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Logistics

• HW 1 is on Piazza and Gradescope

• Deadline: Friday, Jan. 25, 2019

• Office hours

– Alina: Thu 4:30-6:00pm (ISEC 625)

– Ewen: Mon 5:30-6:30pm (ISEC 605)

• How to submit HW

– Create a PDF and submit on Gradescope before 
11:59pm the day assignment is due

– Submit zip of code in Google form

– Should include ReadMe file on how to run code

– Preferred: Use Jupyter notebook in R or Python
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Collaboration policy

• What is allowed

– You can discuss the homework with your colleagues

– You can post questions on Piazza and come to office 
hours

– You can search for online resources to better 
understand class concepts

• What is not allowed

– Sharing your written answers with colleagues

– Sharing your code or receiving code from colleague

– Do not use directly code from the Internet! 
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Outline
• Terminology for supervised learning

• Multiple linear regression
– Derivation of optimal model in matrix form 

• Practical issues
– Feature scaling and normalization

– Outliers

– Categorical variables

• Lab
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Terminology

• Hypothesis space 𝐻 = 𝑓: 𝑋 → 𝑌

• Training data D = 𝑥i, 𝑦i ∈ 𝑋 × 𝑌

• Features: 𝑥𝑖 ∈ 𝑋

• Labels 𝑦i ∈ 𝑌

– Classification: discrete 𝑦i ∈ {0,1}

– Regression: 𝑦i ∈ R

• Loss function: 𝐿 𝑓, 𝐷

– Measures how well 𝑓 fits training data

• Training algorithm: Find hypothesis መ𝑓: 𝑋 → 𝑌

– መ𝑓 = argmin
𝑓∈𝐻

𝐿 𝑓, 𝐷

•
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Linear regression

Features

Response 
variables
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Simple Linear Regression: 1 predictor



Interpretation

ෝ𝒚 = 𝜽𝟎 + 𝜽𝟏𝒙

Hypothesis: ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

Residual

𝜽𝟏 = 𝚫𝐲/𝚫𝐱

Slope

𝜃0 Intercept

Loss: MSE=
1

𝑛
σ𝑖=1
𝑛 ℎ𝜃 𝑥(𝑖) − 𝑦(𝑖)

2
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𝑥(𝑖), 𝑦(𝑖)



Regression Learning 

Data
Pre-

processing
Feature 

extraction
Regression 

model

Training

Labeled

𝑥(𝑖), 𝑦(𝑖)
Min MSE

Testing

New 
data

Unlabeled
𝑥′

Regression 
model

Predictions

Normalization
Standardization

Feature 
Selection

Price
Risk score

Test MSE
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ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

ℎ𝜃 𝑥′ = 𝜃0 + 𝜃1𝑥′



• Dataset 𝑥(𝑖)∈ 𝑅, 𝑦(𝑖) ∈ 𝑅, ℎ𝜃 𝑥 = 𝜃0 + 𝜃1𝑥

• 𝐽 𝜃 =
1

𝑛
σ𝑖=1
𝑛 𝜃0 + 𝜃1𝑥

(𝑖) − 𝑦(𝑖)
2

MSE / Loss

• Solution of min loss

– 𝜃0 = ത𝑦 − 𝜃1 ҧ𝑥

– 𝜃1 =
σ (𝑥 𝑖 − ҧ𝑥)(𝑦(𝑖) −ത𝑦)

σ 𝑥(𝑖)− ҧ𝑥
2

Simple Linear Regression

ҧ𝑥 =
σ𝑖=1
𝑛 𝑥(𝑖)

𝑛

ത𝑦 =
σ𝑖=1
𝑛 𝑦(𝑖)

𝑛
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Variance of x Co-variance of x and y



How Well Does the Model Fit?
• Correlation between feature and response

– Pearson’s correlation coefficient

• Measures linear dependence between x and y

• Positive coefficient implies positive correlation
– The closer to 1 the coefficient is, the stronger the correlation

• Negative coefficient implies negative correlation
– The closer to -1 the coefficient is, the stronger the correlation
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Co-variance of x and y

Standard deviation x Standard deviation y



Correlation Coefficient
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Multiple Linear Regression
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• Linear Regression with 2 predictors

• Dataset: 𝑥
(𝑖)

∈ 𝑅𝑑 , 𝑦
(𝑖)

∈ 𝑅



MSE function
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Convex function implies unique minimum



Vector norms: A norm of a vector ||x|| is informally a 
measure of the “length” of the vector.

