) {
int cnt;
int pos;
for (pos = 0; pos < strlen(s); pos = pos + 1) {

if (s[pos] == c)
cnt = cnt + 1;

}
return cnt;

}

void main(int argc, char* argv[]) {
int cnt = fcount(“testing”, “t”); // should return 2

}

Two Call Example

int fcount(char s[], char c) {

integer cnt;

integer pos;

…

}

void main(int argc, char* argv[]) {

fcount(“testing”, “t”); // should return 2

fcount(“elevate”, “e”); // should return 3

}

Memory
High

Low

0:

1-4:

5:

6:

7:

8:

9:

IP

argv

argc

pos
cnt

fc
ou

nt
()

IP = …

IP = 8

“testing”
“t”

m
ai
n(
)

“elevate”
“e”

IP = 9

15

Recursion Example

int r(int n) {

if (n > 0) r(n – 1);

return n;

}

void main(int argc, char* argv[]) {

r(4); // should return 4

}

Memory
High

Low

0:

1:

2:

3:

4:

5:

6:

argv
argc

3r(
4)

IP = …
4m

ai
n(
)

IP = 6

2r(
3) IP = 2

1r(
2) IP = 2

0r(
1) IP = 2

16

Review

• Running programs exist in memory (RAM)
• Code is in program memory
• CPU keeps track of current instruction in the IP register

• Data memory is structured as a stack of frames
• Each function invocation adds a frame to the stack
• Each frame contains

• Local variables that are in scope
• Saved IP to return to

17

Fun Fact

• What is a stack overflow?
• Memory is finite
• If recursion goes too deep, memory is exhausted
• Program crashes
• Called a stack overflow

18

Buffer Overflows
A Vulnerable Program
Smashing the Stack
Shellcode
NOP Sleds

19

Memory Corruption

• Programs often contain bugs that corrupt stack memory
• Usually, this just causes a program crash
• The infamous “segmentation” or “page” fault

• To an attacker, every bug is an opportunity
• Try to modify program data in very specific ways

• Vulnerability stems from several factors
• Low-level languages are not memory-safe
• Control information is stored inline with user data on the stack

20

Threat Model

• Attacker’s goal:
• Inject malicious code into a program and execute it
• Gain all privileges and capabilities of the target program (e.g., setuid)

• System’s goal: prevent code injection
• Integrity – program should execute faithfully, as programmer intended
• Crashes should be handled gracefully

• Attacker’s capability: submit arbitrary input to the program
• Environment variables
• Command line parameters
• Contents of files
• Network data

21

A Vulnerable Program

void func_print(char s[]) {

// only holds 32 characters, max

char buffer[32];

strcpy(buffer, s);

printf(“%s\n”,buffer);

}

void main(int argc, char* argv[]) {

for (int i=1; i < argc; i++) {

func_print(argv[i]);

}

}

0:

1:

2:

3:

4:

5:

6:

7:

8:

$./print Hello World
World
Hello
$./print arg1 arg2 arg3
arg3
arg2
arg1

Copy the given string s into the new buffer

Print the buffer to the console

22

A Normal Example
Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

buffer

m
ai
n(
)

fu
nc
_p

rin
t(
)

IP = …

IP = 7

Data from argv

What if the data in
string s is longer

than 32 characters?

strcpy() does not
check the length of

the input!

23

void func_print(char s[]) {

// only holds 32 characters, max

char buffer[32];

strcpy(buffer, s);

printf(“%s\n”,buffer);

}

void main(int argc, char* argv[]) {

for (int i=1; i < argc; i++) {

func_print(argv[i]);

}

}

void func_print(char s[]) {

// only holds 32 characters, max

char buffer[32];

strcpy(buffer, s);

printf(“%s\n”,buffer);

}

void main(int argc, char* argv[]) {

for (int i=1; i < argc; i++) {

func_print(argv[i]);

}

}

Crash
Memory

High

Low

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

buffer

m
ai
n(
)

fu
nc
_p

rin
t(
)

IP = …

IP = 7

Data from argv

Saved IP is destroyed!

