DS 4400

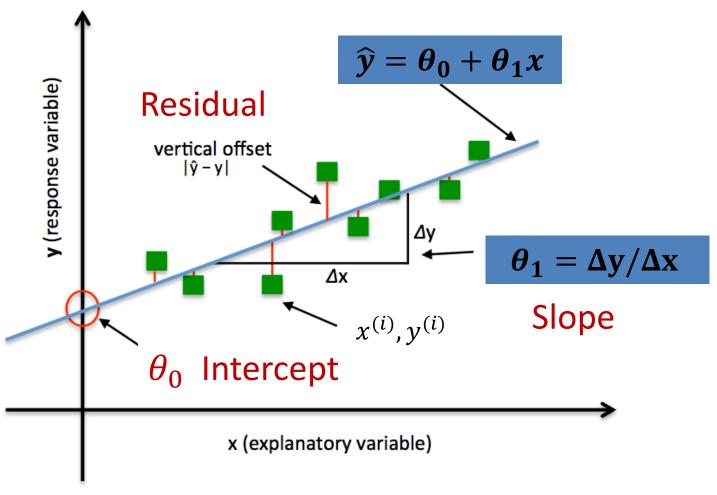
Machine Learning and Data Mining I

Alina Oprea
Associate Professor, CCIS
Northeastern University

Outline

- Practical issues in Linear Regression
 - Outliers
 - Categorical variables
- Lab Linear Regression
- Gradient descent
 - Efficient algorithm for optimizing loss function
 - Training Linear Regression with Gradient Descent
 - Comparison with closed-form solution

Simple Linear Regression



Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Loss: MSE=
$$\frac{1}{n}\sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Simple Linear Regression

- Dataset $x^{(i)} \in R$, $y^{(i)} \in R$, $h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta_0 + \theta_1 x^{(i)} y^{(i)})^2$ MSE / Loss
- Solution of min loss

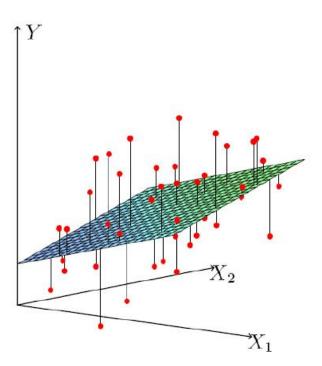
$$\begin{aligned} -\theta_0 &= \bar{y} - \theta_1 \, \bar{x} \\ -\theta_1 &= \frac{\sum \, (x^{(i)} - \bar{x})(y^{(i)} - \bar{y})}{\sum (x^{(i)} - \bar{x})^2} \end{aligned} \qquad \bar{x} = \frac{\sum_{i=1}^n x^{(i)}}{n} \\ \bar{y} &= \frac{\sum_{i=1}^n y^{(i)}}{n} \end{aligned}$$
 Variance of x

Multiple Linear Regression

- Dataset: $x^{(i)} \in R^d$, $y^{(i)} \in R$
- Hypothesis $h_{\theta}(x) = \theta^T x$

• MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$
 Loss / cost

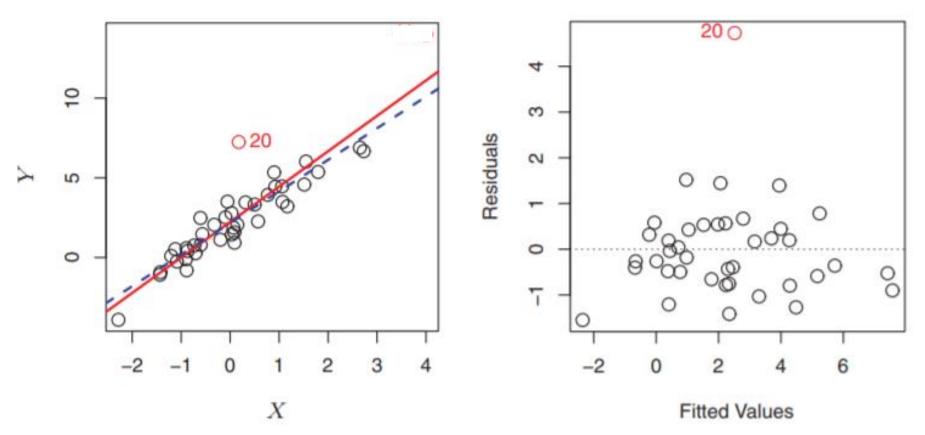
$$\boldsymbol{\theta} = (\boldsymbol{X}^\intercal \boldsymbol{X})^{-1} \boldsymbol{X}^\intercal \boldsymbol{y}$$



