
CY 2550 Foundations of
Cybersecurity

Passwords and Authentication

Alina Oprea
Associate Professor, Khoury College

Northeastern University

Outline

• Password authentication, storage
• Biometrics, second factors
• Distributed authentication

Announcements:
• Crypto homework due on Feb. 14
• Holiday: Monday, Feb. 17
• Midterm exam: February 20 in class
• Ethics session

• February 24 and 27

2

Midterm exam
• Topics
• Threat modeling, different types of attackers (eavesdroppers, MitM, passive,

active)
• Secure encryption (perfect security, OTP, CPA secure encryption, modes of

operation, randomization)
• Public-key encryption (RSA)
• Hash functions (collision-resistance)
• Key exchange (Diffie-Hellman or using public-key encryption)
• Integrity checks (MACs and signatures)
• Certificate authorities and PKI
• TLS (high-level how it works, handshake and record protocols)
• Password authentication (storage, attacks on passwords, multiple factors,

good/bad password strategies)
• What you can bring: calculator, one-page cheat sheet (letter size)

3

TLS Threat Modeling

Attacker Action Mitigation Assumption
Eavsdropper Learns confidential

information
Secure encryption Encryption is CPA

secure
MitM Impersonate server Certificates and PKI CAs are trusted
MitM Modify messages Integrity checks

(MACs and
signatures)

MACs and signatures
are secure

MitM Replay old valid
messages

Sequence numbers
used when
computing MACs

Client and server
maintain sequence
numbers
MACs are secure

4

Types of Secrets
• Actors provide their secret to log-in to a system
• Three classes of secrets:

1. Something you know
• Example: a password or PIN

2. Something you have
• Examples: a smart card, smart phone, or hardware token

3. Something you are
• Examples: fingerprint, voice scan, iris scan

• Combination of methods (multi-factor authentication)

5

Password Storage So Far

1. Never store passwords in plain text
2. Password recovery from hashed passwords can be done with

dictionary attacks for common passwords
• Select dictionary words and common passwords (from leaked datasets)
• Add common modifications (digits at the end, character-to-digit substitution)

3. Can use pre-computed rainbow tables for cracking uncommon
passwords
• Compute hash chains and store beginning and end
• Once a match is found on last column, computation is done from password
• Storage – computation tradeoff
• Tables available for passwords up to 14 characters

6

Hardening Password Hashes

• Key problem: cryptographic hashes are deterministic
• H(‘p4ssw0rd’) is the same every time it’s computed
• This enables attackers to build and store lists of hashes

• Solution: make each password hash unique
• Add a random salt to each password before hashing
• H(salt + password) = password hash
• Each user has a unique random salt
• Even when passwords are the same, the salt makes the hash

different
• Salts can be stored in plain text

7

Example Salted Hashes

charlie a8 af19c842f0c781ad726de7aba439b033
sandi 0X 67710c2c2797441efb8501f063d42fb6
alice hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

charlie 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

8

Breaking Hashed Passwords
• Stored passwords should always be salted
• Forces the attacker to brute-force each password individually

• Problem: it is now possible to compute hashes very quickly
• GPU computing: hundreds of small CPU cores
• nVidia GeForce GTX Titan Z: 5,760 cores
• GPUs can be rented from the cloud very cheaply

• $0.9 per hour (2018 prices)

• Example of hashing speed
• A modern x86 server can hash all possible 6 character long passwords in 3.5

hours
• A modern GPU can do the same thing in 16 minute

Hardening Salted Passwords
• Problem: typical hashing algorithms are too fast
• Enables GPUs to brute-force passwords

• Old solution: hash the password multiple times
• Known as key stretching (compute multiple iterations of hashing)

• New solution: use hash functions that are designed to be slow
• Examples: bcrypt, PBKDF2, scrypt
• These algorithms include a work factor that increases the time

complexity of the calculation
• scrypt also requires a large amount of memory to compute, further

complicating brute-force attacks
• Increase in authentication time is negligible for user

10

Password Storage Summary
1. Never store passwords in plain text
2. Password recovery from hashed passwords can be done with

dictionary attacks (common passwords) and pre-computed
rainbow tables (uncommon passwords)

3. Always salt and hash passwords before storing them
4. Use hash functions with a high work factor (bcrypt or scrypt)

• These rules apply to any system that needs to authenticate users
• Operating systems, websites, phones, etc.

11

Password Authentication Lifecycle Diagram

12

Password Recovery/Reset
• Problem: hashed passwords cannot be recovered (hopefully)

“Hi… I forgot my password. Can
you email me a copy?”

• This is why systems typically implement password reset
– Use out-of-band info to authenticate the user
– Overwrite hash(old_pw) with hash(new_pw)

• Be careful: its possible to crack password reset

13

Cracking Password Reset

• Typical implementations use Knowledge Based Authentication (KBA)
• What was your mother’s maiden name?
• What was your prior street address?
• Where did you go to elementary school?

