CY 2550 Foundations of Cybersecurity

Cryptography Part 4

January 30

Alina Oprea

Associate Professor, Khoury College

Northeastern University

Outline

- IND-CPA secure encryption
- Public-key crypto
- Key exchange and the Diffie-Hellman protocol
- RSA public-key encryption
- Hash functions
- Announcement
 - CIO of Children's Hospital in Boston Dan Nigrin will be on campus to give a talk on Feb 5 from 11:45-12:45 in 655 ISEC

IND-EAV / IND-CPA security

• In CPA Adv can encrypt messages of its choice

- Round 2: Adv can encrypt messages
- Round 3: Adv chooses two plaintext messages
- Round 4: Charlie chooses a random binary number $b \leftarrow_R \{0, 1\}$
- Round 5: Charlie encrypts the corresponding message
- Round 6: Adv can encrypt messages
- Round 7: Adv guesses the value of b

Adversary wins if *b* = *b*'

ECB Encryption Mode

- Message is broken into independent blocks
- Electronic Code Book (ECB): each block is encrypted separately

Cryptanalysis of ECB Mode

- Deterministic
 - The same data block always gets encrypted the same way
 - Reveals patterns when data repeats!
 - *m* encrypted with *k* always produces the same *c*
 - This is the same problem we had with the Vigenère cipher
- Is the ECB mode IND-CPA secure?
- Is the ECB mode IND-EAV secure?
- Do not use ECB mode in practice

Lessons on IND-CPA Security

- ECB uses deterministic encryption
 - Encryption of a message m is always the same
 - Adv can trivially win the IND-CPA game
- Deterministic encryption is not IND-CPA secure!
- CPA secure encryption needs to be randomized!
 - How is that achieved?

CBC Encryption Mode

- Cipher Block Chaining (CBC)
 - Uses a random Initialization Vector (IV)
 - Block *i* depends on block *i*-1

IV

Ciphertext 0

K •

Cryptanalysis of CBC Mode

- CBC randomizes the encryption
 - IV ensures initial block is randomized
 - Dependency between blocks propagates randomness
- CBC is IND-CPA secure assuming
 - Block cipher itself is secure (pseudorandom permutation)
 - IV is truly random
 - IV is sufficiently large
 - Use the key for limited number of encryptions (key needs to be changed afterwards)
- Usage in practice: choose random IV and protect its integrity
 - The IV is not secret (it becomes part of the ciphertext)
 - Do not let the adversary control the IV (needs to be unpredictable)!

Public Key Cryptography

Weakness of Symmetric Key Crypto

- How do you securely exchange keys with someone?
- Easy(ish) to do if you can meet them in person
- However, the Internet is untrusted
 - You can't exchange shared secrets over an untrusted medium

Eavesdropper

Public Key Cryptography

- Public key cryptography, a.k.a. asymmetric cryptography
 - Each principal has two keys: private (secret) and public
 - A message encrypted with one key must be decrypted by the other
 - Thus, the public key can be sent in-the-clear over the Internet
- Security is based on Very Hard Math Problems
 - Fast to verify a given solution for a given instance
 - Hard to finds solutions for a given instance in polynomial time
- Many different algorithms that offer different security properties
 - Diffie-Hellman, RSA, Goldwasser-Micali, ElGamal
- Forms the basis for most modern secure protocols
 - IPsec, SSL, TLS, S/MIME, PGP/GPG, etc.

Public Key Encryption

Instead of using one key k, use 2 keys (pk,sk), where pk is used for encryption, sk is used for decryption. pk can be public, and
only sk has to be kept
secret!

That's why it's called: **public-key cryptography**

Analogy

Examples padlocks:

Public-Key Cryptography

- Public-Key Encryption
 - Examples: RSA, ElGamal
- Digital Signatures:
 - Authenticate messages
 - Examples: RSA, DSA
- Key Exchange
 - Protocols to establish a secret key between two parties
 - Examples: key exchange
- Intuition for all these
 - Computation in one direction is "easy", but "hard" in the reverse
 - Hardness assumptions imply that adversary cannot reverse computation

A little bit of history

• **Diffie and Hellman** were the first to publish a paper containing the idea of the public-key cryptography:

W.Diffie and M.E.Hellman, **New directions in cryptography** IEEE Trans. Inform. Theory, IT-22, 6, **1976**, pp.644-654.

