DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

April 9 2019

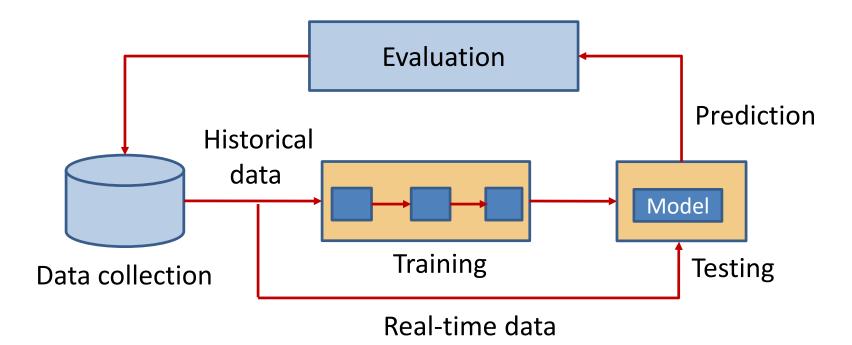
Logistics

- Final exams have been graded!
- Final project presentations
 - Thursday, April 11
 - Tuesday, April 16 in ISEC 655
 - 8 minute slot 5 min presentation and 3 min questions
- Final report due on Tuesday, April 23
 - Template in Piazza
 - Schedule on Piazza

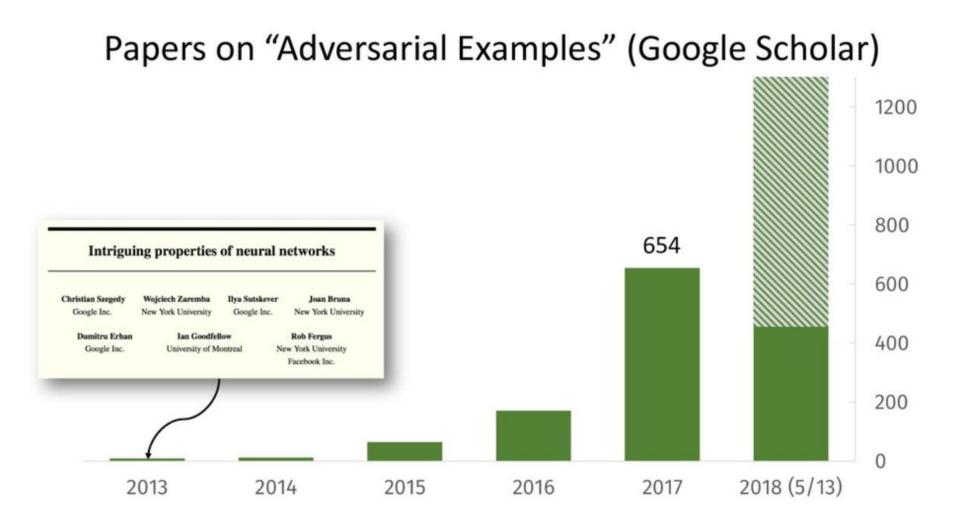
What we covered

Adversarial ML						
Ensembles • Bagging • Random forests • Boosting • AdaBoost	Deep learning • Feed-forward Neural Nets • Convolutional Neural Nets • Recurrent Neural Nets • Back-propagation			Unsupervised • PCA • Clustering		
 Linear classification Perceptron Logistic regression LDA Linear SVM 	Non-linear classification • kNN • Decision trees • Kernel SVM • Naïve Bayes		• (• •	Metrics Cross-validation Regularization Feature selection Gradient Descent Density Estimation		
Linear R						
Linear algebra		Probability and statistics				

Adversarial Machine Learning

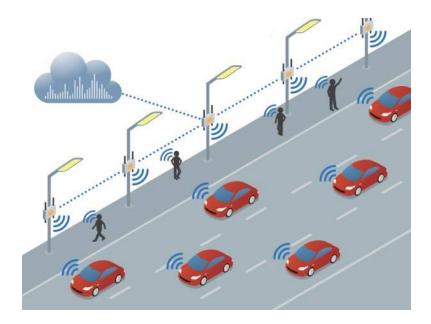


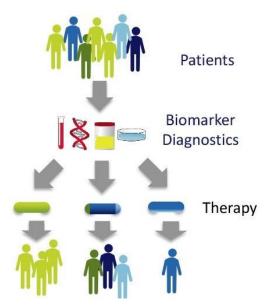
- Studies attacks against machine learning systems
- Designs robust machine learning algorithms that resist sophisticated attacks
- Many challenging open problems!



