
CY 2550 Foundations of
Cybersecurity

TLS
Passwords and Authentication

Alina Oprea
Associate Professor, Khoury College

Northeastern University

Outline

• TLS protocol
• Handshake and record protocols

• Password authentication

Announcements:
• Crypto homework due on Feb. 14
• Holiday: Monday, Feb. 17
• Midterm exam: February 20 in class
• Ethics session

• February 24 and 27

2

SSL / TLS Guarantees
• End-to-end secure communications at transport layer in the

presence of a network attacker
• Attacker completely owns the network: controls Wi-Fi, DNS,

routers, his own websites, can listen to any packet, modify packets
in transit, inject his own packets into the network

• Properties
• Authentication of server (optionally, client authentication)
• Confidentiality of communication
• Integrity against active attacks

3

TLS Basics

• TLS consists of two protocols
• Handshake protocol
• Session initiation by client
• Uses public-key cryptography to establish several shared secret keys

between the client and the server
• Server must have an asymmetric keypair

• X.509 certificates contain signed public keys rooted in PKI

• Record protocol
• Uses the secret keys established in the handshake protocol to protect

confidentiality and integrity of data exchange between the client and the
server

4

TLS Handshake Protocol

• Runs between a client and a server
• Client = Web browser
• Server = website

• Negotiate version of the protocol and the set of
cryptographic algorithms to be used
• Interoperability between different implementations

• Authenticate server
• Use digital certificates to learn server’s public keys and verify

the certificate
• Client authentication is optional

• Use public keys to establish a shared secret

5

Handshake Protocol Structure

ClientHello

ServerHello
ServerKeyExchange

CertificateVerify

ClientKeyExchange

Finished Finished

Agree on crypto algorithms
Server certificate

Send session key using public-key
encryption

Extract session key
Derive secret keys for crypto algorithms

• Common algorithms
• Session key
• Crypto keys 6

Derive secret keys for crypto algorithms

Record Protocol Structure

Encryption (m)
• Mac-then-Enc using keys derived

from the session key
• MAC uses a counter to prevent

replay attacks
• Provides authenticated encryption

Decryption(c)

First decrypt, then check MAC

Encryption (m)
Similar algorithm, but needs different
keys (set of keys for each
communication direction)

Decryption(c)

First decrypt, then check MAC

7

Client: (k1 , k2)

Client side Enc(k1 , k2 ,data, ctr) :
Step 1: tag ⟵ Tag(k2 , [++ctr ll header ll data])
Step 2: pad [header ll data ll tag] to AES block size
Step 3: AES-CBC encrypt with k1 and new random IV

TLS record: encryption (CBC AES-128, HMAC-SHA1)

data

header

tag pad

8

TLS record: decryption (CBC AES-128, HMAC-SHA1)

Server side Dec(k1 , k2 , c, ctr) :
Step 1: CBC decrypt c using k1

Step 2: check pad format: send bad_record_mac if invalid
Step 3: check tag on [++ctr ll header ll data]

send bad_record_mac if invalid

Provides authenticated encryption
(provided no other information is leaked during
decryption)

9

Review Applied Cryptography

• Encryption: Confidentiality
• Symmetric-key (e.g., CBC-AES, CTR-AES)
• Public-key (e.g., RSA OAEP)

• Message Authentication Codes (MACs): Integrity
• E.g., HMAC

• Signature schemes: Integrity and (Weak) Authentication
• E.g., RSA Full-Domain-Hash

• Hash functions
• Used for designing MAC and in signature schemes
• E.g., SHA-2, SHA-3

• PKI: Authentication
• Distribution of public keys on the Internet

10

Review: Applied Cryptography

• Crypto is a powerful tool
• Practical crypto relies on computational assumptions, such as factoring
• Use crypto to build a secure system is difficult

• By composing crypto primitive the result is not always secure!

• Example 1: IV in CBC encryption to prevent chosen plaintext attacks
• Incorrect implementations may create vulnerabilities to CPA attacks as in TLS v1

(predictable IV)

• Example 2: order of encryption and MAC for both confidentiality and integrity
• Incorrect ordering could invalidate both properties

• Practical issues
• Combining public key and private key encryption

11

Passwords and Authentication
Password storage
Password cracking
Password recovery

13

Authentication
• Authentication is the process of verifying an actor’s identity
• Critical for security of systems
• Permissions, capabilities, and access control are all contingent upon

knowing the identity of the actor

• Typically parameterized as a username and a secret
• The secret attempts to limit unauthorized access

• Desirable properties of secrets include being unforgeable and
revocable

14

Types of Secrets
• Actors provide their secret to log-in to a system
• Three classes of secrets:

1. Something you know
• Example: a password or PIN

2. Something you have
• Examples: a smart card, smart phone, or hardware token

3. Something you are
• Examples: fingerprint, voice scan, iris scan

15

Password Storage
Hashing and Salting
Key Stretching and Work Factor

Attacker Goals and Threat Model
• Assume we have a system storing usernames and passwords
• The attacker has access to the password database/file

User Password

charlie p4ssW0rd

sandi puppies

alice 3spr3ss0

User Password

charlie p4ssW0rd

sandi puppies

alice 3spr3ss0

Cracked Passwords

Database

I wanna login to
those user accounts!

