DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

February 5 2019

Logistic Regression

• Given $\left\{ \left(\boldsymbol{x}^{(1)}, y^{(1)} \right), \left(\boldsymbol{x}^{(2)}, y^{(2)} \right), \dots, \left(\boldsymbol{x}^{(n)}, y^{(n)} \right) \right\}$ where $\boldsymbol{x}^{(i)} \in \mathbb{R}^d, \ y^{(i)} \in \{0, 1\}$

• Model:
$$h_{\theta}(x) = g(\theta^{\intercal}x)$$

 $g(z) = \frac{1}{1 + e^{-z}}$ Probabilistic
Interpretation

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \qquad \boldsymbol{x}^{\mathsf{T}} = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix}$$

Maximum Likelihood Estimation (MLE)

Given training data
$$X = \{x^{(1)}, \dots, x^{(n)}\}$$
 with labels $Y = \{y^{(1)}, \dots, y^{(n)}\}$

What is the likelihood of training data for parameter θ ?

Define likelihood function

$$Max_{\theta} L(\theta) = P[Y|X;\theta] = \prod_{i=1}^{n} P[y^{(i)}|x^{(i)};\theta]$$

Assumption: training points are independent

Find model parameter θ with Maximum Likelihood

General probabilistic method for classifier training

Gradient Descent for Logistic Regression

$$J(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y^{(i)} \log h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)}) + \left(1 - y^{(i)}\right) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})\right) \right]$$

Want $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

• Initialize θ

• Repeat until convergence (simultaneous update for j = 0 ... d)

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)} \right]$$

Outline

- Evaluation of classifiers
 - Metrics
 - ROC curves
- Linear Discriminant Analysis (LDA)
- Lab (logistic regression, LDA, kNN)
- Feature selection
 - Wrapper
 - Filter
 - Embedded methods

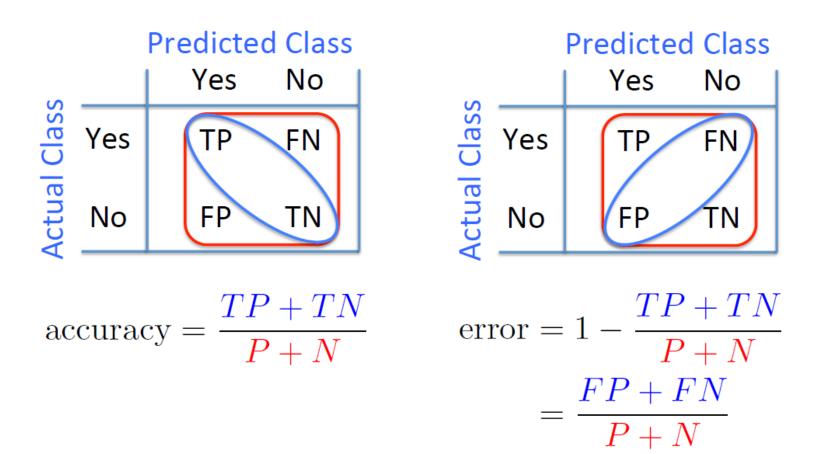
Confusion Matrix

Given a dataset of ${\cal P}\,$ positive instances and $N\, {\rm negative}$ instances:

6		Predicted Yes	Class No
l Class	Yes	TP	FN
Actual	No	FP	TN

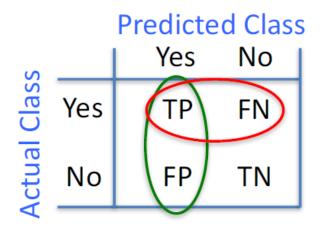
Accuracy and Error

Given a dataset of P positive instances and N negative instances:



Confusion Matrix

• Given a dataset of P positive instances and N negative instances:



$$\operatorname{accuracy} = \frac{TP + TN}{P + N}$$

 Imagine using classifier to identify positive cases (i.e., for information retrieval)

$$precision = \frac{TP}{TP + FP}$$

Probability that classifier predicts positive correctly

 $\text{recall} = \frac{TP}{TP + FN}$

Probability that actual class is predicted correctly

True Positive Rate

Precision & Recall

Precision

- the fraction of positive predictions that are correct
- P(is pos|predicted pos)

$$precision = \frac{TP}{TP + FP}$$

Recall

- fraction of positive instances that are identified
- P(predicted pos | is pos)