• Problems?
• This information is widely available to anyone
• Publicly accessible social network profiles
• Background-check services like Spokeo

• Experts recommend that services not use KBA
• When asked, users should generate random answers to these questions

14

Choosing Passwords
Bad Algorithms
Better Heuristics
Password Reuse

Password Quality
𝑆 = 𝑙𝑜𝑔& 𝑁(à 𝐿 = *

+,-. /

• How do we measure password quality? Entropy
• N – the number of possible symbols (e.g. lowercase, uppercase, numbers, etc.)
• L – the length of the password
• S – the strength of the password, in bits

• Formula tells you length L needed to achieve a desired strength S…
• … for randomly generated passwords

• Is this a realistic measure in practice?

16

The Strength of Random Passwords
𝑆 = 𝐿 ∗ 𝑙𝑜𝑔&𝑁

0

25

50

75

100

125

150

175

200

0 5 10 15 20 25 30 35

St
re

ng
th

 (B
its

)

Password Length (Characters)

26+26+10 Characters

26+26 Characters

26 Characters

Very
Weak

Very
Strong

17

Mental Algorithms

• Years of security advice have trained people to generate “secure”
passwords

1. Pick a word
2. Capitalize the first or last letter
3. Add a number (and maybe a symbol) to the beginning or end

1. Pick a word
2. Replace some of the letters with symbols (a à @, s à $, etc.)
3. Maybe capitalize the first or last letter

18

Human Generated Passwords

Password Entropy (bits) Strength Crackability Problem

Computer3@ 60 Weak Easy Dictionary word, obvious transformations

cl4ssr00m 47 Weak Easy Dictionary word, obvious transformations

7Dogsled* 54 Weak Easy Dictionary word, obvious transformations

Tjw1989&6 54 Weak Easy Users initials and birthday, obvious transformations

B4nk0f4m3r1c4! 83 Medium Easy Includes service name, obvious transformations

• Modern attackers are sophisticated
• No need for brute force cracking!
• Use dictionaries containing common words and passwords from prior leaks
• Apply common “mental” permutations

19

Password Requirements
• comp n and basic n: use at least n

characters

• k word n: combine at least k words
using at least n characters

• d class n: use at least d character
types (upper, lower, digit, symbol)
with at least n characters

Plot from Shay et al.
https://www.blaseur.com/papers/tissec_1026.pdf

Better Heuristics

• Notice that in 𝑆 = 𝐿 ∗ 𝑙𝑜𝑔&𝑁, length matters
more than symbol types
• Choose longer passwords (16+ characters)
• Don’t worry about uppercase, digits, or symbols

• Use mnemonics
• Choose a sentence or phrase
• Reduce it to the first letter of each word
• Insert random uppercase, digits, and symbols

I double dare you, say “what” one more time
i2Dy,s”w”omt

22

Password Reuse

• People have difficulty remembering >4 passwords
• Thus, people tend to reuse passwords across services
• What happens if any one of these services is compromised?

• Service-specific passwords are a beneficial form of
compartmentalization
• Limits the damage when one service is inevitably breached

• Use a password manager
• Some service providers now check for password reuse
• Forbid users from selecting passwords that have appeared in leaks

23

Two Factor Authentication
Biometrics
SMS
Authentication Codes
Smartcards & Hardware Tokens

25

Biometrics

• Ancient Greek: bios ="life", metron ="measure“
• Physical features
• Fingerprints
• Face recognition
• Retinal and iris scans
• Hand geometry

• Behavioral characteristics
• Handwriting recognition
• Voice recognition
• Typing cadence
• Gait

26

Fingerprints

• Ubiquitous on modern smartphones, some laptops
• Secure?
• May be subpoenaed by law enforcement
• Relatively easy to compromise

1. Pick up a latent fingerprint (e.g. off a glass) using tape or
glue

2. Photograph and enhance the fingerprint
3. Etch the print into gelatin backed by a conductor
4. Profit ;)

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

https://www.theregister.co.uk/2002/05/16/gummi_bears_defeat_fingerprint_sensors/

Facial Recognition

• Popularized by FaceID on the iPhone X
• Secure?
• It depends

• Vulnerable to law enforcement requests
• Using 2D images?
• Not secure
• Trivial to break with a photo of the target’s face

• Using 2D images + 3D depth maps?
• More secure, but not perfect
• Can be broken by crafting a lifelike mask of the target

Fundamental Issue With Biometrics

• Biometrics are immutable
• You are the password, and you can’t change
• Unless you plan on undergoing plastic surgery?