Feature standardization/normalization

- Goal is to have individual features on the same scale
- Is a pre-processing step in most learning algorithms
- Necessary for linear models and Gradient Descent
- Different options:
 - Feature standardization
 - Feature min-max rescaling
 - Mean normalization

Outliers



- Dashed model is without outlier point
- Linear regression is not resilient to outliers!
- Outliers can be eliminated based on residual value
 - Other techniques for outlier detection

Categorical variables

- Predict credit card balance
 - Age
 - Income
 - Number of cards
 - Credit limit
 - Credit rating
- Categorical variables
 - Student (Yes/No)
 - State (50 different levels)

Indicator Variables

- Binary (two-level) variable
 - Add new feature $x_j = 1$ if student and 0 otherwise
- Multi-level variable
 - State: 50 values
 - $-x_{MA} = 1$ if State = MA and 0, otherwise
 - $-x_{NY} = 1$ if State = NY and 0, otherwise
 - **—** ...
 - How many indicator variables are needed?
- Disadvantages: data becomes too sparse for large number of levels
 - Will discuss feature selection later in class

Lab example

```
> 
> library(MASS)
> fix(Boston)
>
```

© Data Editor															
	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	lstat	medv	^
1	0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24	
2	0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6	
3	0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	
4	0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	
5	0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2	
6	0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7	
7	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9	
8	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.9	19.15	27.1	
9	0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5	
10	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.1	18.9	
11	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15	
12	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.9	13.27	18.9	
13	0.09378	12.5	7.87	0	0.524	5.889	39	5.4509	5	311	15.2	390.5	15.71	21.7	
14	0.62976	0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21	396.9	8.26	20.4	
15	0.63796	0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21	380.02	10.26	18.2	
16	0.62739	0	8.14	0	0.538	5.834	56.5	4.4986	4	307	21	395.62	8.47	19.9	

Simple LR

```
> lm.fit=lm(medv~lstat,data=Boston)
> plot(lstat,medv,pch=20)
> abline(lm.fit,lwd=3,col="red")
    20
    40
    30
 medv
    20
    9
              10
                      20
                              30
                      Istat
```

Residual plot

```
> plot(predict(lm.fit), residuals(lm.fit))
  plot(lm.fit, which=1)
                         Residuals vs Fitted
      20
      9
  Residuals
      -10
      -50
                   5
                         10
                               15
                                     20
                                           25
                                                 30
              0
                            Fitted values
                           Im(medv ~ Istat)
```

Simple LR

```
>
> lm.fit=lm(medv~lstat,data=Boston)
> summary(lm.fit)
Call:
lm(formula = medv ~ lstat, data = Boston)
Residuals:
   Min 10 Median 30
                                 Max
-15.168 -3.990 -1.318 2.034 24.500
                                     Coef not zero!
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 34.55384 0.56263 61.41 <2e-16 ***
lstat -0.95005 0.03873 -24.53
                                       <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 6.216 on 504 degrees of freedom
Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
r-statistic: 601.6 on 1 and 504 Dr, p-value: < 2.2e-16
                        RSE = \sqrt{MSE}
```

 R^2 measures linear relationship between X and Y (equal to correlation coef for simple LR)

Multiple LR

```
> lm.fit=lm(medv~nox+rm+lstat+ptratio+rad+dis,data=Boston)
> summarv(lm.fit)
Call:
lm(formula = medv ~ nox + rm + lstat + ptratio + rad + dis, d$
Residuals:
    Min
             10 Median 30
                                    Max
-12.8663 -3.1525 -0.5509 1.9870 27.1748
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.61722 5.07480 8.004 8.53e-15 ***
         -20.16431 3.57710 -5.637 2.90e-08 ***
nox
           4.04507 0.41938 9.645 < 2e-16 ***
rm
           -0.59197 0.04846 -12.217 < 2e-16 ***
lstat
          -1.12748 0.12634 -8.924 < 2e-16 ***
ptratio
rad
            0.05399 0.03682 1.466
                                        0.143
                       0.16840 -7.101 4.29e-12 ***
            -1.19580
dis
Signif. codes: 0 \*** 0.001 \** 0.01 \*' 0.05 \.' 0.1 \' 1
Residual standard error: 4.988 on 499 degrees of freedom
Multiple R-squared: 0.7093, Adjusted R-squared: 0.7058
F-statistic: 203 on 6 and 499 DF, p-value: < 2.2e-16
```

