DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

January 17 2019

Logistics

- HW 1 is on Piazza and Gradescope
- Deadline: Friday, Jan. 25, 2019
- Office hours
 - Alina: Thu 4:30-6:00pm (ISEC 625)
 - Ewen: Mon 5:30-6:30pm (ISEC 605)
- How to submit HW
 - Create a PDF and submit on Gradescope before
 11:59pm the day assignment is due
 - Submit zip of code in Google form
 - Should include ReadMe file on how to run code
 - Preferred: Use Jupyter notebook in R or Python

Collaboration policy

- What is allowed
 - You can discuss the homework with your colleagues
 - You can post questions on Piazza and come to office hours
 - You can search for online resources to better understand class concepts
- What is not allowed
 - Sharing your written answers with colleagues
 - Sharing your code or receiving code from colleague
 - Do not use directly code from the Internet!

Outline

- Terminology for supervised learning
- Multiple linear regression
 - Derivation of optimal model in matrix form
- Practical issues
 - Feature scaling and normalization
 - Outliers
 - Categorical variables
- Lab

Terminology

- Hypothesis space $H = \{f: X \to Y\}$
- Training data $D = (x_i, y_i) \in X \times Y$
- Features: $x_i \in X$
- Labels $y_i \in Y$
 - Classification: discrete $y_i \in \{0,1\}$
 - Regression: $y_i \in R$
- Loss function: L(f, D)
 - Measures how well f fits training data
- Training algorithm: Find hypothesis $\hat{f}: X \to Y$

$$-\hat{f} = \operatorname*{argmin}_{f \in H} L(f, D)$$

Linear regression

Given:

- Data
$$X = \left\{ x^{(1)}, \dots, x^{(n)} \right\}$$
 where $x^{(i)} \in \mathbb{R}^d$ Features - Corresponding labels $y = \left\{ y^{(1)}, \dots, y^{(n)} \right\}$ where $y^{(i)} \in \mathbb{R}$

Simple Linear Regression: 1 predictor

Regression Learning

Training

Simple Linear Regression

- Dataset $x^{(i)} \in R, y^{(i)} \in R, h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right)^2$ MSE / Loss
- Solution of min loss

How Well Does the Model Fit?

- Correlation between feature and response
 - Pearson's correlation coefficient

- Measures linear dependence between x and y
- Positive coefficient implies positive correlation
 - The closer to 1 the coefficient is, the stronger the correlation
- Negative coefficient implies negative correlation
 - The closer to -1 the coefficient is, the stronger the correlation

Correlation Coefficient

Correlation Coefficient = 0

Multiple Linear Regression

- Linear Regression with 2 predictors
- Dataset: $x^{(i)} \in \mathbb{R}^d$, $y^{(i)} \in \mathbb{R}$

MSE function

Convex function implies unique minimum

Vector Norms

Vector norms: A norm of a vector ||x|| is informally a measure of the "length" of the vector.

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Common norms: L₁, L₂ (Euclidean)

$$||x||_1 = \sum_{i=1}^n |x_i| \qquad ||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

– L_{infinity}

 $\|x\|_{\infty} = \max_i |x_i|$

Vector products

We will use lower case letters for vectors The elements are referred by x_{i} .

• Vector dot (inner) product:

$$x^T y \in \mathbb{R} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ x_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i.$$

• Vector outer product:

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \cdots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \cdots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \cdots & x_{m}y_{n} \end{bmatrix}$$

Hypothesis Multiple LR

- Linear Model
 - Consider our model: $h(\boldsymbol{x}) = \sum_{j=0}^{d} \theta_{j} x_{j}$ • Let $\boldsymbol{\theta} = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{d} \end{bmatrix} \qquad \boldsymbol{x}^{\mathsf{T}} = \begin{bmatrix} 1 & x_{1} & \dots & x_{d} \end{bmatrix}$
- Can write the model in vectorized form as $h(\boldsymbol{x}) = \boldsymbol{\theta}^{\intercal} \boldsymbol{x}$

Vector inner product

Training data

- Total number of training example: *n*
- Dimension of training data point (number of features): d •

Use Vectorization

- Consider our model for n instances: $h\left(\boldsymbol{x}^{(i)}\right) = \sum_{j=0}^{a} \theta_j x_j^{(i)} = \boldsymbol{\theta}^T \boldsymbol{x}^{(i)}$ • Let Model parameter $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} X = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(i)} & \dots & x_d^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix}$ Training data Let $\mathbb{R}^{n \times (d+1)}$ $\mathbb{R}^{(d+1)\times 1}$
 - Can write the model in vectorized form as $h_{m{ heta}}(m{x}) = m{X}m{ heta}$ Model prediction vector $m{\hat{y}}$

Loss function MSE

• For the linear regression cost function:

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\boldsymbol{y}}^{(i)} - y^{(i)} \right)^2$$

Let:

$$\boldsymbol{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

$$= \frac{1}{n} \left| \left| \hat{y} - y \right| \right|^{2}$$
$$= \frac{1}{n} \left| \left| X \theta - y \right| \right|^{2} \qquad \qquad \hat{y} = \begin{bmatrix} \hat{y}^{(1)} \\ \hat{y}^{(2)} \\ \vdots \end{bmatrix}$$