- A similar idea was described by **Ralph Merkle**:
 - in 1974 he described it in a project proposal for a Computer Security course at UC Berkeley (it was rejected)

 in 1975 he submitted it to the CACM journal (it was rejected) (see http://www.merkle.com/1974/)

- 1977: R. Rivest, A. Shamir and L. Adelman published the first construction of public-key encryption (RSA)
- It 1997 the GCHQ (the British equivalent of the NSA) revealed that they knew it already in **1973**.

Diffie-Hellman Key Exchange

- Goal
 - Share a secret key over a public channel in presence of eavesdropping adversary
- Really should be called Diffie-Hellman-Merkle
 - Ralph Merkle developed the mathematical theories
 - Whitfield Diffie and Martin Hellman developed the protocol
- Security is based on the discrete logarithm problem
 - Compute k such that b^k = g mod p, where b, g, and k are all integers and p is a large prime
 - Possible that no solution exists given arbitrary *b* and *g*
 - Best known algorithms are exponential time

Diffie-Hellman Protocol

- Red = secret, blue = public
- 1. Alice chooses a large prime *p* and a base *g* in {1, ..., *p*}
- 2. Alice chooses a secret integer *a*;
- 3. Alice \rightarrow Bob: $p, g, A = g^a \mod p$;
- 4. Bob chooses secret **b**
- 5. Bob \rightarrow Alice: B = $g^b \mod p$
- 6. Alice computes $s = B^a \mod p$; Bob computes $s = A^b \mod p$
- 7. Alice and Bob now share secret key s

The Diffie-Hellman protocol

Fix a large prime p (e.g. 600 digits) Fix an integer g in {1, ..., p}

Diffie-Hellman Example

Alice	
Knows	Doesn't Know
p = 23, g = 5	
a = 6	<mark>b</mark> = ?
$A = g^{a} \mod p$ $A = 5^{6} \mod 23$ $= 8$	
B = 19	
$s = B^{a} \mod p$ = 19 ⁶ mod 23 = 2	

Bob	
Knows	Doesn't Know
p = 23, g = 5	
b = 15	<mark>a</mark> = ?
$B = g^{b} \mod p$ = 5 ¹⁵ mod 23 =19	
A = 8	
$s = A^{b} \mod p$ $= 8^{15} \mod 23$ 2	
,	10
	19

Man-in-the-middle Attacks

As described, the protocol is insecure against **active** attacks

Attacker relays traffic from Alice to Bob and reads it in clear

Public-key Encryption

- Encryption algorithm: Enc(pk, m); decryption Dec(sk, c)
- RSA algorithm invented by Rivest, Shamir, and Adleman in 1978
 - Equivalent system invented by Clifford Cox in 1973, but GCHQ classified it
- RSA is the dominant public key cryptosystem today
 - Algorithm was commercialized by RSA Security
 - RSA Security created a certificate authority that eventually became Verisign

RSA Algorithm

- Security is based on the difficulty of factoring the product of primes
 - Alice chooses two secret primes p and q, n = pq, $\phi(n) = (p-1)(q-1)$
 - Choose e such that $1 < e < \phi(n)$, and $gcd(e, \phi(n)) = 1$
 - <n, e> is Alice's public key
 - Private key $d = e^{-1} \mod \phi(n)$; $d \cdot e = 1 \mod \phi(n)$
- Encryption and decryption
 - Given a message *M*, *0* < *M* < *n*
 - Compute ciphertext *C* = *M*^e mod *n*
 - To decipher, compute $C^d \mod n = (M^e \mod n)^d \mod n = M^{ed} \mod n = M$
 - Use Euler's theorem: $x^{\phi(n)} = 1 \mod n$

RSA Example

 $p = 11, q = 7, n = pq = 77, \phi(n) = 60$ $e = 37, d = 13 (ed = 481, ed \mod 60 = 1)$ If M = 15 then $C = M^e \mod n = 15^{37} \mod 77 = 71$ $C^d \mod n = 71^{13} \mod 77 = 15 = M$