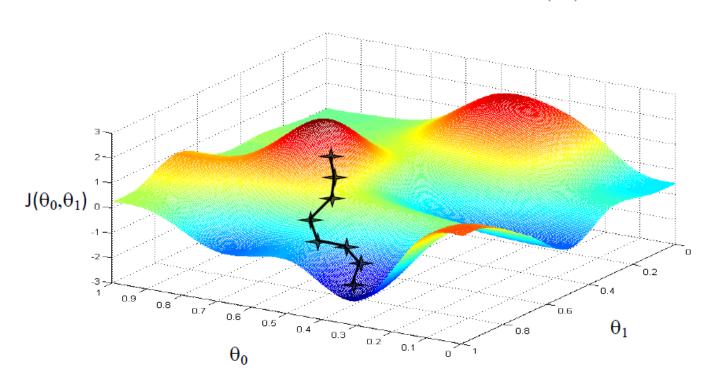
What Strategy to Use?

Follow the Slope

Follow the direction of steepest descent!

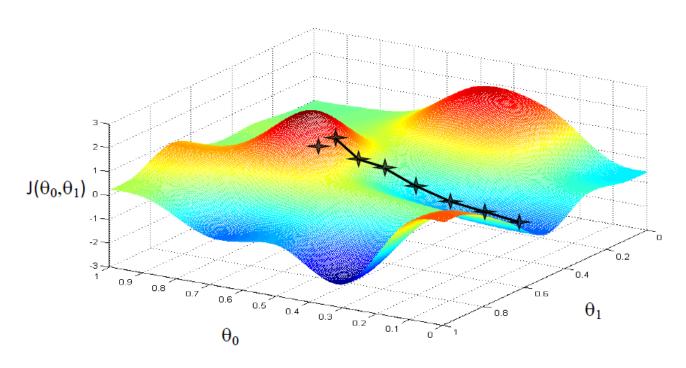
How to optimize $J(\theta)$?

- Choose initial value for θ
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$



How to optimize $J(\theta)$?

- Choose initial value for heta
- Until we reach a minimum:
 - Choose a new value for $oldsymbol{ heta}$ to reduce $J(oldsymbol{ heta})$



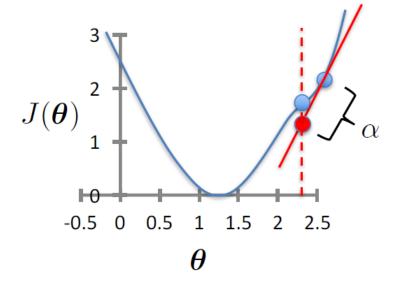
Different starting point

- Initialize θ
- Repeat until convergence

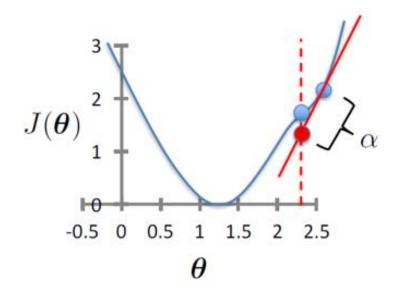
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

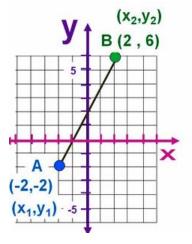
simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



- Gradient = slope of line tangent to curve
- Function decreases faster in negative direction of gradient
- Larger learning rate => larger step





The Gradient "m" is:

$$\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \underline{\Delta \mathbf{Y}}$$

$$m = 6 - \frac{2}{2}$$

$$m = 8/4 = 2\sqrt{}$$

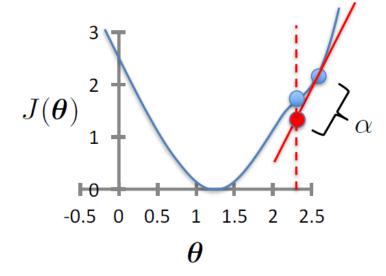
- Initialize θ Repeat until convergence $\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$ simultaneous update for j = 0 ... dlearning rate (small) e.g., $\alpha = 0.05$ Iteration 3 Iteration 4 Convergence
- As you approach the minimum, the slope gets smaller, and GD will take smaller steps
- It converges to local minimum (which is global minimum for convex functions)!

