DS 4400

Machine Learning and Data Mining I

Alina Oprea
Associate Professor, CCIS
Northeastern University

January 152019

Supervised Learning: Classification

Training

Testing

$\left.\begin{array}{cc}\begin{array}{c}\text { New } \\ \text { data }\end{array} & \longrightarrow \begin{array}{c}\text { Learning } \\ \text { model }\end{array} \\ \begin{array}{c}\text { Unlabeled } \\ x^{\prime}\end{array} & f(x)\end{array} \begin{array}{c}\text { Predictions } \\ \text { Positive } \\ \text { Negative } \\ \text { Classification }\end{array}\right]$

Supervised Learning: Regression

Training

Testing

New data	Learning model\longrightarrow
Unlabeled x^{\prime}	$f(x)$
	Predictions Response variable Regression

Learning Challenges

- Goal
- Classify well new testing data
- Model generalizes well to new testing data
- Variance
- Amount by which model would change if we estimated it using a different training data set
- More complex models result in higher variance
- Bias
- Error introduced by approximating a real-life problem by a much simpler model
- E.g., assume linear model (linear regression), then error is high
- More complex models result in lower bias

Bias-Variance tradeoff

Bias-Variance Tradeoff

Model underfits the data

Model overfits the data

Outline

- Probability review
- Conditional probabilities, Bayes Theorem
- Linear algebra review
- Matrix and vector operations
- Linear regression
- Simple linear regression
- Optimal simple linear regression model
- Correlation coefficient
- Lab

Resources

Probability

- Review notes from Stanford's machine learning class
- Sam Roweis's probability review

Linear algebra

- Review notes from Stanford's machine learning class
- Sam Roweis's linear algebra review

Conditional Probability

- $\mathrm{P}(A \mid B)=$ Fraction of worlds in which B is true that also have A true

What if we already know that B is true?

That knowledge changes the probability of A

- Because we know we're in a world where B is true

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \wedge B)}{P(B)} \\
P(A \wedge B) & =P(A \mid B) \times P(B)
\end{aligned}
$$

Def: Events A and B are independent if and only if

$$
\operatorname{Pr}[\mathrm{A} \cap \mathrm{~B}]=\operatorname{Pr}[\mathrm{A}] \cdot \operatorname{Pr}[\mathrm{B}]
$$

If A and B are independent

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B]}{\operatorname{Pr}[B]}=\operatorname{Pr}[A]
$$

Inference from Conditional Probability

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \wedge B)}{P(B)} \\
P(A \wedge B) & =P(A \mid B) \times P(B)
\end{aligned}
$$

P (headache) $=1 / 10$
$\mathrm{P}(\mathrm{flu})=1 / 40$
$\mathrm{P}($ headache $\mid \mathrm{flu})=1 / 2$
"Headaches are rare and flu is rarer, but if you're coming down with the flu there's a 50-50 chance you'll have a headache."

Inference from Conditional Probability

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \wedge B)}{P(B)} \\
P(A \wedge B) & =P(A \mid B) \times P(B)
\end{aligned}
$$

P (headache) $=1 / 10$
$\mathrm{P}(\mathrm{flu})=1 / 40$
$P($ headache $\mid f l u)=1 / 2$
One day you wake up with a headache. You think: "Drat! 50\% of flus are associated with headaches so I must have a 50-50 chance of coming down with flu."

Is this reasoning good?

Inference from Conditional Probability

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \wedge B)}{P(B)} \\
P(A \wedge B) & =P(A \mid B) \times P(B)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P} \text { (headache) }=1 / 10 \\
& \mathrm{P}(\mathrm{flu})=1 / 40 \\
& \mathrm{P}(\text { headache } \mid \mathrm{flu})=1 / 2 \\
& \text { Want to solve for: } \\
& \mathrm{P}(\text { headache } \wedge \mathrm{flu})=\text { ? } \\
& \mathrm{P} \text { (flu | headache) }=\text { ? } \\
& P(\text { headache } \wedge \mathrm{flu})=P(\text { headache } \mid \text { flu }) \times \mathrm{P}(f l u) \\
& =1 / 2 \times 1 / 40=0.0125 \\
& \mathrm{P} \text { (flu | headache) }=\mathrm{P} \text { (headache } \wedge \mathrm{flu}) / \mathrm{P} \text { (headache) } \\
& =0.0125 / 0.1=0.125
\end{aligned}
$$

Bayes Theorem

Bayes' Rule

$$
P(A \mid B)=\frac{P(B \mid A) \times P(A)}{P(B)}
$$

- Exactly the process we just used
- The most important formula in probabilistic machine learning

```
(Super Easy) Derivation:
\(P(A \wedge B)=P(A \mid B) \times P(B)\)
\(P(B \wedge A)=P(B \mid A) \times P(A)\)
```


these are the same

Just set equal...

$$
\begin{aligned}
& P(A \mid B) \times P(B)=P(B \mid A) \times P(A) \\
& \text { and solve... }
\end{aligned}
$$

 solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London, 53:370-418

Vectors and matrices

- Vector in R^{n} is an ordered set of n real numbers.
- e.g. $v=(1,6,3,4)$ is in R^{4}
- A column vector:

$$
- \text { A row vector: } \longrightarrow\left(\begin{array}{llll}
1 & 6 & 3 & 4
\end{array}\right)
$$

- m-by-n matrix is an object in $R^{m \times n}$ with m rows and n columns, each entry filled with a (typically) real number:
$\longrightarrow\left(\begin{array}{ccc}1 & 2 & 8 \\ 4 & 78 & 6 \\ 9 & 3 & 2\end{array}\right)$

Matrix multiplication

We will use upper case letters for matrices. The elements are referred by $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$.

