
CY 2550 Foundations of
Cybersecurity

Cryptography Part 2
January 23

Alina Oprea
Associate Professor, Khoury College

Northeastern University

Encryption Terminology

plaintext m encryption ciphertext c decryption m

key k key k

doesn’t know k
should not learn m

Alice Bob

Eve

Encryption scheme = encryption & decryption procedures
2

One Time Pad (1920s)

• Fix the vulnerability of the Vigenère
cipher by using very long keys
• Key is a random string that is at least as

long as the plaintext
• Similar encryption as with Vigenère

(different shift per letter)

3

One-time pad

Gilbert
Vernam
(1890 –1960)

ℓ – a parameter
K = M = {0,1}ℓ

Enck(m) = k ⊕m
Deck(c) = k ⊕ c

Vernam’s cipher:

component-wise xor

Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕ m)
m

4

An encryption scheme is perfectly secret if
for every distribution of M

and every m Є M and c Є C
Pr[M = m] = Pr[M = m | C = c]

“The adversary should not learn any information about m.”

Ciphertext-only attack
(passive)

In English

• The adversary believes the probability that the plaintext is m is
Pr(M=m) before seeing the ciphertext
• Maybe they are very sure, or maybe they have no idea

• The adversary believes the probability that the plaintext is m is
Pr(M=m | C=c) after seeing that the ciphertext is c
• Pr(M=m | C=c) = P(M= m) means that after knowing that the

ciphertext is c, the adversary’s belief does not change
• Intuitively, the adversary learned nothing from the ciphertext

6

Put Another Way

• Imagine you have a ciphertext c where the length |c| = 1000
• I can give you a key ki with |ki| = 1000 such that:
• The decrypted message mi is the first 1000 characters of Hamlet

• Or, I can give you a key kj with |kj| = 1000 such that:
• The decrypted message mj is the first 1000 characters of the US Constitution

• If an algorithm offers perfect secrecy then:
• For a given ciphertext of length n
• All possible corresponding plaintexts of length n are possible decryptions

7

Is Shift Cipher Perfectly Secure?

• Counterexample (2-letter message):
• M1=AB; M2=AZ; c=BC
• Pr[M= M1|C=c]= Pr[k=1] = 1/26
• Pr[M= M2|C=c]= 0

An encryption scheme is perfectly secret if
for every distribution of M

and every m Є M and c Є C
Pr[M = m] = Pr[M = m | C = c]

• Perfectly secure for 1 letter
message:
• Pr[M= m] = 1/26
• Pr[M= M|C=c]= Pr[K=c-m mod 26]

= 1/26
8

Cryptanalysis of OTP
• Intuitively, the key is random, so ciphertext is also random (because

of properties of XOR)
• OTP achieves Perfect Secrecy
• Shannon or Information Theoretic Security
• Basic idea: ciphertext reveals no “information” about plaintext

• Caveats
• If the length of the OTP key is less than the length of the message…

• It’s not a OTP anymore, not perfectly secret!
• If you reuse the OTP key…

• It’s not a OTP anymore, not perfectly secret!

• Major issue with OTP in practice?
• How to securely distribute the key books to both parties 9

This is because:

Why the one-time pad is not practical?

1. The key is as long as the message.

2. The key cannot be reused.

3. Alice and Bob must share a new key every time they communicate

All three are necessary for perfect secrecy!

Enck(m1) xor Enck(m2) = (k xor m1) xor (k xor m2)

= m1 xor m2

Example: key reuse

Enck

Enck

⊕

Venona project (1946 – 1980)

American National Security Agency
decrypted Soviet messages that were
transmitted in the 1940s.

That was possible because the Soviets
reused the keys in the one-time pad
scheme.

Ethel and Julius Rosenberg

12

Key takeaways
• Historical methods for encryption are not secure
• Shift cipher, mono-alphabetic substitution cipher, Vigenere
• Attacks: Brute force (small key space), frequency analysis

• Defining security for encryption is difficult
• Perfect secrecy is one of the first rigorous notion of security

• One-time pad is perfectly secure
• But many practical drawbacks
• Still has been used in critical military applications

• Modern cryptography relies on computational assumptions
to become practical
• E.g., it is computationally hard to factor large numbers; adversary

has limited computational resources
13

Computational Security

“Real” cryptography starts here!

