DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

January 24 2019

Logistics

- HW 1 is due on Friday 01/25
- Project proposal: due Feb 21
 - 1 page description of problem you will solve, dataset, and ML algorithms
 - Individual project
 - Project template and potential ideas are on Piazza
- Project milestone: due March 21
 - 2 page description on progress
- Project report at the end of semester and project presentations in class (10 minute per project)

Outline

- Gradient Descent comparison with closedform solution
- Non-linear regression
- Regularization
 - Ridge and Lasso regression
 - Lab example
- Classification
 - K Nearest Neighbors (kNN)
 - Cross-validation

Gradient Descent

- Gradient = slope of line tangent to curve
- Function decreases faster in negative direction of gradient
- Larger learning rate => larger step

GD for Linear Regression

• Initialize θ • Repeat until convergence $||\theta_{new} - \theta_{old}|| < \epsilon$ or • Repeat until convergence iterations == MAX_ITER $\theta_{i} \leftarrow \theta_{i} = 0$ $2 \sum_{i=1}^{n} \left(b_{i} \left(x^{(i)} \right) = u^{(i)} \right) x^{(i)}$ simultaneous undate

$$\theta_{j} \leftarrow \theta_{j} - \alpha \frac{2}{n} \sum_{i=1}^{2} \left(h_{\theta} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} \quad \substack{\text{update} \\ \text{for } j = 0 \dots d}$$

- To achieve simultaneous update
 - At the start of each GD iteration, compute $h_{m{ heta}}\left(m{x}^{(i)}
 ight)$
 - Use this stored value in the update step loop
- Assume convergence when $\| \boldsymbol{\theta}_{new} \boldsymbol{\theta}_{old} \|_2 < \epsilon$

L₂ norm:
$$\|\boldsymbol{v}\|_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \ldots + v_{|v|}^2}$$

Can also bound number of iterations

Gradient Descent vs Closed Form

Gradient Descent

Initializa 0

Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

Closed form

$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$

Gradient Descent

- Requires multiple iterations
- Need to choose α
- Works well when n is large
- Can support incremental learning

Closed Form Solution

simultaneous update

for j = 0 ... d

- Non-iterative
- No need for α
- Slow if n is large
 - Computing $(X^T X)^{-1}$ is roughly $O(d^3)$

Issues with Gradient Descent

 Might get stuck in local optimum and not converge to global optimum

Restart from multiple initial points

- Only works with differentiable loss functions
- Small or large gradients
 Feature scaling helps
- Tune learning rate
 - Can use line search for determining optimal learning rate

Beyond Linearity

- Most datasets are not perfectly linear
- Linear Regression results in high MSE
- Generally,

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sum_{j=0}^{a} \theta_{j} \phi_{j}(\boldsymbol{x})$$

1

- Typically, $\phi_0(oldsymbol{x})=1$ so that $\ heta_0$ acts as a bias
- In the simplest case, we use linear basis functions :

$$\phi_j(\boldsymbol{x}) = x_j$$

Generalized Additive Models

Polynomial Regression

• Polynomial basis function $-h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_d x^d$

Polynomial Regression

• Typically to avoid overfitting $d \leq 4$

Other Regression

Age

Splines

- Fit polynomial regression on each region (knot)
- Spline Continuous and differentiable function at boundary
- Natural Spline linear function at boundary

Generalization in ML

Simple model

Complex model

- Goal is to generalize well on new testing data
- Risk of overfitting to training data

- MSE close to 0, but performs poorly on test data

Bias-Variance Tradeoff

- Bias = Difference between estimated and true models
- Variance = Model difference on different training sets
 MSE is proportional to Bias + Variance

Bias-Variance Decomposition

- Let \hat{f} be trained model
- Expected MSE of test point (x_o, y_0) :

 $E\left[(y_0-\hat{f}(x_0))^2\right]$

• Variance: $Var[\hat{f}(x_0)] = E[\hat{f}(x_0)^2] - E^2[\hat{f}(x_0)]$

Variance of prediction over training data

• Bias: $Bias[\hat{f}(x_0)] = E[\hat{f}(x_0)] - y_0$

Bias of prediction over training data

• Verify that:

