
CY2550 Foundations of
Cybersecurity

Access Control

Alina Oprea
Associate Professor, Khoury College

Northeastern University
March 12 2020

Authentication

• Verification of identity claim made by a subject on behalf of a
principal
• Three classes of secrets:

1. Something you know
• Example: a password

2. Something you have
• Examples: a smart card or smart phone

3. Something you are
• Examples: fingerprint, voice scan, iris scan

• Desirable properties include being unforgeable, unguessable, and
revocable

2

Authorization

• Authorization follows authentication
• If asking what someone can do, you must know who they are

• Usually represented as a policy specification
• What resources can be accessed by a given subject?
• Can also include the nature of the access

3

Access Control

• Policy specifying how entities can interact with resources
• i.e., Who can access what?
• Requires authentication and authorization

• Access control primitives

Principal User of a system

Subject Entity that acts on behalf of principals Software program

Object Resource acted upon by subjects

Files
Sockets
Devices
OS APIs

4

Access Control Check

• Given an access request from a subject, on behalf of a principal, for
an object, return an access control decision based on the policy

Principal Subject

Object

Policy

Allow

Deny

5

Access Control Models

• Discretionary Access Control (DAC)
• The kind of access control you are familiar with
• Access rights propagate and may be changed at subject’s discretion

• Mandatory Access Control (MAC)
• Access of subjects to objects is based on a system-wide policy
• Denies users full control over resources they create

6

Discretionary Access Control
Access Control Matrices
Access Control Lists
Unix Access Control

7

Discretionary Access Control

• According to Trusted Computer System Evaluation Criteria (TCSEC)

"A means of restricting access to objects based on the identity and
need-to-know of users and/or groups to which they belong. Controls

are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (directly or indirectly)

to any other subject."

8

Access Control Matrices

• Introduced by Lampson in 1971
• Static description of system protection state
• Abstract model of concrete systems

o1 o2 o3

s1 RW RX
s2 R RWX RW
s3 RWX

Given subjects si ∈ S, objects oj ∈ O, rights {Read, Write, eXecute},

9

Access Control List (ACL)

• Each object has an associated list of subject
à operation pairs
• Authorization verified for each request by

checking list of tuples
• Used pervasively in filesystems and networks
• "Users a, b, and c can read file x."
• "Hosts a and b can listen on port x."

o1 o2 o3

s1 RW RX
s2 R RWX RW
s3 RWX

ACL for o2

10

Windows ACLs

D:\Music D:\Images D:\Documents

System RWX RWX RWX
Administrators RW RW RW
Users:alice RWX RW
Users:bob RW R

11

ACL Review

The Good
• Very flexible
• Can express any possible access

control matrix
• Any principal can be configured to

have any rights on any object

The Bad
• Complicated to manage
• Every object can have wildly

different policies
• Infinite permutations of subjects,

objects, and rights

12

Unix-style Permissions

• Based around the concept of owners and groups
• All objects have an owner and a group
• Permissions assigned to owner, group, and everyone else

• Authorization verified for each request by mapping the subject to
owner, group, or other and checking the associated permissions

13

Unix Permissions

alice@DESKTOP:~$ ls -l
drwxrwxrwx 0 alice alice 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 alice faculty 313 Jan 29 22:47 my_program.py
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv

Owner GroupOwner
Group
Other

d à Directory r à Read w à Write x à eXecute

Directory Permission to list the contents of a directory

14

Setting Permissions

chmod [who]<+/-><permissions> <file1> [file2] …

(omitted) à user, group, and other
a à user, group, and other
u à user
g à group
o à other

+ à add permissions
- à remove permissions

r à Read
w à Write
x à eXecute

15

alice@DESKTOP:~$ ls -l
drwxrwxrwx 0 alice alice 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 alice faculty 313 Jan 29 22:47 my_program.py
alice@DESKTOP:~$ chmod ugo-rwx my_dir
alice@DESKTOP:~$ chmod go-rwx my_program.py
alice@DESKTOP:~$ chmod u-rw my_program.py
alice@DESKTOP:~$ chmod +x my_file
alice@DESKTOP:~$ ls -l
d--------- 0 alice alice 512 Jan 29 22:46 my_dir
-rwxrwxrwx 1 alice alice 17 Jan 29 22:46 my_file
---x------ 1 alice faculty 313 Jan 29 22:47 my_program.py