• Once compromised, there is no reset
• Passwords and tokens can be changed

• Example: the Office of Personnel Management (OPM) breach
• US gov agency responsible for background checks
• Had fingerprint records of all people with security clearance
• Breached by China in 2015, all records stolen :(

29

Something You Have

• Two-factor authentication has become more commonplace
• Possible second factors:
• SMS passcodes
• Time-based one time passwords
• Hardware tokens

30

One Time Passwords
• Generate ephemeral passcodes that

change over time
• To login, supply normal password and

the current one time password
• Relies on a shared secret between

your mobile device and the service
provider
• Shared secret allows both parties to

know the current one time password
• Every time period, the one time

password is computed from shared
secret and current time
• Symmetric-key crypto

Duo Mobile

Lastpass Authenticator

Google Authenticator

Changes
every few
minutes

31

Hardware Two Factor

• Special hardware designed to hold
cryptographic keys
• Physically resistant to key extraction

attacks
• E.g. scanning tunneling electron

microscopes

• Uses:
• 2nd factor for OS log-on
• 2nd factor for some online services
• Storage of PGP and SSH keys

32

Universal 2nd Factor (U2F)
• Supported by Chrome, Opera, and Firefox (must

be manually enabled)
• Works with Google, Dropbox, Facebook, Github,
• Public key registered with website (site specific)

• Secret keys are stored on device
• Generate signature to prove presence of device

• Signature computation on device
• How to prevent replaying an old signature?
• Use a nonce (random number) sent by web site

• Pro tip: always buy 2 security keys
• Associate both with your accounts
• Keep one locked in a safe, in case you lose key ;)

33

Password Threat Modeling
Attacker Action Mitigations Assumptions
Active: get
access to user
account

Perform dictionary attacks
on passwd files

Strong passwords
Salt and hash

Cannot compute enough
hashes

Active Dedicated hardware for
faster hashing

Key stretching (slower
hashing)

Cannot perform enough
computation

Active Attack password recovery Life questions Attacker cannot guess them

Active Get access to user
password or attack
password recovery

One-time password Attacker cannot guess one-time
code
Secret key not compromised

Active Get access to user
password or attack
password recovery

Universal second
factors

Cannot replay old
authentication messages

34

Authentication Protocols
Unix, PAM
Kerberos

35

Status Check

• At this point, we have discussed:
• How to securely store passwords
• Techniques used by attackers to crack passwords
• Biometrics and 2nd factors

• Next topic: building authentication systems
• Given a user and password, how does the system authenticate the user?
• How can we perform efficient, secure authentication in a distributed system?

36

Authentication in Unix/Linux

• Users authenticate with the system by interacting with login
• Prompts for username and password
• Credentials checked against locally stored credentials

• By default, password policies specified in a centralized, modular way
• On Linux, using Pluggable Authentication Modules (PAM)
• Authorizes users, as well as environment, shell, prints MOTD, etc.

37

Example PAM Configuration
cat /etc/pam.d/system-auth
#%PAM-1.0

auth required pam_unix.so try_first_pass nullok
auth optional pam_permit.so
auth required pam_env.so

account required pam_unix.so
account optional pam_permit.so
account required pam_time.so

password required pam_unix.so try_first_pass nullok sha512 shadow
password optional pam_permit.so

session required pam_limits.so
session required pam_unix.so
session optional pam_permit.so

• Use SHA512 as the hash function
• Use /etc/shadow for storage

3
8

Unix Passwords

• Traditional method: crypt
• 25 iterations of DES on a zeroed vector
• First eight bytes of password used as key (additional bytes are ignored)
• 12-bit salt

• Modern version of crypt are more extensible
• Support for additional hash functions like MD5, SHA256, and SHA512
• Key lengthening: defaults to 5000 iterations, up to 108 – 1
• Full password used
• Up to 16 bytes of salt

39

Password Files

• Password hashes used to be in /etc/passwd
• World readable, contained usernames, password hashes, config information
• Many programs read config info from the file…
• But very few (only one?) need the password hashes

• Turns out, world-readable hashes are Bad Idea
• Hashes now located in /etc/shadow
• Also includes account metadata like expiration
• Only visible to root

40

Password Storage on Linux

41

username:password:last:may:must:warn:expire:disable:reserved

charlie:$1$0nSd5ewF$0df/3G7iSV49nsbAa/5gSg:9479:0:10000::::
alice:1l3RxU5F1$:8172:0:10000::::

/etc/shadow

username:x:UID:GID:full_name:home_directory:shell

charlie:x:1001:1000:Charlie S:/home/charlie/:/bin/bash
alice:1002:2000:Alice P:/home/alice/:/bin/sh

/etc/passwd

$<algo>$<salt>$<hash>
Algo: 1 = MD5, 5 = SHA256, 6 = SHA512

Distributed Authentication

• Early on, people recognized the need for authentication in distributed
environments
• Example: university lab with many workstations
• Example: file server that accepts remote connections

• Synchronizing and managing password files on each machine is not
scalable
• Ideally, you want a centralized repository that stores policy and credentials

42

Kerberos

• Created as part of MIT Project Athena
• Based on Needham-Schroeder

• Provides mutual authentication over untrusted networks
• Tickets as assertions of authenticity, authorization
• Forms basis of Active Directory authentication

• Principals
• Client
• Server
• Key distribution center (KDC)
• Ticket granting server (TGS)

43