 $-MSE(x_o, y_0) = Var[\hat{f}(x_0)] + Bias^2[\hat{f}(x_0)]$

Regularization

- A method for automatically controlling the complexity of the learned hypothesis
- Idea: penalize for large values of θ_j
 - Can incorporate into the cost function
 - Works well when we have a lot of features, each that contributes a bit to predicting the label
- Can also address overfitting by eliminating features (either manually or via model selection)

Reduce model complexity Reduce model variance

Ridge regression

Linear regression objective function

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right)^{2} + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_{j}^{2}$$

model fit to data regularization

- λ is the regularization parameter ($\lambda \ge 0$).
- No regularization on θ_0 !
 - If $\lambda = 0$, we train linear regression
 - If λ is large, the coefficients will shrink close to 0

Bias-Variance Tradeoff

Ridge performs better when linear regression has high variance

• Example: d (dimension) is close to n (training set size)

Coefficient shrinkage

Predict credit card balance

GD for Ridge Regression

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$

- Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

GD for Ridge Regression

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$

- Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- Gradient update:

$$\frac{\partial}{\partial \theta_0} J(\theta) \quad \theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right)$$
$$\frac{\partial}{\partial \theta_j} J(\theta) \quad \theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^n \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} - \alpha \lambda \theta_j$$
regularization

$$\theta_j \leftarrow \theta_j (1 - \alpha \lambda) - \alpha (h_\theta (x^{(i)}) - y^{(i)}) x_j^{(i)}$$

- L1 norm for regularization
- Cannot compute gradients
- Algorithms based on quadratic programming or other optimization techniques

Alternative Formulations

- Ridge
 - L2 Regularization

$$-\min_{\theta} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} \text{ subject to } \sum_{j=1}^{d} \left| \theta_{j} \right|^{2} \leq \epsilon$$

- Lasso
 - L1 regularization

$$-\min_{\theta} \sum_{i=1}^{n} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} \text{ subject to } \sum_{j=1}^{d} \left| \theta_{j} \right| \leq \epsilon$$

Lasso vs Ridge

- Ridge shrinks all coefficients
- Lasso sets some coefficients at 0 (sparse solution)

Perform feature selection

Lasso vs Ridge

Lab example

> library(ISLR)
> fix(Hitters)

🙀 Data Editor													
	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	League	Division	PutOuts	Assists	Errors	Salary
1	14	3449	835	69	321	414	375	N	W	632	43	10	475
2	3	1624	457	63	224	266	263	А	W	880	82	14	480
3	11	5628	1575	225	828	838	354	N	E	200	11	3	500
4	2	396	101	12	48	46	33	N	E	805	40	4	91.5
5	11	4408	1133	19	501	336	194	А	W	282	421	25	750
6	2	214	42	1	30	9	24	N	E	76	127	7	70
7	3	509	108	0	41	37	12	А	W	121	283	9	100
8	2	341	86	6	32	34	8	N	W	143	290	19	75
9	13	5206	1332	253	784	890	866	А	E	0	0	0	1100
10	10	4631	1300	90	702	504	488	А	E	238	445	22	517.143
11	9	1876	467	15	192	186	161	N	W	304	45	11	512.5
12	4	1512	392	41	205	204	203	N	E	211	11	7	550
13	6	1941	510	4	309	103	207	А	E	121	151	6	700

Ridge regression

		1
> Hitters=n	a.omit(Hitters)	Data processing (omit N/A)
> x=model.m	atrix(Salary~.,Hitters)[,-1]	
> y=Hitters	\$Salary	Fit ridge regression
> ridge.mod	<pre>l=glmnet(x,y,alpha=0,lambda=5000)</pre>	
> coef(ridg	re.mod)	
20 x 1 spar	se Matrix of class "dgCMatrix"	
	sO	
(Intercept)	305.016480230	
AtBat	0.065738413	
Hits	0.255494042	
HmRun	0.902148872	
Runs	0.419912564	
RBI	0.428768355	
Walks	0.533942922	
Years	1.892781352	
CAtBat	0.005532745	Coofficient
CHits	0.020876841	Coefficient values
CHmRun	0.156069996	
CRuns	0.041877748	
CRBI	0.043262917	
CWalks	0.043634641	
LeagueN	1.117728148	
DivisionW	-13.063063667	
PutOuts	0.033021805	
Assists	0.004993208	
Errors	-0.061932828	
NewLeagueN	1.269197088	
> sqrt(sum(<pre>coef(ridge.mod)[-1]^2))</pre>	Coefficient norm
[1] 13.3660	2	