Program crashes :(

24

Demo: Program crash

25

Demo: Program crash

Start
address of
function

Size of function

ebp: Base of stack
esp: top of stack

eax: function return value

Size of
buffer

0x28 =
32+8 = 40

0xd = 13

26

Demo: Program crash

• Buffer is of size 5, but it is allocated for
13 characters

• One character is reserved for \n (end of
string)

27

Smashing the Stack

• Buffer overflow bugs can overwrite saved instruction pointers
• Usually, this causes the program to crash

• Key idea: replace the saved instruction pointer
• Can point anywhere the attacker wants
• But where?

• Key idea: fill the buffer with malicious code
• Remember: machine code is just a string of bytes
• Change IP to point to the malicious code on the stack

28

Exploit v1
Memory

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

buffer

m
ai
n(
)

pr
in
t(
)

IP = …

IP = 7

Malicious code

IP = 952

:1000
:996

:992

:988

:984

:952

29

void func_print(char s[]) {

// only holds 32 characters, max

char buffer[32];

strcpy(buffer, s);

printf(“%s\n”,buffer);

}

void main(int argc, char* argv[]) {

for (int i=1; i < argc; i++) {

func_print(argv[i]);

}

}

Malicious Code

• The classic attack when exploiting an overflow is to inject a payload
• Sometimes called shellcode, since often the goal is to obtain a privileged shell
• But not always!

• There are tools to help generate shellcode
• Metasploit

• Example shellcode:
{

// execute a shell with the privileges of the
// vulnerable program
exec(“/bin/sh”);

}

30

Hitting the Target
Memory

argv

argc

buffer

IP = …

IP = 7

Shellcode

IP = 856

:1000
:996

:992

:988

:984

:856

• Address of shellcode must be guessed exactly
• Must jump to the precise start of the shellcode

• However, stack addresses often change
• Change each time a program runs

• Challenge: how can we reliably guess the
address of the shellcode?
• Cheat!
• Make the target even bigger so it’s easier to hit ;)

:900
:896

:892

:888

:884

:756
31

Hit the Ski Slopes

• Most CPUs support no-op instructions
• Simple, one byte instructions that don’t do anything
• On Intel x86, 0x90 is the NOP

• Key idea: build a NOP sled in front of the shellcode
• Acts as a big ramp
• If the instruction pointer lands anywhere on the ramp, it will execute NOPs

until it hits the shellcode

32

Exploit v2

void print(string s) {

// only holds 32 characters, max

string buffer[128];

strcpy(buffer, s);

puts(buffer);

}

void main(integer argc, strings argv) {

for (; argc > 0; argc = argc – 1) {

print(argv[argc]);

}

}

Memory

0:

1:

2:

3:

4:

5:

6:

7:

8:

IP

argv

argc

buffer

m
ai
n(
)

pr
in
t(
)

IP = …

IP = 7

Malicious code

IP = 900

:1000
:996

:992

:988

:984

:856

NOP sled

33

Demo: Running Attack Code

Goal: overwrite buffer in echo() function
so that secretFunction() is called

34

Demo: Running Attack Code

Start
address of
function

35

Demo: Running Attack Code

Size of function
0x38 =

48+8 = 56

Size of buffer

0x1c = 16+12=28

ebp: 4 bytes
eax: size 4 for return value; right after

buffer (want to override) 36

Demo: Running Attack Code
Memory

esp

ebp

eax

buffer

4

4

28

37

secretFunction()

Demo: Running Attack Code
esp

ebp

eax

buffer

4

4

28

Memory

0804848d
a
a
a

a

secretFunction
address

38

Mitigations
• Stack canaries
• Compiler adds special sentinel values onto the stack before each saved IP
• Canary is set to a random value in each frame
• At function exit, canary is checked
• If expected number isn’t found, program closes with an error

• Non-executable stacks
• Modern CPUs set stack memory as read/write, but no eXecute
• Prevents shellcode from being placed on the stack

• Address space layout randomization
• Operating system feature
• Randomizes the location of program and data memory each time a program

executes
39

Mitigations

Review

• Programs are vulnerable to memory corruption
• Buffer overflow attacks
• Make programs crash
• Run malicious code
• Use disassembly to learn address space of program and craft attack
• More advanced attacks (return-to-libc)

• Mitigations: stack canaries, non-executable stacks, ASLR
• Implemented in modern compilers
• Still examples of vulnerabilities in the wild (HeartBleed)

41