 $\text{recall} = \frac{TP}{TP + FN}$

- You can get high recall (but low precision) by only predicting positive
- Recall is a non-decreasing function of the # positive predictions
- Typically, precision decreases as either the number of positive predictions or recall increases
- Precision & recall are widely used in information retrieval

F-Score

• Combined measure of precision/recall tradeoff

$$F_1 = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

- This is the harmonic mean of precision and recall
- In the F_1 measure, precision and recall are weighted evenly
- Can also have biased weightings that emphasize either precision or recall more ($F_2 = 2 \times \text{recall}$; $F_{0.5} = 2 \times \text{precision}$)
- Limitations:
 - F-measure can exaggerate performance if balance between precision and recall is incorrect for application
 - Don't typically know balance ahead of time

A Word of Caution

• Consider binary classifiers A, B, C:

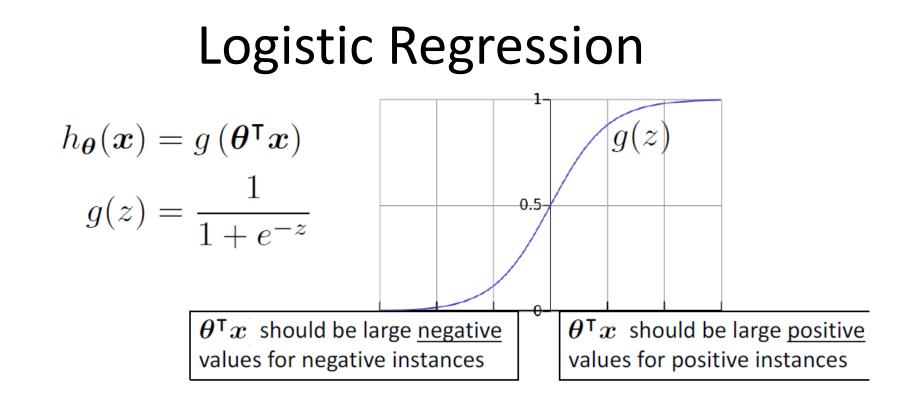
		A		B			
		1	0	1	0	1	0
Predictions	1	0.9	0.1	0.8	0	0.78	0
Fredictions	0	0	0	0.1	0.1	0.12	0.1

- Clearly A is useless, since it always predicts 1
- B is slightly better than C

less probability mass wasted on the off-diagonals

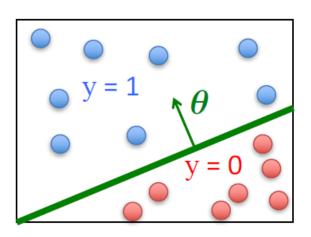
• But, here are the performance metrics:

Metric	Α	В	С
Accuracy	0.9	0.9	0.88
Precision	0.9	1.0	1.0
Recall	1.0	0.888	0.8667
F-score	0.947	0.941	0.9286



Probabilistic model $h_{\theta(x)} = P[y = 1|x; \theta]$

- Predict y = 1 if $h_{\theta}(x) \ge 0.5$
- Predict y = 0 if $h_{\theta}(x) < 0.5$



Classifiers can be tuned

- Logistic regression sets by default the threshold at 0.5 for classifying positive and negative instances
- Some applications have strict constraints on false positives (or other metrics)

- Example: very low false positives in security (spam)