- Matrix product:

$$
\begin{gathered}
A \in \mathbb{R}^{m \times n} \quad B \in \mathbb{R}^{n \times p} \\
C=A B \in \mathbb{R}^{m \times p} \\
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}
\end{gathered}
$$

e.g.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
& A B=\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right)
\end{aligned}
$$

Matrix transpose

Transpose: You can think of it as

- "flipping" the rows and columns

OR

- "reflecting" vector/matrix on line

$$
\begin{array}{ll}
\text { e.g. }\binom{a}{b}^{T} & =\left(\begin{array}{ll}
a & b
\end{array}\right) \\
& \text { • }\left(A^{T}\right)^{T}=A \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{T}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) & \text { • }(A B)^{T}=B^{T} A^{T} \\
& \text { (A+B})^{T}=A^{T}+B^{T}
\end{array}
$$

A is a symmetric matrix if $A=A^{T}$

Inverse of a matrix

- Inverse of a square matrix A, denoted by A^{-1} is the unique matrix s.t.
$-A A^{-1}=A^{-1} A=1$ (identity matrix)
- If A^{-1} and B^{-1} exist, then
$-(A B)^{-1}=B^{-1} A^{-1}$,
$-\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$
- For diagonal matrices $\quad \mathbf{D}^{-1}=\operatorname{diag}\left\{d_{1}^{-1}, \ldots, d_{n}^{-1}\right\}$

Linear independence

- A set of vectors is linearly independent if none of them can be written as a linear combination of the others.
- Vectors $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ are linearly independent if $\mathrm{c}_{1} \mathrm{v}_{1}+\ldots+\mathrm{c}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}=0$ implies $\mathrm{c}_{1}=\ldots=\mathrm{c}_{\mathrm{k}}=0$
- Otherwise they are linearly dependent

$$
\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} \\
\mid & \mid & \mid
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

e.g. $\quad\left(\begin{array}{ll}1 & 0 \\ 2 & 3 \\ 1 & 3\end{array}\right)$
$\left(c_{1}, c_{2}\right)=(0,0)$, i.e. the columns are linearly independent.

$$
x_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
4 \\
1 \\
5
\end{array}\right] \quad x_{3}=\left[\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right]
$$

Linearly dependent

$$
x_{3}=-2 x_{1}+x_{2}
$$

Rank of a Matrix

- $\operatorname{rank}(A)$ (the rank of a m-by-n matrix A) is The maximal number of linearly independent columns The maximal number of linearly independent rows
- If A is n by m, then
$-\operatorname{rank}(A)<=\min (m, n)$
- Examples

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right) \quad\left(\begin{array}{lll}
2 & 1 & 3 \\
0 & 5 & 2
\end{array}\right)
$$

System of linear equations

$$
\begin{aligned}
4 x_{1}-5 x_{2} & =-13 \\
-2 x_{1}+3 x_{2} & =9 .
\end{aligned}
$$

Matrix formulation

$$
\begin{gathered}
A x=b \\
A=\left[\begin{array}{cc}
4 & -5 \\
-2 & 3
\end{array}\right], \quad b=\left[\begin{array}{c}
-13 \\
9
\end{array}\right] .
\end{gathered}
$$

If A has an inverse, solution is $x=A^{-1} b$

Linear regression

- One of the most widely used techniques
- Fundamental to many complex models
- Generalized Linear Models
- Logistic regression
- Neural networks
- Deep learning
- Easy to understand and interpret
- Efficient to solve in closed form
- Efficient practical algorithm (gradient descent)

Linear regression

Given:

- Data $\boldsymbol{X}=\left\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(n)}\right\}$ where $\boldsymbol{x}^{(i)} \in \mathbb{R}^{d}$

Features

- Corresponding labels $\boldsymbol{y}=\left\{y^{(1)}, \ldots, y^{(n)}\right\}$ where $y^{(i)} \in \mathbb{R}$

Response

variables

Simple Linear Regression: 1 predictor

Income Prediction

Linear Regression with 2 predictors Multiple Linear Regression

Hypothesis: linear model

- Hypothesis: $h_{\theta}(x)=\theta_{0}+\theta_{1} x$

Simple linear regression
Regression model is a line with 2 parameters: θ_{0}, θ_{1}

- Fit model by minimizing sum of squared errors

Least squares Linear Regression

- Cost Function

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

Mean Square Error (MSE)