Source: David Evans, University of Virginia

Why is it important?

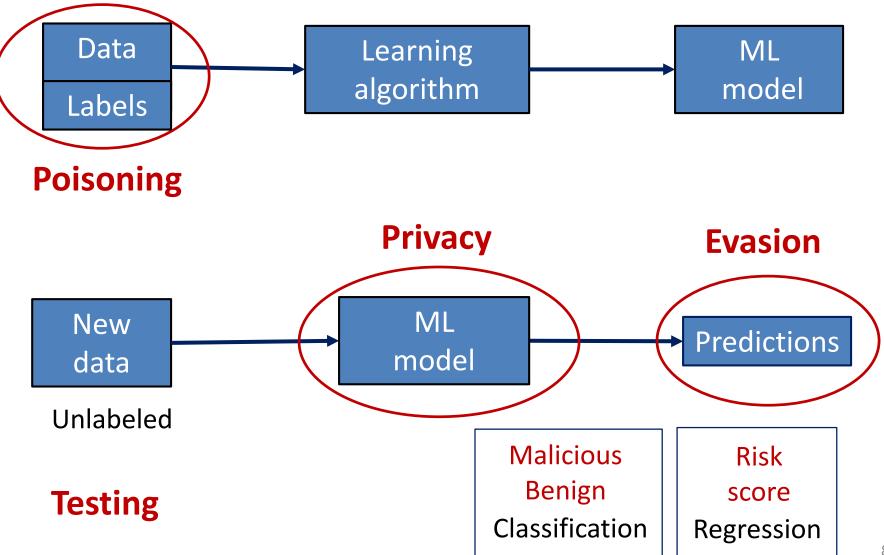




Many critical applications where ML/AI will be deployed

Attacks against supervised learning

Training



Taxonomy

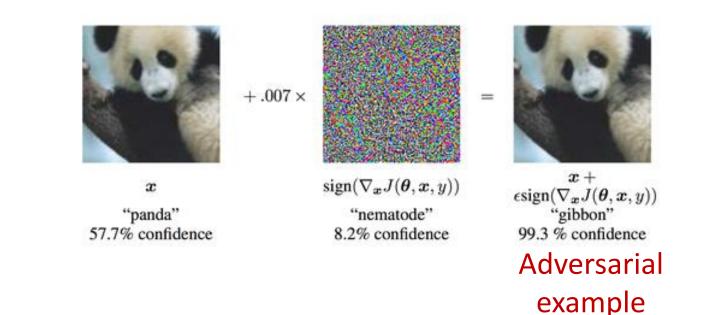
Attacker's Objective

		Targeted Modify predictions on targeted set of points	Availability Corrupt entire ML model	Privacy Learn information about model and data
00550	Training	Targeted poisoning Backdoor Trojan attacks	Poisoning availability	_
0	Testing	Evasion attacks Adversarial examples	-	Model extraction Model inversion

Outline

- Evasion (testing-time) attacks
 - Adversarial examples
 - Optimization formulation
 - Applications to connected cars
 - Applications to cyber security
- Poisoning (training-time) attacks
 - Availability attacks for linear regression
 - Applications to health care
 - Defenses

Evasion attacks



- [Szegedy et al. 13] Intriguing properties of neural networks
- [Biggio et al. 13] Evasion Attacks against Machine Learning at Test Time
- [Goodfellow et al. 14] Explaining and Harnessing Adversarial Examples
- [Carlini, Wagner 17] Towards Evaluating the Robustness of Neural Networks
- [Madry et al. 17] Towards Deep Learning Models Resistant to Adversarial Attacks
- [Kannan et al. 18] Adversarial Logit Pairing

Adversarial example definition

- Given ML model f and point x with class c- f(x) = c
- Try to modify it minimally to get target class t
- Point x' is an *adversarial example* if
 - -f(x') = t (prediction is targeted class)
 - $\operatorname{Dist}(x, x') \leq \delta$ (distance from original image is small)
- State-of-the-art attack based on Gradient Descent optimization to find closest adversarial example

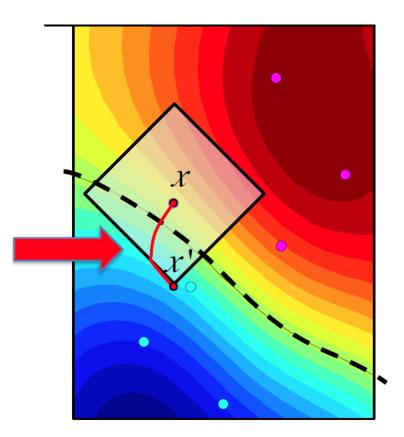
- [Carlini and Wagner 2017]