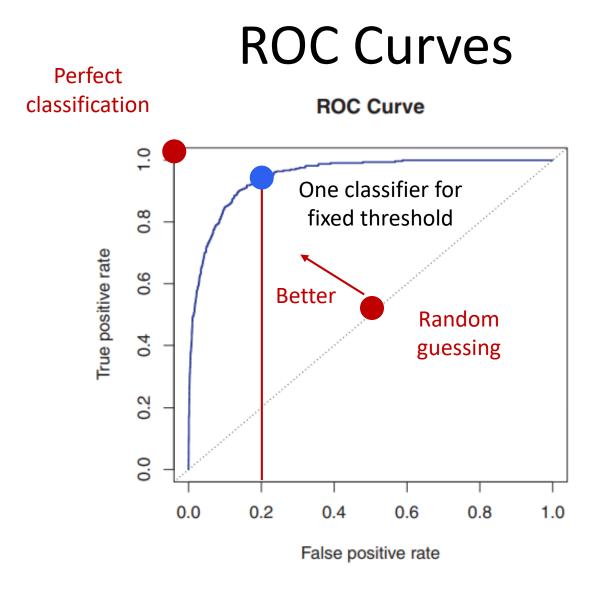
• Solution: choose different threshold

Probabilistic model $h_{\theta(x)} = P[y = 1|x; \theta]$

- Predict y = 1 if $h_{oldsymbol{ heta}}(oldsymbol{x}) \geq \mathsf{T}$

- Predict y = 0 if
$$h_{m{ heta}}(m{x}) < \mathsf{T}$$

Higher T, lower FP Lower T, lower FN

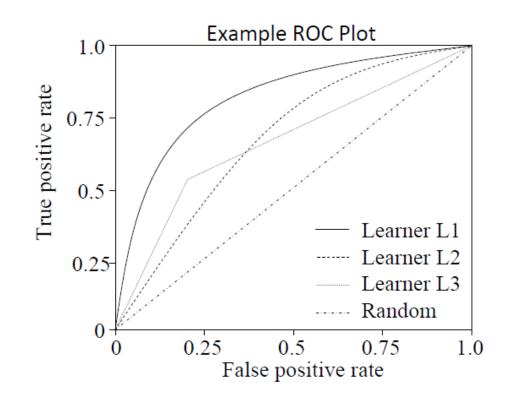


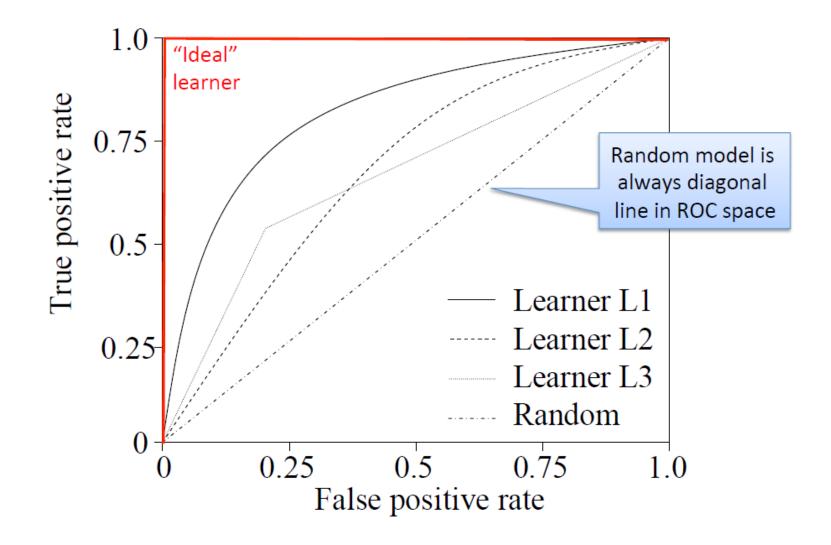
- Receiver Operating Characteristic (ROC)
- Determine operating point (e.g., by fixing false positive rate)

