DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

January 15 2019

Supervised Learning: Classification

Training

Testing

Supervised Learning: Regression

Training

Testing

Learning Challenges

• Goal

- Classify well new testing data
- Model generalizes well to new testing data

Variance

- Amount by which model would change if we estimated it using a different training data set
- More complex models result in higher variance
- Bias
 - Error introduced by approximating a real-life problem by a much simpler model
 - E.g., assume linear model (linear regression), then error is high
 - More complex models result in lower bias

Bias-Variance tradeoff

Bias-Variance Tradeoff

5

Outline

• Probability review

- Conditional probabilities, Bayes Theorem

- Linear algebra review
 - Matrix and vector operations
- Linear regression
 - Simple linear regression
 - Optimal simple linear regression model
 - Correlation coefficient
 - Lab

Resources

Probability

- <u>Review notes</u> from Stanford's machine learning class
- Sam Roweis's probability review

Linear algebra

- <u>Review notes</u> from Stanford's machine learning class
- Sam Roweis's <u>linear algebra review</u>

Conditional Probability

• $P(A \mid B)$ = Fraction of worlds in which B is true that also have A true

What if we already know that B is true?

That knowledge changes the probability of A

• Because we know we're in a world where *B* is true

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

<u>Def</u>: Events A and B are **independent** if and only if $Pr[A \cap B] = Pr[A] \cdot Pr[B]$

If A and B are independent

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{\Pr[A]\Pr[B]}{\Pr[B]} = \Pr[A]$$

Inference from Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

P(headache) = 1/10 P(flu) = 1/40P(headache | flu) = 1/2

"Headaches are rare and flu is rarer, but if you're coming down with the flu there's a 50-50 chance you'll have a headache."

Inference from Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

P(headache) = 1/10 P(flu) = 1/40P(headache | flu) = 1/2

One day you wake up with a headache. You think: "Drat! 50% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu."

Is this reasoning good?

Inference from Conditional Probability

$$P(A \mid B) = \frac{P(A \land B)}{P(B)}$$
$$P(A \land B) = P(A \mid B) \times P(B)$$

P(headache) = 1/10Want to solve for:P(flu) = 1/40 $P(headache \land flu) = ?$ $P(headache \mid flu) = 1/2$ $P(flu \mid headache) = ?$

$$P(\text{headache} \land \text{flu}) = P(\text{headache} \mid \text{flu}) \times P(\text{flu})$$
$$= 1/2 \times 1/40 = 0.0125$$

 $P(\text{flu} | \text{headache}) = P(\text{headache} \land \text{flu}) / P(\text{headache}) \\= 0.0125 / 0.1 = 0.125$

Bayes Theorem

Bayes' Rule

$$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$$

- Exactly the process we just used
- The most important formula in probabilistic machine learning

(Super Easy) Derivation: $P(A \land B) = P(A \mid B) \times P(B)$ $P(B \land A) = P(B \mid A) \times P(A)$ these are the same Just set equal... $P(A \mid B) \times P(B) = P(B \mid A) \times P(A)$ and solve...

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Vectors and matrices

 m-by-n matrix is an object in R^{mxn} with m rows and n columns, each entry filled with a (typically) real number:

(1)	2	8	
4	78	6	
9	3	2)	

Matrix multiplication

We will use upper case letters for matrices. The elements are referred by Ai,j.

• Matrix product: $A \in \mathbb{R}^{m \times n} \qquad B \in \mathbb{R}^{n \times p}$ $C = AB \in \mathbb{R}^{m \times p}$ $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$ k=1**e.g.** $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ $AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{11}b_{11} + a_{12}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\ a_{11}b_{12} + a_{22}b_{21} & a_{21}b_{22} \end{pmatrix}$

Matrix transpose

Transpose: You can think of it as

- "flipping" the rows and columns
 OR
- "reflecting" vector/matrix on line

e.g.
$$\begin{pmatrix} a \\ b \end{pmatrix}^T = \begin{pmatrix} a & b \end{pmatrix}$$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$
• $(A^T)^T = A$
• $(AB)^T = B^T A^T$
• $(A+B)^T = A^T +$

A is a symmetric matrix if $A = A^T$

 B^T

Inverse of a matrix

 Inverse of a square matrix A, denoted by A⁻¹ is the *unique* matrix s.t.

– AA⁻¹ = A⁻¹A=I (identity matrix)

- If A⁻¹ and B⁻¹ exist, then

 (AB)⁻¹ = B⁻¹A⁻¹,
 (A^T)⁻¹ = (A⁻¹)^T
- For diagonal matrices $\mathbf{D}^{-1} = \operatorname{diag}\{d_1^{-1}, \ldots, d_n^{-1}\}$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors $v_1, ..., v_k$ are linearly independent if $c_1v_1 + ... + c_kv_k = 0$ implies $c_1 = ... = c_k = 0$ (| | |)(c_1) (0)
- Otherwise they are linearly dependent

$$\begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

e.g. $\begin{pmatrix} 1 & 0 \\ 2 & 3 \\ 1 & 3 \end{pmatrix}$ $(c_1, c_2) = (are linear constant)$ $x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $x_2 = \begin{bmatrix} 4 \\ 1 \\ 5 \end{bmatrix}$ $x_3 = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$

 $(c_1, c_2)=(0,0)$, i.e. the columns are linearly independent.

