CY2550 Foundations of
Cybersecurity

Access Control

Alina Oprea
Associate Professor, Khoury College
Northeastern University
March 12 2020

Authentication

* Verification of identity claim made by a subject on behalf of a
principal

 Three classes of secrets:
1. Something you know
* Example: a password

2. Something you have
* Examples: a smart card or smart phone

3. Something you are
* Examples: fingerprint, voice scan, iris scan

* Desirable properties include being unforgeable, unguessable, and
revocable

Authorization

* Authorization follows authentication
* |f asking what someone can do, you must know who they are

e Usually represented as a policy specification
* What resources can be accessed by a given subject?
e Can also include the nature of the access

Access Control

* Policy specifying how entities can interact with resources

* i.e., Who can

access what?

* Requires authentication and authorization

* Access control

primitives

Principal

User of a system

Subject

Entity that acts on behalf of principals

Software program

Object

Resource acted upon by subjects

Files

Sockets
Devices
OS APlIs

Access Control Check

* Given an access request from a subject, on behalf of a principal, for
an object, return an access control decision based on the policy

Object

Q==

Principal Subject

Access Control Models

* Discretionary Access Control (DAC)
* The kind of access control you are familiar with
* Access rights propagate and may be changed at subject’s discretion

* Mandatory Access Control (MAC)

* Access of subjects to objects is based on a system-wide policy
* Denies users full control over resources they create

Discretionary Access Control

Access Control Matrices
Access Control Lists

Unix Access Control

Discretionary Access Control

e According to Trusted Computer System Evaluation Criteria (TCSEC)

"A means of restricting access to objects based on the identity and
need-to-know of users and/or groups to which they belong. Controls
are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (directly or indirectly)
to any other subject.”

Access Control Matrices

Given subjects s; € S, objects o, € O, rights {Read, Write, eXecute},

RWX RW

s RWX

* Introduced by Lampson in 1971
e Static description of system protection state
e Abstract model of concrete systems

Access Control List (ACL)

* Each object has an associated list of subject
—> operation pairs

e Authorization verified for each request by
checking list of tuples

e Used pervasively in filesystems and networks
e "Users a, b, and c can read file x."
e "Hosts a and b can listen on port x."

10

Windows ACLs

Documents Properties u

| General | Sharing | Security | Previous Versions | Customize |

Object name: D:\Documents

GI'OUD Or user names:
82 SYSTEM

82, Administrators (TaylorGibb-PC\Administrators)
2 lloars Madadihh-Pr\ loars)
< | 1

To change pemissions, click Edit.

Pemissions for Account
Unknown(S-1-5-21-1206375286-:
Full control
Modify

Read & execute v
List folder contents v
Read v
Write
For special permissions or advanced settings,
click Advanced.

Leam about access control and pemissions

| ok || cancel || appiy

ACL Review

The Good
* Very flexible

e Can express any possible access
control matrix

* Any principal can be configured to
have any rights on any object

The Bad

* Complicated to manage

* Every object can have wildly
different policies

* Infinite permutations of subjects,
objects, and rights

Unix-style Permissions

* Based around the concept of owners and groups
* All objects have an owner and a group
* Permissions assigned to owner, group, and everyone else

e Authorization verified for each request by mapping the subject to
owner, group, or other and checking the associated permissions

Unix Permissions

Directory Permission to list the contents of a directory

alice@DESKTQ o 1s -1
| driwxrwxriix @ alice alice 512 Jan 29 22:46
-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my file
-rwxrwxrwx 1 alice faculty 313 Jan 29 22:47 my program.py
root root 896 Jan 29 22:47 sensitive data.csv

Owner Group

d = Directory r = Read w = Write x =2 eXecute

Setting Permissions

+ = add permissions

- = remove permissions

chmod [who]<+/-><permissions> <file1> [file2] ...