We will construct schemes that in principle can be broken if the
adversary has a huge computing power or is extremely lucky.
• E.g., break the scheme by enumerating all possible secret keys.

(“brute force attack”)
• E.g., break the scheme by guessing the secret key.

Goal: cannot be broken with reasonable computing power with
reasonable probability.

Eve is computationally-boundedRestriction:

15

Towards Computational Security

• Perfect secrecy is too difficult to achieve in practice
• Imagine trying to do OTP encryption with every website that uses HTTPS

• Computational security uses two relaxations:
1. Security is preserved only against computationally bounded adversaries

• Limits on computational power and storage
• Polynomial-time adversaries

2. Adversaries may successfully crack encryption with a very small probability
• So small that (we hope) it becomes negligible
• Example negligible probability: #

$%&'

• Computational assumptions are part of the threat model

16

Eavesdropping security

• Ciphertext INDistinguishability under an EAVesdropping attacker (IND-EAV)

k, Enck

m0 , m1 ∈ M

b ß R {0, 1}
c = Enck(mb)

b' ∈ {0, 1}

Adversary wins if b = b’

Round 1: Charlie chooses k and encryption algo

Round 2: Adv chooses two plaintext messages

Round 3: Charlie chooses a random binary number

Round 4: Charlie encrypts the corresponding message

Round 5: Adv guesses a the value of b

17

AdvCharlie (Challenger)

Examples

• If E is a perfectly secure
algorithm (e.g., OTP), what
is the probability that b = b’?

P(Adv wins) = ½ SECURE
k, Enck

m0 , m1 ∈ M

b ß R {0, 1}
c = Enck(mb)

b' ∈ {0, 1}

Adversary wins if b = b’

• If E is a Caesar shift, what is
the probability that b = b’?

P(Adv wins) = 1 NOT SECURE
18

AdvCharlie (Challenger)

Computational secure IND-EAV

• If Enc is computationally secure
algorithm, what is the probability
that b = b’?

P(Adv wins) = ½ + negligible(|k|)
k, Ek

m0 , m1 ∈ M

b ß R {0, 1}
c = Enck(mb)

b' ∈ {0, 1}

Adversary wins if b = b’ 19

AdvCharlie (Challenger)

How to achieve this?

Pseudorandom generators (PRG)

s G(s) l(n)n

A pseudorandom generator is a deterministic algorithm
G : {0,1}n → {0,1} l(n) .
• Output length: l(n) for all s with |s| = n we have |G(s)| = l(n).
• Stretch: l(n) - n

“seed”

Goal (imprecise): If s chosen randomly from {0,1}n ,
then G(s) “looks” like it was chosen randomly from {0,1}l(n) .

G

20

Using a PRG to build efficient OTP
Use PRGs to “shorten” the key in the one time pad

s PRG(s)

Key: random string of length n
Plaintexts: strings of length l(n)

Enc(s,m)
m

m
⊕

PRG(s)

xor

s PRG(s) c
c
⊕

PRG(s)
Dec(s,m)

IND-EAV secure one-time pad

Key

21

STREAM
CIPHER

Examples:
RC4, Salsa20

Adversarial capability

• Ciphertext-only attack: Perfect security, IND-EAV
• Adversary observes ciphertext(s)
• Infer information about plaintext

• Chosen-plaintext attack: IND-CPA
• Adversary can encrypt messages of his choice

• Chosen-ciphertext attack: IND-CCA
• Adversary can decrypt ciphertexts of its choice
• Learn plaintext information on other ciphertext

22

IND-CPA security
• Ciphertext Indistinguishability under a Chosen-Plaintext Attack (CPA)

k, Enck

m0 , m1 ∈ M

b ß R {0, 1} c = Enck(mb)

b' ∈ {0, 1}

Adversary wins if b = b’

Round 1: Charlie chooses k and encryption algo

Round 2: Adv chooses two plaintext messages

Round 3: Charlie chooses a random binary number

Round 4: Charlie encrypts the corresponding message

Round 5: Adv guesses a the value of b

23

AdvCharlie (Challenger)
Query: Encrypt m

Reply: Ciphertext c

Query: Encrypt m

Reply: Ciphertext c

