CY 2550 Foundations of
Cybersecurity

TLS
Passwords and Authentication
Alina Oprea

Associate Professor, Khoury College
Northeastern University

Outline

* TLS protocol
* Handshake and record protocols

e Password authentication

Announcements:

* Crypto homework due on Feb. 14

* Holiday: Monday, Feb. 17
 Midterm exam: February 20 in class

e Ethics session
* February 24 and 27

SSL / TLS Guarantees

* End-to-end secure communications at transport layer in the
presence of a network attacker

» Attacker completely owns the network: controls Wi-Fi, DNS,
routers, his own websites, can listen to any packet, modify packets
in transit, inject his own packets into the network

* Properties
* Authentication of server (optionally, client authentication)

* Confidentiality of communication
* Integrity against active attacks

TLS Basics

* TLS consists of two protocols

* Handshake protocol
e Session initiation by client

* Uses public-key cryptography to establish several shared secret keys
between the client and the server

e Server must have an asymmetric keypair
e X.509 certificates contain signed public keys rooted in PKI

e Record protocol

* Uses the secret keys established in the handshake protocol to protect
confidentiality and integrity of data exchange between the client and the
server

TLS Handshake Protocol

e Runs between a client and a server
* Client = Web browser
* Server = website

* Negotiate version of the protocol and the set of
cryptographic algorithms to be used

* Interoperability between different implementations

* Authenticate server

* Use digital certificates to learn server’s public keys and verify
the certificate

* Client authentication is optional

* Use public keys to establish a shared secret

Handshake Protocol Structure

Bankof America "\)/
ClientHello
U

ServerHello

Agree on crypto algorithms ServerKeyExchange
Server certificate

—

CertificateVerify

ClientKeyExchange
Y g Send session key using public-key

encryption

—
Extract session key

Derive secret keys for crypto algorithms Derive secret keys for crypto algorithms

 Common algorithms o
Finished * Session key Finished

* Crypto keys

Record Protocol Structure

2

Encryption (m)

* Mac-then-Enc using keys derived
from the session key

* MAC uses a counter to prevent
replay attacks

* Provides authenticated encryption

Decryption(c)

First decrypt, then check MAC

Bankof America 2%

o

Decryption(c)

First decrypt, then check MAC

Encryption (m)

Similar algorithm, but needs different
keys (set of keys for each
communication direction)

TLS record: encryption (CBC AES-128, HMAC-SHA1)

Client: (kq , ky) header

Client side Enc(k, , k,,data, ctr):
Step 1: tag «— Tag(k,, [++ctr Il header Il data])
Step 2: pad [header |l data Il tag] to AES block size
Step 3: AES-CBC encrypt with k; and new random IV

TLS record: decryption (CBC AES-128, HMAC-SHA1)

Server side Dec(k, , k,, ¢, ctr) :
Step 1: CBC decrypt c using k;
Step 2: check pad format: send bad record _mac if invalid
Step 3: check tagon [++ctrll header |l data]
send bad record mac if invalid

Provides authenticated encryption
(provided no other information is leaked during
decryption)

Review Applied Cryptography

* Encryption: Confidentiality
 Symmetric-key (e.g., CBC-AES, CTR-AES)
* Public-key (e.g., RSA OAEP)
* Message Authentication Codes (MACs): Integrity
¢ E.g., HMAC
 Signature schemes: Integrity and (Weak) Authentication
* E.g., RSA Full-Domain-Hash

e Hash functions

* Used for designing MAC and in signature schemes
e E.g., SHA-2, SHA-3

e PKI: Authentication
 Distribution of public keys on the Internet

Review: Applied Cryptography

* Crypto is a powerful tool
* Practical crypto relies on computational assumptions, such as factoring

e Use crypto to build a secure system is difficult
* By composing crypto primitive the result is not always secure!

 Example 1: IV in CBC encryption to prevent chosen plaintext attacks

* Incorrect implementations may create vulnerabilities to CPA attacks as in TLS v1
(predictable 1V)

 Example 2: order of encryption and MAC for both confidentiality and integrity
* Incorrect ordering could invalidate both properties

* Practical issues
* Combining public key and private key encryption

Passwords and Authentication

Password storage
Password cracking

Password recovery

3
M E ’ ‘ lAdministrator

Wmdows

To begin, click your user name

Type your password

After you log on, you can add or change accounts.
Turn Off ComPUter Just go to Control Panel and click User Accounts.,

Authentication

* Authentication is the process of verifying an actor’s identity

* Critical for security of systems

* Permissions, capabilities, and access control are all contingent upon
knowing the identity of the actor

¢ TypicaIIy parameterized as a username and a secret
* The secret attempts to limit unauthorized access

* Desirable properties of secrets include being unforgeable and
revocable

14

Types of Secrets

* Actors provide their secret to log-in to a system

* Three classes of secrets:
1. Something you know
* Example: a password or PIN

2. Something you have
* Examples: a smart card, smart phone, or hardware token

3. Something you are
* Examples: fingerprint, voice scan, iris scan

15

Password Storage

Hashing and Salting
Key Stretching and Work Factor

Attacker Goals and Threat Model

e Assume we have a system storing usernames and passwords
* The attacker has access to the password database/file

| wanna login to

those user accounts!