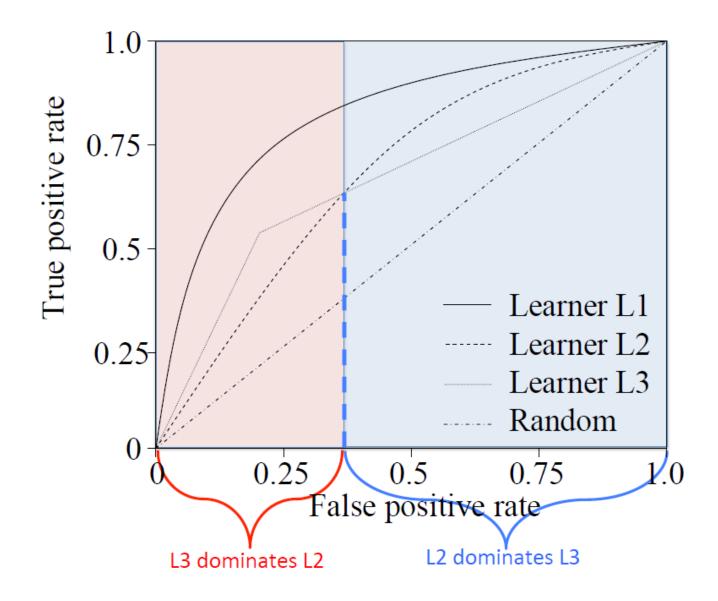
Performance Depends on Threshold

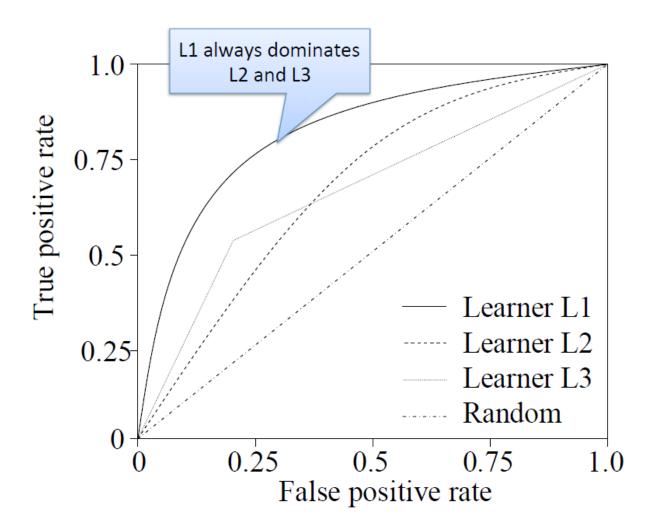
Predict positive if $P(y = 1 \mid \mathbf{x}) > \theta$, otherwise negative

- Number of TPs and FPs depend on threshold θ
- As we vary θ , we get different (TPR, FPR) points

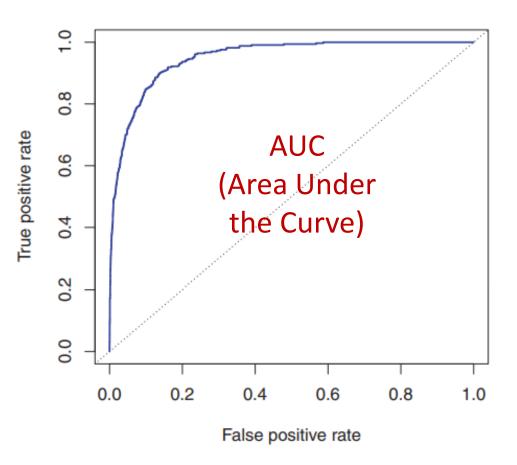








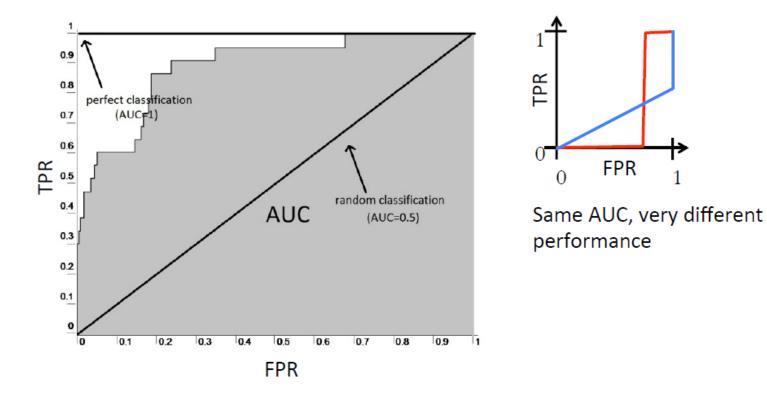
ROC Curves



- Another useful metric: Area Under the Curve (AUC)
- The closest to 1, the better!

Area Under the ROC Curve

- Can take area under the ROC curve to summarize performance as a single number
 - Be cautious when you see only AUC reported without a ROC curve; AUC can hide performance issues



ROC Example

				н. П. С.	
i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \boldsymbol{\theta} = 0)$	$h(\mathbf{x_i} \mid \theta = 0.5)$	$h(\mathbf{x_i} \mid \theta = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.5	1	1	0
6	0	0.4	1	0	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0
	٨		TPR = 5/5 = 1	TPR = 5/5 = 1	TPR = 0/5 = 0
1			FPR = 4/4 = 1	FPR = 0/4 = 0	FPR = 0/4 = 0
TPI	5				
IFI	`				
0		→			
	0	FPR 1			