- Fit by solving $\min _{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

Terminology and Metrics

- Residuals
- Difference between predicted values and actual values
- Predicted value for example i is: $\hat{y}^{(i)}=h_{\theta}\left(x^{(i)}\right)$
$-R^{(i)}=\left|y^{(i)}-\hat{y}^{(i)}\right|=\left|y^{(i)}-\left(\theta_{0}+\theta_{1} x^{(i)}\right)\right|$
- Residual Sum of Squares (RSS)
$-R S S=\sum\left[R^{(i)}\right]^{2}=\Sigma\left[y^{(i)}-\left(\theta_{0}+\theta_{1} x^{(i)}\right)\right]^{2}$
- Mean Square Error (MSE)
$-M S E=\frac{1}{n} \sum\left[R^{(i)}\right]^{2}=\frac{1}{\mathrm{n}} \sum\left[y^{(i)}-\left(\theta_{0}+\theta_{1} x^{(i)}\right)\right]^{2}$

Interpretation

Intuition on MSE

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J() , let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

$$
h_{\theta}(x)
$$

$$
J\left(\theta_{1}\right)
$$

(function of the parameter θ_{1})

Fix $\theta_{0}=0$

Intuition on MSE

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J(), let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

$$
h_{\theta}(x)
$$

$$
J\left(\theta_{1}\right)
$$

(function of the parameter θ_{1})

$$
J([0,0.5])=\frac{1}{2 \times 3}\left[(0.5-1)^{2}+(1-2)^{2}+(1.5-3)^{2}\right] \approx 0.58
$$

Intuition on MSE

$$
J(\boldsymbol{\theta})=\frac{1}{n} \sum_{i=1}^{n}\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right)-y^{(i)}\right)^{2}
$$

For insight on J() , let's assume $x \in \mathbb{R}$ so $\boldsymbol{\theta}=\left[\theta_{0}, \theta_{1}\right]$

$$
h_{\theta}(x)
$$

(for fixed θ_{1}, this is a function of x)

MSE function

Relation between h and J

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Relation between h and J

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

Relation between h and J

$$
h_{\theta}(x)
$$

(for fixed θ_{0}, θ_{1}, this is a function of x)

$J\left(\theta_{0}, \theta_{1}\right)$
(function of the parameters θ_{0}, θ_{1})

Relation between h and J

$h_{\theta}(x)$
(for fixed θ_{0}, θ_{1}, this is a function of x)

$$
J\left(\theta_{0}, \theta_{1}\right)
$$

(function of the parameters θ_{0}, θ_{1})

How to find optimal model parameters θ to minimize MSE J ?

Simple linear regression

- Dataset $x^{(i)} \in R, y^{(i)} \in R, h_{\theta}(x)=\theta_{0}+\theta_{1} x$
- $J(\theta)=\frac{1}{n} \sum_{i=1}^{n}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right)^{2}$ MSE /Loss

$$
\begin{aligned}
& \frac{\partial J(\theta)}{\partial \theta_{0}}=\frac{2}{n} \sum_{i=1}^{n}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right)=0 \\
& \frac{\partial J(\theta)}{\partial \theta_{1}}=\frac{2}{n} \sum_{i=1}^{n} x^{(i)}\left(\theta_{0}+\theta_{1} x^{(i)}-y^{(i)}\right)=0
\end{aligned}
$$

- Solution of min loss

$$
\begin{aligned}
& -\theta_{0}=\bar{y}-\theta_{1} \bar{x} \\
& -\theta_{1}=\frac{\sum\left(x^{(i)}-\bar{x}\right)\left(y^{(i)}-\bar{y}\right)}{\sum\left(x^{(i)}-\bar{x}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{i=1}^{n} x^{(i)}}{n} \\
& \bar{y}=\frac{\sum_{i=1}^{n} y^{(i)}}{n}
\end{aligned}
$$

How Well Does the Model Fit?

- Correlation between feature and response
- Pearson's correlation coefficient

$$
\operatorname{Cor}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}},
$$

- Measures linear dependence between x and y
- Positive coefficient implies positive correlation
- The closer to 1 the coefficient is, the stronger the correlation
- Negative coefficient implies negative correlation
- The closer to -1 the the coefficient is, the stronger the correlation

Correlation Coefficient

Correlation Coefficient $=1$

Correlation Coefficient $=\mathbf{- 1}$

Correlation Coefficient $=0$

Positive/Negative Correlation

Review linear regression

- Simple linear regression: one dimension
- Multiple linear regression: multiple dimensions
- Minimize cost (loss) function
- MSE: average of squared residuals
- Can derive closed-form solution for simple LR
$-\theta_{0}=\bar{y}-\theta_{1} \bar{x}$
$-\theta_{1}=\frac{\sum\left(x^{(i)}-\bar{x}\right)\left(y^{(i)}-\bar{y}\right)}{\sum\left(x^{(i)}-\bar{x}\right)^{2}}$

Acknowledgements

- Slides made using resources from:
- Andrew Ng
- Eric Eaton
- David Sontag
- Thanks!