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

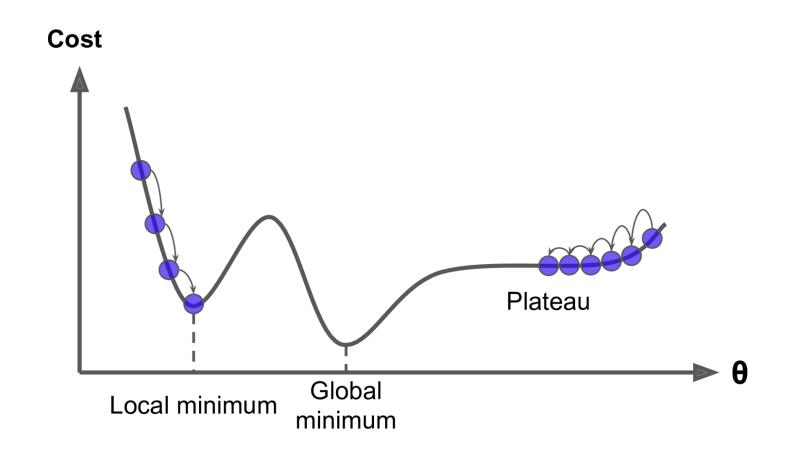
simultaneous update for j = 0 ... d

learning rate (small) e.g., $\alpha = 0.05$



- What happens when θ reaches a local minimum?
- The slope is 0, and gradient descent converges!

GD Converges to Local Minimum



Solution: start from multiple random locations

GD for Simple Linear Regression

- Initialize heta

Repeat until convergence
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

•
$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\theta_0 + \theta_1 x^{(i)} - y^{(i)})^2$$

•
$$\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^n (\theta_0 + \theta_1 x^{(i)} - y^{(i)})$$

•
$$\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^{n} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) x^{(i)}$$

Update of each parameter component depends on all training data

GD for Multiple Linear Regression

- Initialize heta

Repeat until convergence
$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

simultaneous update for $j = 0 \dots d$

For Linear Regression:
$$\begin{split} \frac{\partial}{\partial \theta_j} J(\theta) &= \frac{\partial}{\partial \theta_j} \; \frac{1}{n} \, \sum_{i=1}^n \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right)^2 \\ &= \frac{\partial}{\partial \theta_j} \; \frac{1}{n} \, \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right)^2 \\ &= \frac{2}{n} \, \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \times \frac{\partial}{\partial \theta_j} \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) \\ &= \frac{2}{n} \, \sum_{i=1}^n \left(\sum_{k=0}^d \theta_k x_k^{(i)} - y^{(i)} \right) x_j^{(i)} \end{split}$$

GD for Linear Regression

Initialize θ

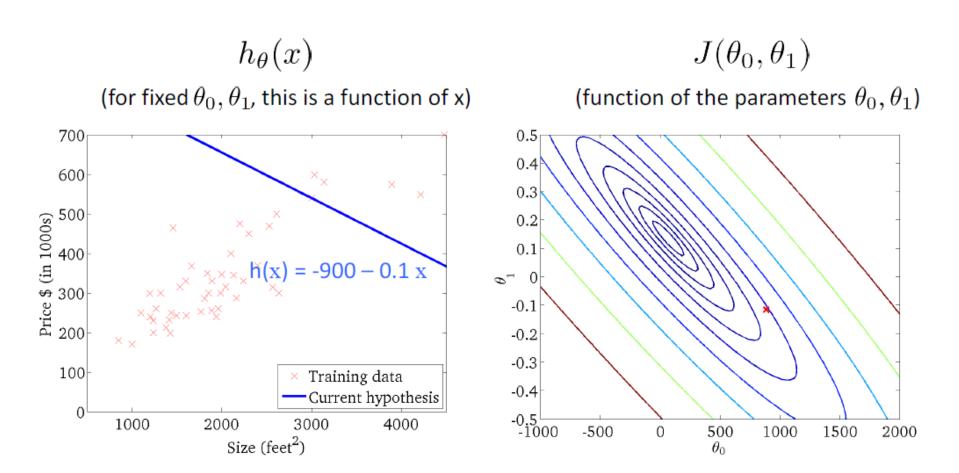
- $||\theta_{new} \theta_{old}|| < \epsilon$ or
- $||\theta_{new} \theta_{old}|| < \epsilon$ or Repeat until convergence iterations == MAX_ITER