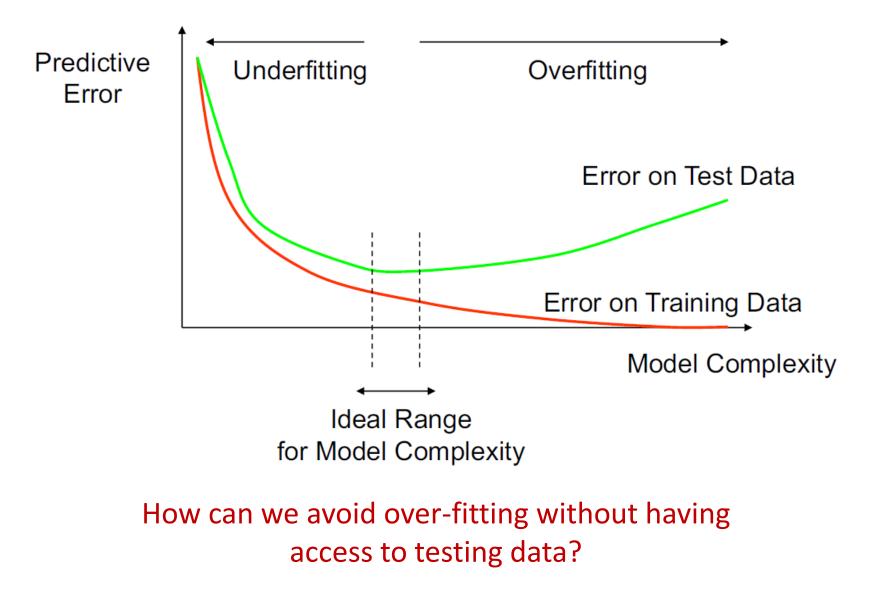
ROC Example

i	y_i	$p(y_i = 1 \mid \mathbf{x}_i)$	$h(\mathbf{x_i} \mid \theta = 0)$	$h(\mathbf{x_i} \mid \theta = 0.5)$	$h(\mathbf{x_i} \mid \theta = 1)$
1	1	0.9	1	1	0
2	1	0.8	1	1	0
3	1	0.7	1	1	0
4	1	0.6	1	1	0
5	1	0.2	1	0	0
6	0	0.6	1	1	0
7	0	0.3	1	0	0
8	0	0.2	1	0	0
9	0	0.1	1	0	0
			TPR = 5/5 = 1	TPR = 4/5 = 0.8	TPR = 0/5 = 0
1 TP 0	R	FPR 1	FPR = 4/4 = 1	FPR = 1/4 = 0.25	FPR = 0/4 = 0

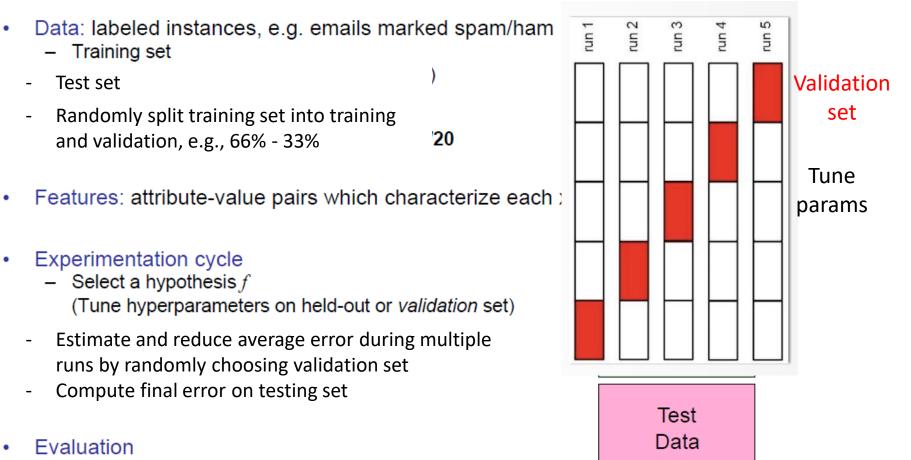
Goals of classification

- Produce models with high accuracy / low error
- Generalize well
 - Avoid overfitting (perform well on training set, but poorly on testing data)
- Find the simplest model that produces reasonable accuracy
 - Occam's Razor
- Reduce both bias and variance!

How Overfitting Affects Prediction

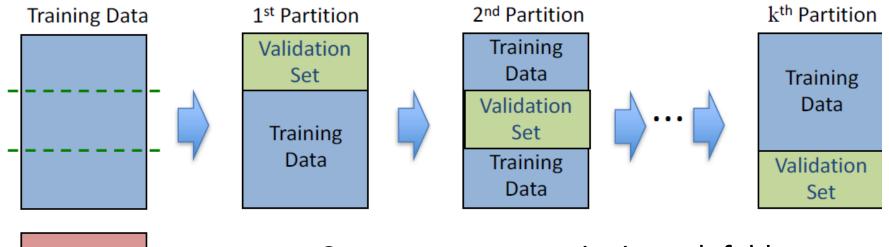


Cross Validation



- Accuracy: fraction of instances predicted correctly
- Use other metrics as appropriate (precision, recall)
 - Improves model generalization
 - Avoids overfitting