(omitted) = user, group, and other r 2 Read

a = user, group, and other w =2 Write

u —> user X = eXecute
g = group

0 = other

15

alice@DESKTOP:~$% 1s -1

drwxrwxrwx © alice alice 512 Jan 29 22:46 my _dir
-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my file
-rwxrwxrwx 1 alice faculty 313 Jan 29 22:47 my program.py

alice@DESKTOP:~% chmod ugo-rwx my dir

alice@DESKTOP:~$% chmod go-rwx my_ program.py
alice@DESKTOP:~$% chmod u-rw my_ program.py
alice@DESKTOP:~$% chmod +x my file
alice@DESKTOP:~$% 1s -1

© alice alice 512 Jan 29 22:46 my _dir
-rwxrwxrwx 1 alice alice 17 Jan 29 22:46 my file
-==X====-- 1 alice faculty 313 Jan 29 22:47 my program.

Alternate Form of Setting Permissions

chmod ### <filel> [file2] ...

* ##s correspond to owner, group, and other

* Each value encodes read, write, and execute permissions
* 1 2 execute
e 2 2 write
* 4 - read

* What if you want to set something as read, write, and execute?
*1+2+4=7

alice@DESKTOP:~$% 1s -1

drwxrwxrwx © alice alice 512 Jan 29 22:46 my _dir
-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my file
-rwxrwxrwx 1 alice faculty 313 Jan 29 22:47 my program.py
alice@DESKTOP:~% chmod 000 my dir

alice@DESKTOP:~$ chmod 100 my_ program.py

alice@DESKTOP:~% chmod 777 my file

alice@DESKTOP:~$% 1s -1
© alice alice 512 Jan 29 22:46 my _dir
-rwxrwxrwx 1 alice alice 17 Jan 29 22:46 my file

——=X---==- 1 alice faculty 313 Jan 29 22:47 my program.py

Who May Change Permissions?

alice@DESKTOP:~$% groups
alice faculty
alice@DESKTOP:~$% 1ls -1

-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my file

-rw-rw-rw- 1 alice faculty 17 Jan 29 22:46 my other file
root root 896 Jan 29 22:47 sensitive data.csv
-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

* Which files is user alice permitted to chmod?
* Only owners can chmod files
 alice can chmod my_file and my_other file
* Group membership doesn’t grant chmod ability (cannot chmod program.py)

Setting Ownership

* Unix uses discretionary access control
* New objects are owned by the subject that created them

* How can you modify the owner or group of an object?

chown <owner>:<group> <filel> [file2] ...

Who May Change Ownership?

alice@DESKTOP:~$% groups
alice faculty
alice@DESKTOP:~$% 1ls -1

-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my file

-rw-rw-rw- 1 alice faculty 17 Jan 29 22:46 my other file
root root 896 Jan 29 22:47 sensitive data.csv
-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

* Which operations are permitted?

chown alice:faculty my file
chown alice:alice sensitive_date.csv

chown alice:faculty program.py

Unix Access Control Exercise (1)

* What Unix group and permission assignments satisfy this access
control matrix?

userl userl
Desired Permissions user? user?
userl (- FWX user4 userd
user2 r-- rw-

~% 1s -1
user3 r-- rw-

-rwxXrwxr-- 1 userd4d userd4d 0 filel

userd rwx rw- .
-PWXrwxrw- 1 userl userl 0 file2

Unix Access Control Exercise (2)

* What Unix group and permission assignments satisfy this access
control matrix?

userl userl
Desired Permissions e user2, groupl

userl r-- —-X user4 user4, group?2

user2 r-x rwx
~% 1s -1

-rwxr-xr-- 1 user4 groupl ©0 filel

user3 r-x r--

userd rwx r--

-rwxr----x 1 user2 group2 ©0 file2

Unix Access Control Exercise (3)

* What Unix group and permission assignments satisfy this access
control matrix?

* Trick question! This matrix cannot be represented

Desired Permissions

= Thie 1 ez

e file2: four distinct privilege levels
 Maximum of three levels (user, group, other)

userl --- rw-

user 2 r-- r=- * filel: two users have high privileges

user3 rwx rwx * Owner has highest privilege

user4 rwx --- * |f select one of user 3 or user 4 as owner, need

to support 4 privilege levels

24

Unix Access Control Review

The Good The Bad
* Very simple model * Not all policies can be encoded!
* Owners, groups, and other e Contrast to ACL
* Read, write, execute * Not quite as simple as it seems
 Relatively simple to manage and * setuid

understand