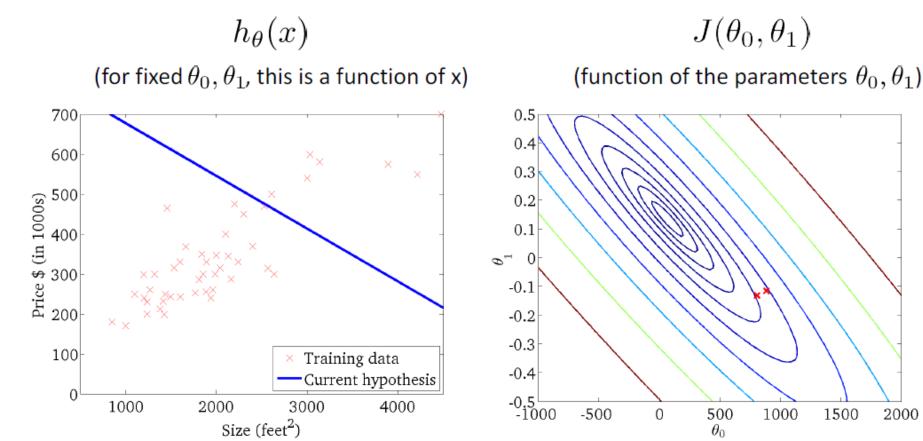
$$\theta_j \leftarrow \theta_j - \alpha \frac{2}{n} \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$$
 simultaneous update for j = 0 ... d

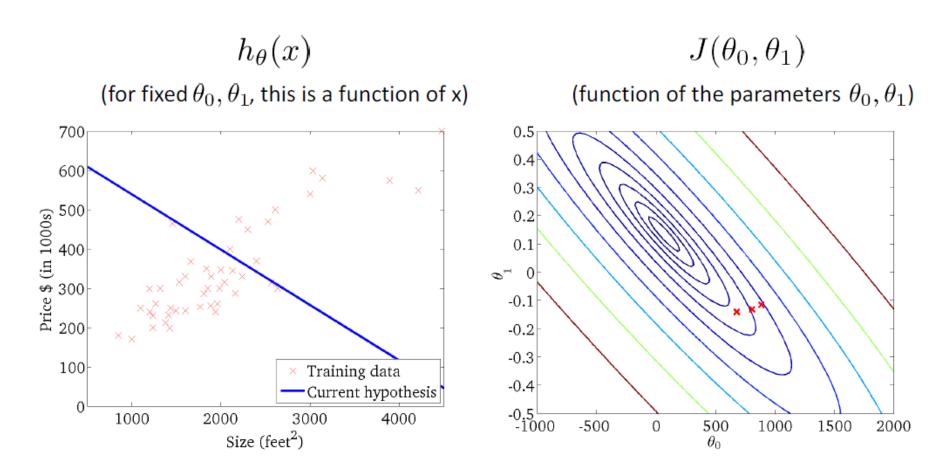
- To achieve simultaneous update
 - At the start of each GD iteration, compute $h_{m{ heta}}\left(m{x}^{(i)}
 ight)$
 - Use this stored value in the update step loop
- Assume convergence when $\|m{ heta}_{new} m{ heta}_{old}\|_2 < \epsilon$

$$\| m{v} \|_2 = \sqrt{\sum_i v_i^2} = \sqrt{v_1^2 + v_2^2 + \ldots + v_{|v|}^2}$$