Cross Validation



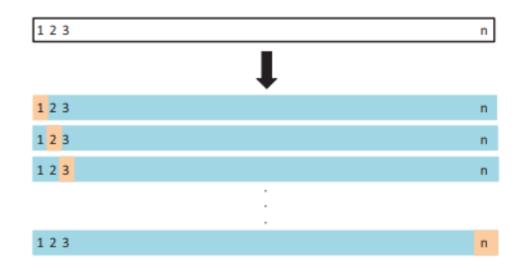
Compute error metrics in each fold Average error across folds

• CV can be used for

Test Data

- Hyper-parameter selection
- Comparing different models and features
- 1. k-fold Cross-Validation
 - Split data into k partitions of equal size

Cross Validation



- 2. Leave-one-out CV (LOOCV)
 - k=n (validation set only one point)
- Pros: Less bias
- Cons: More expensive to implement, higher variance
- Recommendation: perform k-fold CV with k=5 or k=10

Outline

- Evaluation of classifiers
 - Metrics
 - ROC curves
- Linear Discriminant Analysis (LDA)
- Lab (logistic regression, LDA, kNN)
- Feature selection
 - Wrapper
 - Filter
 - Embedded methods

LDA

- Classify to one of k classes
- Logistic regression computes directly

$$-P[Y = 1 | X = x]$$

Assume sigmoid function

• LDA uses Bayes Theorem to estimate it

$$-P[Y = k | X = x] = \frac{P[X = x | Y = k]P[Y=k]}{P[X=x]}$$

- Let $\pi_k = P[Y = k]$ be the prior probability of class k and $f_k(x) = P[X = x | Y = k]$

LDA

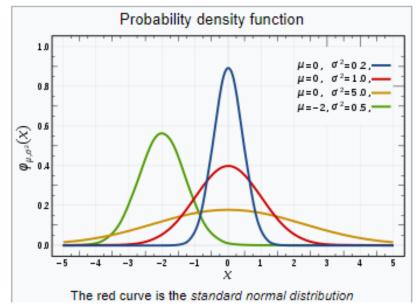
$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}.$$

Assume $f_k(x)$ is Gaussian! Unidimensional case (d=1)

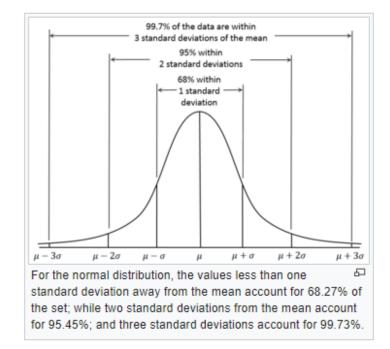
$$f_k(x) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$
$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi\sigma}}}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi\sigma}}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi\sigma}}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu_l)^2\right)}.$$

Assumption: $\sigma_1 = \dots \sigma_k = \sigma$

Gaussian Distribution



Normal Distribution



Notation	$\mathcal{N}(\mu,\sigma^2)$
Parameters	$\mu \in \mathbb{R}$ = mean (location)
	$\sigma^2 > 0$ = variance (squared scale)
Support	$x \in \mathbb{R}$
PDF	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

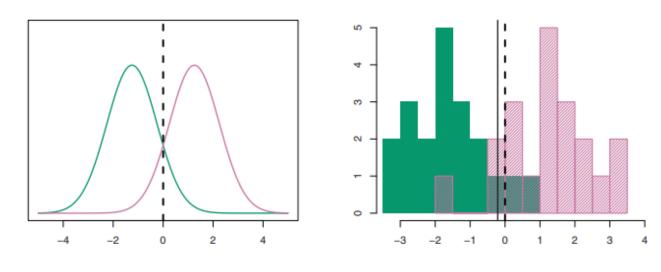
LDA decision boundary

10 M

Pick class k to maximize

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Example: $k = 2, \pi_1 = \pi_2$ Classify as class 1 if $x > \frac{\mu_1 + \mu_2}{2\sigma}$



True decision boundary

Estimated decision boundary

LDA in practice

Given training data $(x^{(i)}, y^{(i)}), i = 1, ..., n, y^{(i)} \in \{1, ..., K\}$

1. Estimate mean and variance

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:y_{i}=k} x^{(i)}$$

$$\hat{\sigma}^{2} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:y_{i}=k} (x^{(i)} - \hat{\mu}_{k})^{2}$$

2. Estimate prior

$$\hat{\pi}_k = n_k/n.$$

Given testing point *x*, predict k that maximizes:

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!