Ridge regression

> widow made		
> riage.mod	-gimnet(x,y,aipna-0,iambda-50)	Fit ridge regression
> coef(ridg	e.mod)	
20 x 1 spar	se Matrix of class "dgCMatrix"	
	s0	
(Intercept)	4.800582e+01	
AtBat	-3.532997e-01	
Hits	1.950804e+00	
HmRun	-1.286413e+00	
Runs	1.158693e+00	
RBI	8.114814e-01	
Walks	2.709241e+00	
Years	-6.179435e+00	
CAtBat	6.262426e-03	
CHits	1.072029e-01	
CHmRun	6.284707e-01	Coefficient values
CRuns	2.155421e-01	coefficient values
CRBI	2.148524e-01	
CWalks	-1.483366e-01	
LeagueN	4.585236e+01	
DivisionW	-1.182395e+02	
PutOuts	2.501361e-01	
Assists	1.206414e-01	
Errors	-3.277654e+00	
NewLeagueN	-9.424451e+00	
> sqrt(sum(<pre>coef(ridge.mod)[-1]^2))</pre>	Coefficient norm
[1] 127.421	7	

λ controls parameter size

Lasso regression

> lasso.mod	=glmnet(x,y,alpha=1,lam	bda=50) Fit Lasso regression
> coef(lass	o.mod)	
20 x 1 spar	se Matrix of class "dgC	Matrix"
	s 0	
(Intercept)	88.6306382	
AtBat		
Hits	1.5877156	
HmRun		
Runs		
RBI		
Walks	1.8197051	
Years		
CAtBat		
CHits		
CHmRun		13 coefficients set at zero
CRuns	0.1711419	
CRBI	0.3709268	
CWalks		
LeagueN		
DivisionW	-43.3646551	
PutOuts	0.1341253	
Assists		
Errors		
NewLeagueN		
> sqrt(sum(<pre>coef(lasso.mod)[-1]^2))</pre>	Coofficient norm
[1] 43.4339	8	

Outline

- Gradient Descent comparison with closedform solution
- Non-linear regression
- Regularization
 - Ridge and Lasso regression
 - Lab example
- Classification
 - K Nearest Neighbors (kNN)
 - Cross-validation

Supervised learning

Problem Setting

- Set of possible instances \mathcal{X}
- Set of possible labels ${\mathcal Y}$
- Unknown target function $f: \mathcal{X} \to \mathcal{Y}$
- Set of function hypotheses $H = \{h \mid h : \mathcal{X} \to \mathcal{Y}\}$

Input: Training examples of unknown target function f $\{x^{(i)}, y^{(i)}\}$, for i = 1, ..., n

Output: Hypothesis $\hat{f} \in H$ that best approximates f

$$\hat{f}(x^{(i)}) \approx y^{(i)}$$

31

Classification

$$f(x^{(i)}) = y^{(i)}$$

Example 1

Classifying spam email

googleteam

GOOGLE LOTTERY WINNER! CONTAC

From: googleteam To:

Subject: GOOGLE LOTTERY WINNER! CONTACT YOUR AGENT TO CLAIM YOUR PRIZE.

GOOGLE LOTTERY INTERNATIONAL INTERNATIONAL PROMOTION / PRIZE AWARD . (WE ENCOURAGE GLOBALIZATION) FROM: THE LOTTERY COORDINATOR, GOOGLE B.V. 44 9459 PE. RESULTS FOR CATEGORY "A" DRAWS

Congratulations to you as we bring to your notice, the results of the First Ca inform you that your email address have emerged a winner of One Million (1,0 money of Two Million (2,000,000.00) Euro shared among the 2 winners in this email addresses of individuals and companies from Africa, America, Asia, Au CONGRATULATIONS!