Database

Cracked Passwords

Password User Password

charlie p4ssWO0rd charlie p4ssWord
sandi puppies sandi puppies

alice 3spr3ss0 alice 3spr3ss0 17

Checking Passwords

e System must validate passwords provided by users
* Thus, passwords must be stored somewhere
* Basic storage: plain text

password.txt

WERIE p4sswOrd
sandi i heart doggies
alice 93Gd9#jv*0x3N

bob security

18

Problem: Password File Theft

 Attackers often compromise systems

* They may be able to steal the password file
* Linux: /etc/shadow
* Windows: c:\windows\system32\config\sam

* If the passwords are plain text, what happens?
* The attacker can now log-in as any user, including root/administrator

* Moreover, attacker will get access to other machines where users
have access

* Passwords should never be stored in plain text

Hashed Passwords

* Key idea: store “scrambled” versions of passwords

* Use one-way cryptographic hash functions
 Examples: MD5, SHA1, SHA256, SHA512, becrypt, PBKDF2, scrypt

* Cryptographic hash function transform input data into
scrambled output data
e Deterministic: H(A) is always the same
* High entropy:
* H(‘security’) =e91e6348157868de9dd8b25c81aebfb9

* H(‘securityl’) = 8632c375e9eba096df51844a5a43ae93
* H(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

* Collision resistant
* Locating A’ such that H(A) = H(A’) takes a long time (hopefully)

Hashed Password Example

‘ H(‘p4sswOrd’) =
2a9d119df47ff993b662a8ef36f9ea20

User: charlie

charlie

sandi

alice
bob

ssword’) =
34739292faa04f7ca3

hashed_passw xt

229d119df47ff993b662a8ef36f9ea20

23eb06699dal6a3ee5003e5f4636e79f
98bd0ebb3c3ec3fbe21269a8d840127c¢
€91e6348157868de9dd8b25c81aebfb9

21

Attacking Password Hashes

* Recall: cryptographic hashes are collision resistant
* Locating A’ such that H(A) = H(A’) takes a long time (hopefully)

* Are hashed password secure from cracking?
* No!

* Problem: users choose poor passwords
* Most common passwords: 123456, password
 Username: alice, Password: alice

* Weak passwords enable dictionary attacks

Most Common Passwords

Rank 2013 2014

1 123456 123456

2 password password
3 12345678 12345

4 gwerty 12345678
5 abc123 gwerty

6 123456789 123456789
7 111111 1234

8 1234567 baseball
9 iloveyou dragon

10 adobel23 football

23

Dictionary Attacks

|

English

List of

o b hashed _
ictionary R password.txt
password
) hashes
@F

1

Common

Passwords

* Common for 60-70% of hashed passwords to be cracked in <24 hours

24

Basic Password Cracking

* Problem: humans are terrible at generating/remembering random
strings
* Passwords are often weak enough to be brute-forced

* Naive way: systematically try all possible passwords
* Slightly smarter way: take into account non-uniform distribution of characters

* Dictionary attacks are also highly effective

* Select a baseline wordlist/dictionary full of likely passwords
* Today, the best wordlists come from lists of breached passwords

* Rule-guided word mangling to look for slight variations
e E.g. password = Password = p4ssword = passwOrd = p4ssw0rd = passwordl = etc.

* Many password cracking tools exist (e.g. John the Ripper, hashcat)

Speeding Up Brute-Force Cracking

 Brute force attacks are slow because hashing is CPU intensive
 Especially if a strong function (SHA512) is used

 |dea: why not pre-compute and store all hashes?
* You would only need to pay the CPU cost once...

* Given a hash function H, a target hash h, and password space P, goal
is to recover p € P suchthat H(p) = h

* Problem: naive approach requires lots of storage

* O(/P[|H])

Hash Chains: Cracking Tough Passwords

* Hash chains enable time-space efficient reversal of hash functions

* Key idea: pre-compute chains of passwords of length k...
* ... but only store the start and end of each chain
* Larger k = fewer chains to store, more CPU cost to rebuild chains
* Small k =2 more chains to store, less CPU cost to rebuild chains

* Building chains require H, as well as a reductionR: H ~» P
* Begin by selecting some initial set of password P’ c P
* Foreachp' € P, apply H(p') = h',R(h") = p" for k iterations
* Only store p’ and p'*
* To recover hash h, apply R and H until the end of a chain is found

« Rebuild the chain using p’ and p’*
* H(p) = h may be within the chain

Uncompressed Hash Chain Example

Only these two columns
get stored on disk

H(p’) = b’ H(p”)=h” R(h")=p™ H(p”)=h" | R(h")=p*
\\WPNP_ _QOZLR eusrqv CMRQ5X cjldar
VZDGEF ZLGEKV yookol EBOTHT ZVXSCS
SM-QK\9 RHKP_D gvmdwm BYE4LB wjizbn
OKFTaY WA15HK ttgovl Q_4\6ZB eivlqgc

28

ash Chain Example

m * Size of the table is dramatically

abcde cjldar reduced...

Passw _zvioes K=3 e ... but some computation is necessary
LA once a match is found

secrt eivlgc

H(pl) — hl R(h’) — p” H(p”) — h” R(h”) — plll H(plll) — hlll R(h’ll) — p*

12345 SM-QK\9 | sawtzg RHKP_D wjizbn

p H(p) - h R(h) - pl H(pl) — hl R(hl) — p” H(pll) — h” R(h”) — plll H(plll) — hlll

RHKP. D gvmdwm BYE4LB

Desired password Hash to recover

29

Problems with Hash Chains

e Hash chains are prone to collisions
 Collisions occur when H(p’) = H(p”) or R(h’) = R(h”) (the latter is more likely)
* Causes the chains to merge or overlap

* Problems caused by collisions
* Wasted space in the file, since the chains cover the same password space
* False positives: a chain may not include the password even if the end matches

* Proper choice of R() is critical
* Goal is to cover likely password space, not entire password space
* R cannot be collision resistant (like H) since it has to map into likely plaintexts

e Rainbow tables use multiple reduction functions and can be downloaded for free (for
passwords up to 14 characters)

* Conclusion: storing hashes of passwords is vulnerable to brute forcing and
rainbow table attacks