Linearly dependent

$$x_3 = -2x_1 + x_2$$

Rank of a Matrix

- rank(A) (the rank of a m-by-n matrix A) is
 The maximal number of linearly independent columns
 The maximal number of linearly independent rows
- If A is n by m, then
 - rank(A)<= min(m,n)</pre>
- Examples

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & 1 & 3 \\ 0 & 5 & 2 \end{pmatrix}$$

System of linear equations

Matrix formulation

Ax = b

$$A = \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} -13 \\ 9 \end{bmatrix}.$$

If A has an inverse, solution is $x = A^{-1}b$

Linear regression

- One of the most widely used techniques
- Fundamental to many complex models
 - Generalized Linear Models
 - Logistic regression
 - Neural networks
 - Deep learning
- Easy to understand and interpret
- Efficient to solve in closed form
- Efficient practical algorithm (gradient descent)

Linear regression

Given:

- Data
$$X = \left\{ x^{(1)}, \dots, x^{(n)} \right\}$$
 where $x^{(i)} \in \mathbb{R}^d$ Features - Corresponding labels $y = \left\{ y^{(1)}, \dots, y^{(n)} \right\}$ where $y^{(i)} \in \mathbb{R}$

Simple Linear Regression: 1 predictor

Income Prediction

Linear Regression with 2 predictors Multiple Linear Regression

Hypothesis: linear model

• Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Simple linear regression Regression model is a line with 2 parameters: θ_0 , θ_1

• Fit model by minimizing sum of squared errors

least squares (LSQ) The fitted line is used as a predictor

Least squares Linear Regression

Cost Function

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

Mean Square Error (MSE)

 X_1

• Fit by solving $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

Terminology and Metrics

• Residuals

- Difference between predicted values and actual values
- Predicted value for example i is: $\hat{y}^{(i)} = h_{\theta}(x^{(i)})$

$$-R^{(i)} = |y^{(i)} - \hat{y}^{(i)}| = |y^{(i)} - (\theta_0 + \theta_1 x^{(i)})|$$

• Residual Sum of Squares (RSS)

$$-RSS = \sum [R^{(i)}]^2 = \sum [y^{(i)} - (\theta_0 + \theta_1 x^{(i)})]^2$$

• Mean Square Error (MSE)

$$-MSE = \frac{1}{n} \sum [R^{(i)}]^2 = \frac{1}{n} \sum [y^{(i)} - (\theta_0 + \theta_1 x^{(i)})]^2$$

Intuition on MSE

 $J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right)^2$ For insight on J(), let's assume $x \in \mathbb{R}$ so $\theta = [\theta_0, \theta_1]$ $h_{\theta}(x)$ $J(\theta_1)$ (for fixed θ_1 , this is a function of x) (function of the parameter θ_1) $h_{\theta}(x)$ 3 2 $J(\theta_1)$ y $\theta_1 = 1$ 1 -0.5 0.5 1 1.5 2 2.50 1 2 3 Х θ_1

Fix $\theta_0 = 0$

Intuition on MSE

Intuition on MSE

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right)^{2}$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta} = [\theta_{0}, \theta_{1}]$
$$h_{\boldsymbol{\theta}}(x) \qquad \qquad J(\theta_{1})$$
(for fixed θ_{1} , this is a function of x) (function of the parameter θ_{1})

Based on example by Andrew Ng

MSE function

 $J(\theta_0, \theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0, \theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0, \theta_1)$

 $h_{\theta}(x)$

 $J(\theta_0, \theta_1)$

 $h_{\theta}(x)$

700

600

(for fixed θ_0 , θ_1 , this is a function of x) (function of the parameters θ_0 , θ_1) $\begin{array}{c}
& & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & &$

How to find optimal model parameters θ to minimize MSE *J*?

Simple linear regression

- Dataset $x^{(i)} \in R$, $y^{(i)} \in R$, $h_{\theta}(x) = \theta_0 + \theta_1 x$
- $J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right)^2 \text{ MSE / Loss}$ $\frac{\partial J(\theta)}{\partial \theta_0} = \frac{2}{n} \sum_{i=1}^{n} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right) = 0$ $\frac{\partial J(\theta)}{\partial \theta_1} = \frac{2}{n} \sum_{i=1}^{n} x^{(i)} \left(\theta_0 + \theta_1 x^{(i)} y^{(i)}\right) = 0$
- Solution of min loss

$$-\theta_0 = \overline{y} - \theta_1 \,\overline{x}$$
$$-\theta_1 = \frac{\sum (x^{(i)} - \overline{x})(y^{(i)} - \overline{y})}{\sum (x^{(i)} - \overline{x})^2}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x^{(i)}}{n}$$
$$\bar{y} = \frac{\sum_{i=1}^{n} y^{(i)}}{n}$$

How Well Does the Model Fit?

- Correlation between feature and response
 - Pearson's correlation coefficient

$$\operatorname{Cor}(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}},$$

- Measures linear dependence between x and y
- Positive coefficient implies positive correlation
 - The closer to 1 the coefficient is, the stronger the correlation
- Negative coefficient implies negative correlation
 - The closer to -1 the the coefficient is, the stronger the correlation

Correlation Coefficient

Correlation Coefficient = 0

Positive/Negative Correlation

140 120 120-100-Positive 80-100-60-80-40-60-60 120 140 60 80 100 160 r = 0.9

Correlation

160

Review linear regression

- Simple linear regression: one dimension
- Multiple linear regression: multiple dimensions
- Minimize cost (loss) function
 MSE: average of squared residuals
- Can derive closed-form solution for simple LR

$$-\theta_0 = \overline{y} - \theta_1 \,\overline{x}$$
$$-\theta_1 = \frac{\sum (x^{(i)} - \overline{x})(y^{(i)} - \overline{y})}{\sum (x^{(i)} - \overline{x})^2}$$

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!