17

Checking Passwords
• System must validate passwords provided by users
• Thus, passwords must be stored somewhere
• Basic storage: plain text

charlie p4ssw0rd
sandi i heart doggies
alice 93Gd9#jv*0x3N
bob security

password.txt

18

Problem: Password File Theft
• Attackers often compromise systems
• They may be able to steal the password file
• Linux: /etc/shadow
• Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what happens?
• The attacker can now log-in as any user, including root/administrator
• Moreover, attacker will get access to other machines where users

have access

• Passwords should never be stored in plain text

19

Hashed Passwords

• Key idea: store “scrambled” versions of passwords
• Use one-way cryptographic hash functions
• Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2, scrypt

• Cryptographic hash function transform input data into
scrambled output data
• Deterministic: H(A) is always the same
• High entropy:

• H(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• H(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• H(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

• Collision resistant
• Locating A’ such that H(A) = H(A’) takes a long time (hopefully)

20

Hashed Password Example

charlie 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
alice 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: charlie

H(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

H(‘password’) =
b35596ed3f0d5134739292faa04f7ca3

21

Attacking Password Hashes
• Recall: cryptographic hashes are collision resistant
• Locating A’ such that H(A) = H(A’) takes a long time (hopefully)

• Are hashed password secure from cracking?
• No!

• Problem: users choose poor passwords
• Most common passwords: 123456, password
• Username: alice, Password: alice

• Weak passwords enable dictionary attacks

22

Most Common Passwords

Rank 2013 2014

1 123456 123456

2 password password

3 12345678 12345

4 qwerty 12345678

5 abc123 qwerty

6 123456789 123456789

7 111111 1234

8 1234567 baseball

9 iloveyou dragon

10 adobe123 football
23

Dictionary Attacks

• Common for 60-70% of hashed passwords to be cracked in <24 hours

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

hashed_
password.txt

24

Basic Password Cracking

• Problem: humans are terrible at generating/remembering random
strings
• Passwords are often weak enough to be brute-forced
• Naïve way: systematically try all possible passwords
• Slightly smarter way: take into account non-uniform distribution of characters

• Dictionary attacks are also highly effective
• Select a baseline wordlist/dictionary full of likely passwords

• Today, the best wordlists come from lists of breached passwords
• Rule-guided word mangling to look for slight variations

• E.g. password à Password à p4ssword à passw0rd à p4ssw0rd à password1 à etc.

• Many password cracking tools exist (e.g. John the Ripper, hashcat)

25

Speeding Up Brute-Force Cracking

• Brute force attacks are slow because hashing is CPU intensive
• Especially if a strong function (SHA512) is used

• Idea: why not pre-compute and store all hashes?
• You would only need to pay the CPU cost once…

• Given a hash function H, a target hash h, and password space P, goal
is to recover 𝑝 ∈ 𝑃 such that 𝐻 𝑝 = ℎ
• Problem: naïve approach requires lots of storage
• O(|P||H|)

26

Hash Chains: Cracking Tough Passwords

• Hash chains enable time-space efficient reversal of hash functions
• Key idea: pre-compute chains of passwords of length k…
• … but only store the start and end of each chain
• Larger k à fewer chains to store, more CPU cost to rebuild chains
• Small k à more chains to store, less CPU cost to rebuild chains

• Building chains require H, as well as a reduction R : H ↦ P
• Begin by selecting some initial set of password 𝑃) ⊂ 𝑃
• For each 𝑝′ ∈ 𝑃’, apply 𝐻 𝑝) = ℎ), 𝑅 ℎ) = 𝑝)) for k iterations
• Only store 𝑝′ and 𝑝′.

• To recover hash h, apply R and H until the end of a chain is found
• Rebuild the chain using 𝑝′ and 𝑝′.
• H(p) = h may be within the chain

27

Uncompressed Hash Chain Example

p' H(p’) = h’ R(h’) = p” H(p”) = h” R(h”) = p’’’ H(p’’’) = h’’’ R(h’’’) = p*
abcde \\WPNP_ vlsfqp _QOZLR eusrqv CMRQ5X cjldar
passw VZDGEF gfnxsk ZLGEKV yookol EBOTHT zvxscs
12345 SM-QK\9 sawtzg RHKP_D gvmdwm BYE4LB wjizbn
secrt OKFTaY btweoz WA15HK ttgovl Q_4\6ZB eivlqc

K = 3

Only these two columns
get stored on disk

28

Hash Chain Example
p' p*
abcde cjldar
passw zvxscs
12345 wjizbn
secrt eivlqc

p H(p) = h R(h) = p’ H(p’) = h’ R(h’) = p” H(p”) = h” R(h”) = p’’’ H(p’’’) = h’’’
sawtzg RHKP_D gvmdwm BYE4LB wjizbn

Hash to recoverDesired password

K = 3

p' H(p’) = h’ R(h’) = p” H(p”) = h” R(h”) = p’’’ H(p’’’) = h’’’ R(h’’’) = p*
12345 SM-QK\9 sawtzg RHKP_D wjizbn

• Size of the table is dramatically
reduced…
• … but some computation is necessary

once a match is found

29

Problems with Hash Chains

• Hash chains are prone to collisions
• Collisions occur when H(p’) = H(p”) or R(h’) = R(h”) (the latter is more likely)
• Causes the chains to merge or overlap

• Problems caused by collisions
• Wasted space in the file, since the chains cover the same password space
• False positives: a chain may not include the password even if the end matches

• Proper choice of R() is critical
• Goal is to cover likely password space, not entire password space
• R cannot be collision resistant (like H) since it has to map into likely plaintexts
• Rainbow tables use multiple reduction functions and can be downloaded for free (for

passwords up to 14 characters)
• Conclusion: storing hashes of passwords is vulnerable to brute forcing and

rainbow table attacks
30