– Common norms: L1, L2 (Euclidean)

– Linfinity

Vector Norms
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Vector products

• Vector dot (inner) product:

• Vector outer product:

We will use lower case letters for vectors 

The elements are referred by xi.
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• Linear Model

Hypothesis Multiple LR

Vector inner product



Training data

Training example i

Feature 1 Feature d

• Total number of training example: n
• Dimension of training data point (number of features): d
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Use Vectorization
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= 𝜃𝑇𝑥(𝑖)

Training 
data

Model 
parameter

Model prediction vector ො𝑦



Loss function MSE

1

𝑛

1

𝑛

1

𝑛
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=
1

𝑛
ො𝑦 − 𝑦

2

=
1

𝑛
X𝜃 − 𝑦

2

^

^

^

^

ො𝑦(𝑖)



Matrix and vector gradients

If 𝑦 = 𝑓 𝑥 , 𝑦 ∈ 𝑅𝑚, 𝑥 ∈ 𝑅𝑛

If 𝑦 = 𝑓 𝑥 , 𝑦 ∈ 𝑅 scalar , 𝑥 ∈ 𝑅𝑛 vector

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑥1

𝜕𝑦

𝜕𝑥2
…

𝜕𝑦

𝜕𝑥𝑛

Jacobian 
matrix
(Matrix 

gradient)
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Vector gradient
(row vector)



Properties

• If w, x are 𝑑 × 1 vectors, 
𝜕𝑤𝑇𝑥

𝜕𝑥
= 𝑤𝑇

• If A: 𝑛 × 𝑑 𝑥: (𝑑 × 1),  
𝜕𝐴𝑥

𝜕𝑥
= 𝐴

• If A: 𝑑 × 𝑑 𝑥: (𝑑 × 1),  
𝜕𝑥𝑇𝐴𝑥

𝜕𝑥
= 𝐴 + 𝐴𝑇 𝑥

• If A symmetric:  
𝜕𝑥𝑇𝐴𝑥

𝜕𝑥
= 2𝐴𝑥

• If 𝑥: (𝑑 × 1),  
𝜕 𝑥

2

𝜕𝑥
= 2𝑥𝑇
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Min loss function

1

𝑛
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𝐽 𝜃 =
1

𝑛
X𝜃 − 𝑦

2

Using chain rule

𝑓 𝜃 = ℎ 𝑔 𝜃 ,
𝜕𝑓(𝜃)

𝜕𝜃
=
𝜕ℎ(𝑔(𝜃))

𝜕𝜃

𝜕𝑔(𝜃)

𝜕𝜃

ℎ 𝑥 = 𝑥
2
, 𝑔 𝜃 = 𝑋𝜃 − 𝑦

𝜕𝐽(𝜃)

𝜕𝜃
=

2

𝑛
[ X 𝜃 − 𝑦 𝑇𝑋] = 0 ⇒ 𝑋𝑇 𝑋𝜃 − 𝑦 = 0



Vectorization 

• Two options for operations on training data

– Matrix operations 

– For loops to update individual entries

• Most software packages are highly optimized 
for matrix operations

– Python numpy

– Preferred method!

• Matrix operations are much faster than loops!
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Closed-form solution

24

𝐴𝐺𝐴 = 𝐴



Multiple Linear Regression

• Dataset: 𝑥
(𝑖)

∈ 𝑅𝑑 , 𝑦
𝑖
∈ 𝑅

• Hypothesis ℎ𝜃 𝑥 = 𝜃𝑇𝑥

• MSE =
1

𝑛
σ𝑖=1
𝑛 𝜃𝑇𝑥(𝑖) − 𝑦(𝑖)

2
Loss / cost

25



Feature Standardization
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Mean 0 and Standard Deviation 1



Other feature normalization

• Min-Max rescaling

– 𝑥𝑗
(𝑖)

←
𝑥𝑗
(𝑖)

−𝑚𝑖𝑛𝑗

𝑚𝑎𝑥𝑗 −𝑚𝑖𝑛𝑗
∈ [0,1]

–𝑚𝑖𝑛𝑗 and𝑚𝑎𝑥𝑗: min andmax value of feature j

• Mean normalization

– 𝑥𝑗
(𝑖)

←
𝑥𝑗
(𝑖)

−𝜇𝑗

𝑚𝑎𝑥𝑗 −𝑚𝑖𝑛𝑗

– Mean 0
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Feature standardization/normalization

• Goal is to have individual features on the 
same scale 

• Is a pre-processing step in most learning 
algorithms

• Necessary for linear models and Gradient 
Descent 

• Different options:
– Feature standardization

– Feature min-max rescaling

– Mean normalization

28



Review

• Solution for multiple linear regression can be 
computed in closed form

– Matrix inversion is computationally intense

– We will discuss an efficient training algorithms 
(gradient descent)

• In practice several techniques can help 
generate more robust models

– Outlier removal

– Feature scaling 
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