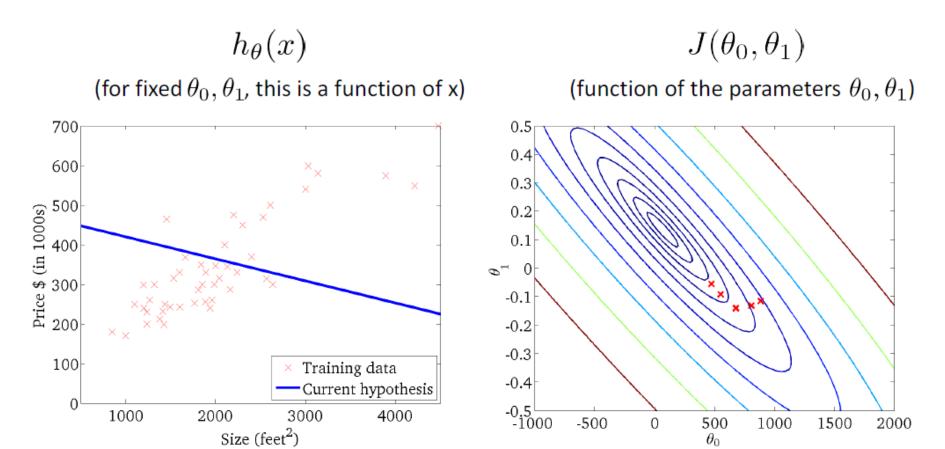
Can also bound number of iterations

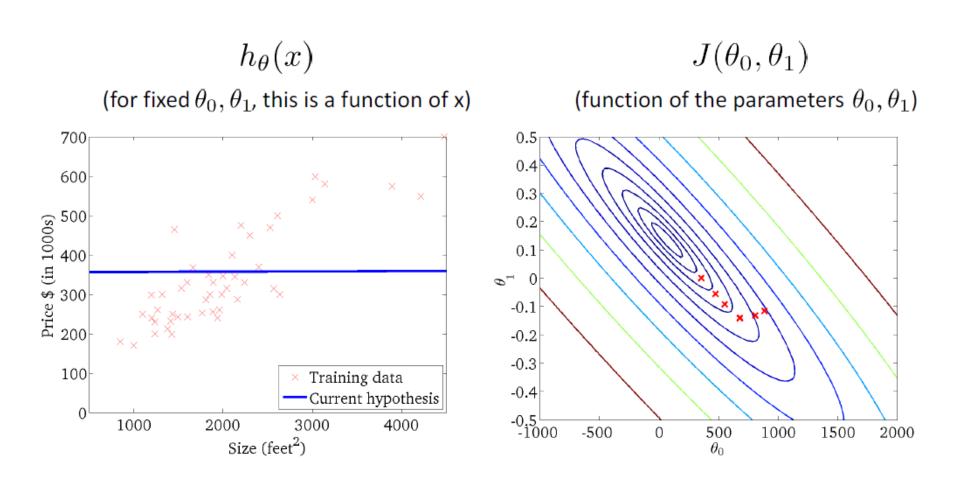


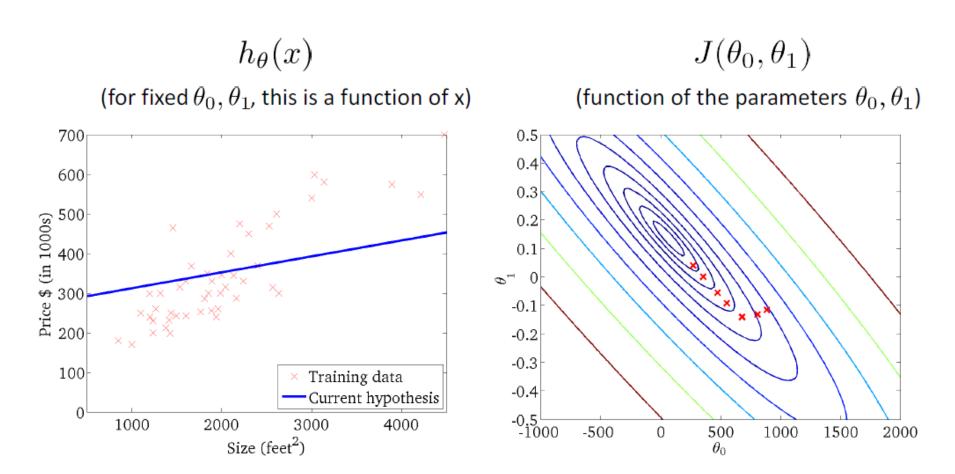


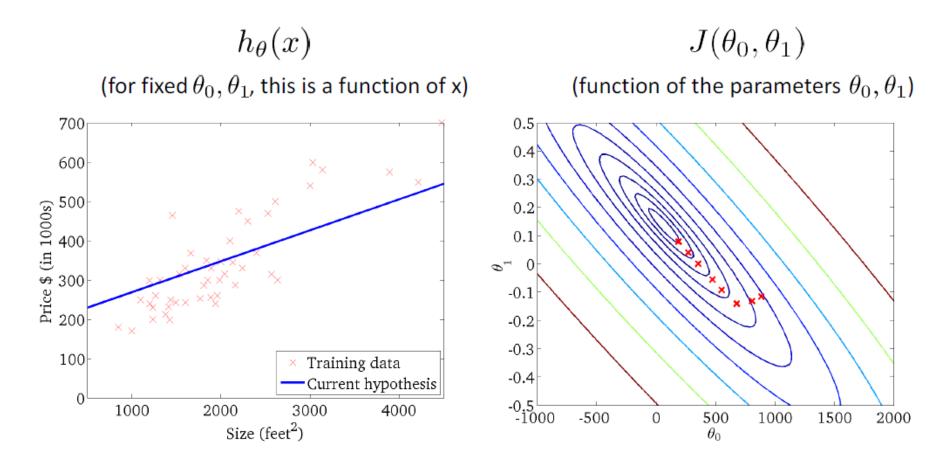


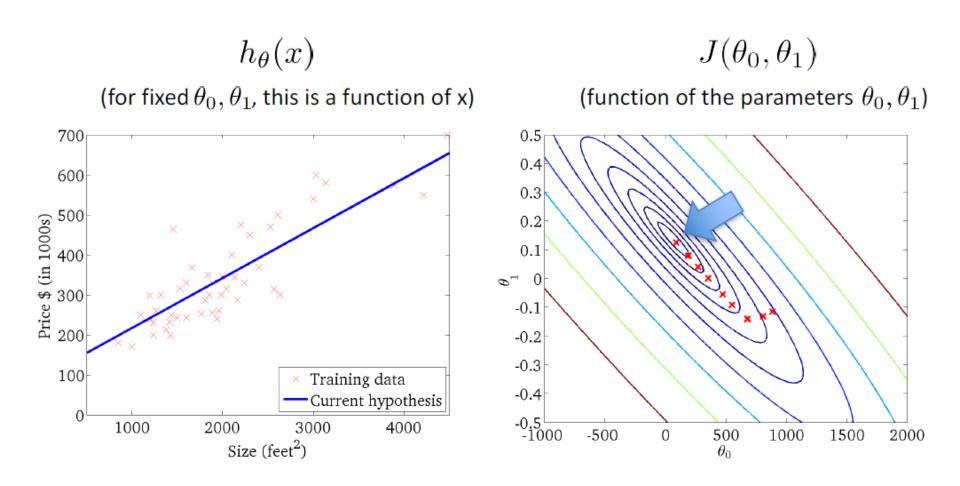








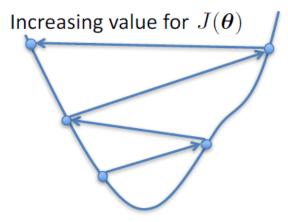




Choosing learning rate

α too small slow convergence

α too large



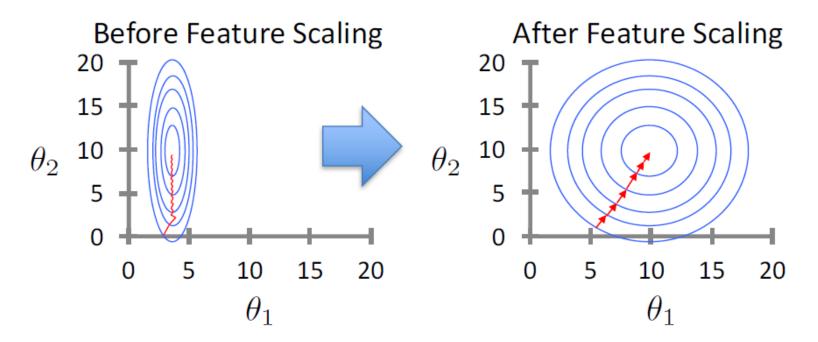
- May overshoot the minimum
- May fail to converge
- May even diverge

To see if gradient descent is working, print out $J(\theta)$ each iteration

- The value should decrease at each iteration
- If it doesn't, adjust α

Feature Scaling

Idea: Ensure that feature have similar scales



Makes gradient descent converge much faster

Issues with Gradient Descent

- Might get stuck in local optimum and not converge to global optimum
 - Restart from multiple initial points
- Only works with differentiable loss functions
- Small or large gradients
 - Feature scaling helps
- Tune learning rate
 - Can use line search for determining optimal learning rate

Review

- In practice several techniques can help generate more robust models
 - Outlier removal
 - Feature scaling
- Gradient descent is an efficient algorithm for optimization and training LR
 - The most widely used algorithm in ML!
 - Much faster than using closed-form solution
 - Main issues with Gradient Descent is convergence and getting stuck in local optima

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!