 $\hat{u}^{(n)}$

Matrix and vector gradients

If $y = f(x), y \in R$ scalar, $x \in R^n$ vector

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x_1} & \frac{\partial y}{\partial x_2} & \dots & \frac{\partial y}{\partial x_n} \end{bmatrix}$$

If $y = f(x), y \in \mathbb{R}^m, x \in \mathbb{R}^n$

$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} =$	$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} \\ \frac{\partial y_2}{\partial y_2} \end{bmatrix}$	$\frac{\partial y_1}{\partial x_2}$ $\frac{\partial y_2}{\partial y_2}$	· · · ·	$\frac{\partial y_1}{\partial x_n}$ $\frac{\partial y_2}{\partial y_2}$	
	ox ₁ :	$\overset{ox_2}{\vdots}$		ox _n :	
	$\frac{\partial y_m}{\partial x_1}$	<u> </u>		$\frac{\partial y_m}{\partial x_n}$	

Jacobian matrix (Matrix gradient)

Properties

- If w, x are($d \times 1$) vectors, $\frac{\partial w^T x}{\partial x} = w^T$
- If A: $(n \times d) x$: $(d \times 1), \frac{\partial Ax}{\partial x} = A$
- If A: $(d \times d) x$: $(d \times 1)$, $\frac{\partial x^T A x}{\partial x} = (A + A^T) x$
- If A symmetric: $\frac{\partial x^T A x}{\partial x} = 2Ax$
- If $x: (d \times 1)$, $\frac{\partial ||x||^2}{\partial x} = 2x^T$

Min loss function

– Notice that the solution is when $\frac{\partial}{\partial \theta} J(\theta) = 0$

$$J(\theta) = \frac{1}{n} \left| |X\theta - y| \right|^2$$

Using chain rule $f(\theta) = h(g(\theta)), \frac{\partial f(\theta)}{\partial \theta} = \frac{\partial h(g(\theta))}{\partial \theta} \frac{\partial g(\theta)}{\partial \theta}$ $h(x) = ||x||^2, g(\theta) = X\theta - y$ $\frac{\partial J(\theta)}{\partial \theta} = \frac{2}{n} [(X \theta - y)^T X] = 0 \Rightarrow X^T (X\theta - y) = 0$ $(X^T X)\theta = X^T y$ Closed Form Solution: $\theta = (X^T X)^{-1} X^T y$

Vectorization

- Two options for operations on training data
 - Matrix operations
 - For loops to update individual entries
- Most software packages are highly optimized for matrix operations
 - Python numpy
 - Preferred method!
- Matrix operations are much faster than loops!

Closed-form solution

• Can obtain heta by simply plugging X and y into

$$\boldsymbol{\vartheta} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$
$$\boldsymbol{X} = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_d^{(1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(i)} & \dots & x_d^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix} \qquad \boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}^{(1)} \\ \boldsymbol{y}^{(2)} \\ \vdots \\ \boldsymbol{y}^{(n)} \end{bmatrix}$$

- If $X^{\mathsf{T}}X$ is not invertible (i.e., singular), may need to:
 - Use pseudo-inverse instead of the inverse
 - In python, numpy.linalg.pinv(a)

- AGA = A
- Remove redundant (not linearly independent) features
- Remove extra features to ensure that $d \leq n$

Multiple Linear Regression

- Dataset: $x^{(i)} \in R^d$, $y^{(i)} \in R$
- Hypothesis $h_{\theta}(x) = \theta^T x$
- MSE = $\frac{1}{n} \sum_{i=1}^{n} (\theta^T x^{(i)} y^{(i)})^2$ Loss / cost

$$\boldsymbol{\theta} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$

Feature Standardization

• Rescales features to have zero mean and unit variance

– Let μ_j be the mean of feature j: $\mu_j = \frac{1}{n} \sum_{i=1}^n x_j^{(i)}$

Replace each value with:

$$x_j^{(i)} \leftarrow \frac{x_j^{(i)} - \mu_j}{s_j} \qquad \text{for } j = 1...d$$
(not x_0 !)

- \boldsymbol{s}_j is the standard deviation of feature \boldsymbol{j}

- Must apply the same transformation to instances for both training and prediction
- Mean 0 and Standard Deviation 1

Other feature normalization

• Min-Max rescaling

$$-x_j^{(i)} \leftarrow \frac{x_j^{(i)} - min_j}{max_j - min_j} \in [0, 1]$$

- min_j and max_j : min and max value of feature j

Mean normalization

$$-x_{j}^{(i)} \leftarrow \frac{x_{j}^{(i)} - \mu_{j}}{max_{j} - min_{j}}$$
$$- \text{Mean 0}$$

Feature standardization/normalization

- Goal is to have individual features on the same scale
- Is a pre-processing step in most learning algorithms
- Necessary for linear models and Gradient Descent
- Different options:
 - Feature standardization
 - Feature min-max rescaling
 - Mean normalization

Review

- Solution for multiple linear regression can be computed in closed form
 - Matrix inversion is computationally intense
 - We will discuss an efficient training algorithms (gradient descent)
- In practice several techniques can help generate more robust models
 - Outlier removal
 - Feature scaling

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!