Your fund is now deposited with the paying Bank. In your best interest to avo award strictly from public notice until the process of transferring your claims NOTE: to file for your claim, please contact the claim department below on e

Content-related features

- Use of certain words
- Word frequencies
- Language
- Sentence

Send 📊 🖼	3 7 8 8/ 1 ↓ Dotons @ Help
<u>I</u> o	hiring @123publishing.com
<u></u> c	
<u>B</u> cc	
Subject:	Editorial Assistant Position - Susan Sharp
Attachments:	
Normal M	A Arial M 10 M A B I U E E E E E E E I I I A

Dear Hiring Manager,

I would like to express my interest in a position as editorial assistant for your publishing company. As a recent graduate with writing, editing, and administrative experience, I believe I am a strong candidate for a position at the 123 Publishing Company.

You specify that you are looking for someone with strong writing skills. As an English major, a writing tutor, and an editorial intern for both a government magazine and a college marketing office, I have become a skilled writer with a variety of experience.

Although I am a recent college graduate, my maturity, practical experience, and eagemess to enter the publishing business will make me an excellent editorial assistant. I would love to begin my career with your company, and am confident that I would be a beneficial addition to the 123 Publishing Company.

I have attached my resume. Thank you so much for your time and consideration.

Sincerely,

Susan Sharp

Susan Sharp 123 Main Street XYZ Town, NY 11111 Email: <u>susan sharp@mail.com</u> Cell: 555-555-5555

Structural features

- Sender IP address
- IP blacklist
- DNS information
- Email server
- URL links (non-matching)

Binary classification: SPAM or HAM

Example 2

Handwritten Digit Recognition

Multi-class classification

Example 3

Image classification

airplane	1	14	-	X	1	+	2	-4	-	St.
automobile					-	Test			-	*
bird	S	ſ	12			4	1		2	4
cat			-	60		1	E.	Å.	A.	1
deer	1	48	X	RA	1	Y	Ŷ	1	-	
dog	32	(-	B .	1			13	1	10
frog	2	(A)	1		2 30			S.		300
horse	- Apr	T.	P	2	1	HCAL	-3	2	Sal.	T
ship			ditte	-	- MAR		2	18	1	
truck	AT THE PARTY		1	R.				(Art	12	dela.

Multi-class classification

Supervised Learning Process

Training

Testing

K Nearest Neighbour (K-NN) Classifier

 applicable to multi-class case

K-Nearest-Neighbours for multi-class classification

Vote among multiple classes

Vector distances

Vector norms: A norm of a vector ||x|| is informally a measure of the "length" of the vector.

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Common norms: L₁, L₂ (Euclidean)

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

Norm can be used as distance between vectors x and y

•
$$||x-y||_p$$

Distance norms

Euclidean Distance

Mahattan Distance

Minkowski Distance

 $\sqrt{\left(\sum_{i=1}^{k} (x_i - y_i)^2\right)}$ $\sum_{i=1}^{n} |x_i - y_i|$ $\left(\sum_{i=1}^{k}(|x_i-y_i|)^q\right)^{\bar{q}}$

kNN

- Algorithm (to classify point x)
 - Find k nearest points to x (according to distance metric)
 - Perform majority voting to predict class of x
- Properties
 - Does not learn any model in training!
 - Instance learner (needs all data at testing time)

K = 1

Overfitting! Training data

Testing data

error = 0.0

error = 0.15

How to choose k (hyper-parameter)?

K = 3

error = 0.1340

error = 0.0760

How to choose k (hyper-parameter)?

K = 7

error = 0.1320

error = 0.1110

How to choose k (hyper-parameter)?

Review

• Gradient descent is an efficient algorithm for optimization and training LR

– The most widely used algorithm in ML!

- More complex regression models exist
 Polynomial, spline regression
- Regularization is general method to reduce model complexity and avoid overfitting
 - Add penalty to loss function
 - Ridge and Lasso regression

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!