Alternate Form of Setting Permissions

chmod ### <file1> [file2] …

• #s correspond to owner, group, and other
• Each value encodes read, write, and execute permissions
• 1 à execute
• 2 à write
• 4 à read

• What if you want to set something as read, write, and execute?
• 1 + 2 + 4 = 7

17

alice@DESKTOP:~$ ls -l
drwxrwxrwx 0 alice alice 512 Jan 29 22:46 my_dir
-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my_file
-rwxrwxrwx 1 alice faculty 313 Jan 29 22:47 my_program.py
alice@DESKTOP:~$ chmod 000 my_dir
alice@DESKTOP:~$ chmod 100 my_program.py
alice@DESKTOP:~$ chmod 777 my_file
alice@DESKTOP:~$ ls -l
d--------- 0 alice alice 512 Jan 29 22:46 my_dir
-rwxrwxrwx 1 alice alice 17 Jan 29 22:46 my_file
---x------ 1 alice faculty 313 Jan 29 22:47 my_program.py

Who May Change Permissions?

• Which files is user alice permitted to chmod?
• Only owners can chmod files
• alice can chmod my_file and my_other_file
• Group membership doesn’t grant chmod ability (cannot chmod program.py)

alice@DESKTOP:~$ groups
alice faculty
alice@DESKTOP:~$ ls -l
-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my_file
-rw-rw-rw- 1 alice faculty 17 Jan 29 22:46 my_other_file
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv
-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

19

Setting Ownership

• Unix uses discretionary access control
• New objects are owned by the subject that created them

• How can you modify the owner or group of an object?

chown <owner>:<group> <file1> [file2] …

20

Who May Change Ownership?

• Which operations are permitted?

alice@DESKTOP:~$ groups
alice faculty
alice@DESKTOP:~$ ls -l
-rw-rw-rw- 1 alice alice 17 Jan 29 22:46 my_file
-rw-rw-rw- 1 alice faculty 17 Jan 29 22:46 my_other_file
-rw------- 1 root root 896 Jan 29 22:47 sensitive_data.csv
-rwxrwx--- 1 root faculty 313 Jan 29 22:47 program.py

chown alice:faculty my_file Yes, alice belongs to the faculty group
chown alice:alice sensitive_date.csv No, only root may change file owners!
chown alice:faculty program.py No, only root may change file owners! 21

Unix Access Control Exercise (1)

• What Unix group and permission assignments satisfy this access
control matrix?

file1 file2
user1 r-- rwx
user2 r-- rw-
user3 r-- rw-
user4 rwx rw-

Desired Permissions

~$ ls -l
-rwxrwxr-- 1 user4 user4 0 file1
-rwxrwxrw- 1 user1 user1 0 file2

User Groups

user1 user1

user2 user2

user3 user3

user4 user4

Unix Access Control Exercise (2)

• What Unix group and permission assignments satisfy this access
control matrix?

file1 file2
user1 r-- --x
user2 r-x rwx
user3 r-x r--
user4 rwx r--

Desired Permissions

~$ ls -l
-rwxr-xr-- 1 user4 group1 0 file1
-rwxr----x 1 user2 group2 0 file2

User Groups

user1 user1

user2 user2, group1

user3 user3, group1, group2

user4 user4, group2

Unix Access Control Exercise (3)

• What Unix group and permission assignments satisfy this access
control matrix?

Desired Permissions
file 1 file 2

user 1 --- rw-
user 2 r-- r--
user 3 rwx rwx
user 4 rwx ---

• Trick question! This matrix cannot be represented

• file2: four distinct privilege levels
• Maximum of three levels (user, group, other)

• file1: two users have high privileges
• Owner has highest privilege
• If select one of user 3 or user 4 as owner, need

to support 4 privilege levels
24

Unix Access Control Review

The Good
• Very simple model
• Owners, groups, and other
• Read, write, execute

• Relatively simple to manage and
understand

The Bad
• Not all policies can be encoded!
• Contrast to ACL

• Not quite as simple as it seems
• setuid

25