Optimization Formulation

Given original example x,
$$f(x) = c$$

Find adversarial example x'
 $\min ||x - x'||_2^2$
Such that $f(x') = t$

[Szegedy et al. 13] Intriguing properties of neural networks

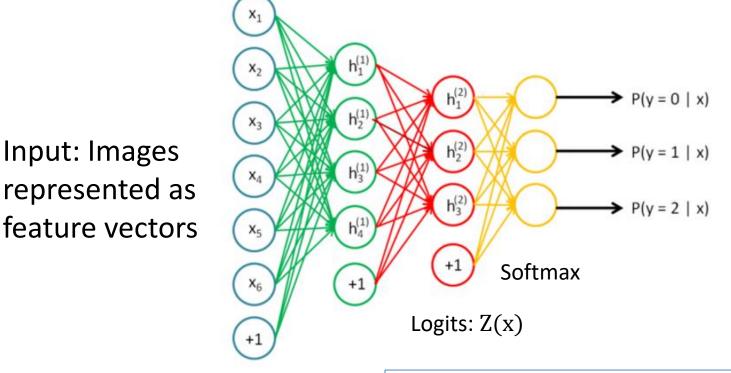


Equivalent formulation

$$\min c ||x - x'||_2^2 + \ell_t(x')$$

$$\ell_t(x') \text{ is loss function on } x'$$

Evasion attacks in logit layer



[Carlini and Wagner 2017] Penalty method

$$\min c \left\| \delta \right\|_{2}^{2} + Z_{c}(x') - Z_{t}(x')$$
$$x' = x + \delta$$

Solve iteratively using Gradient Descent by δ

Attacks on MNIST data

[Carlini and Wagner 2017] Penalty method

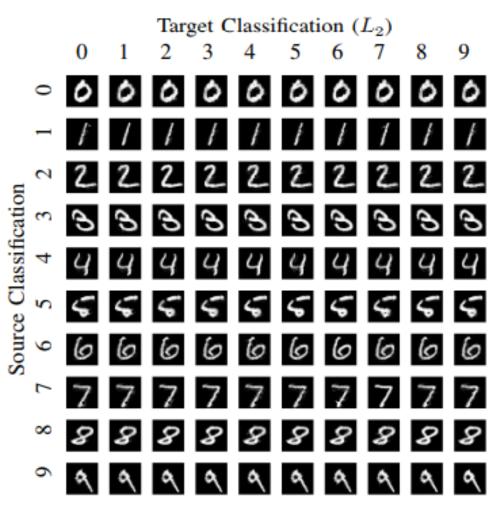
Uses 3 distance metrics

- L₀: number of pixels changed
- L₂: Euclidean distance
- L_{∞} : max perturbation of each pixel

Original Adversarial

Attacks on Euclidean distance

[Carlini and Wagner 2017] Penalty method



Adversarial Glasses

- Sharif et al. (ACM CCS 2016) attacked deep neural networks for face recognition with carefully-fabricated eyeglass frames
- When worn by a **41-year-old white male** (left image), the glasses mislead the deep network into believing that the face belongs to the famous actress **Milla Jovovich**

- Physically realizable attacks
- [Sharif et al. 2016] Accessorize to a Crime: Real and Stealthy Attacks on State-ofthe-Art Face Recognition

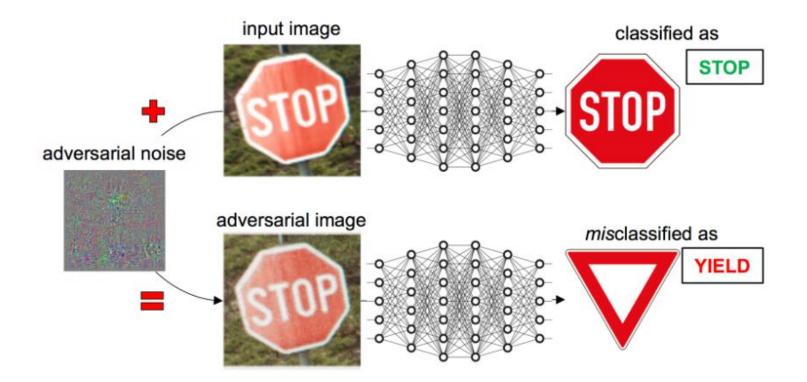
Adversarial Road Signs

Robust Physical-World Attacks on Machine Learning Models

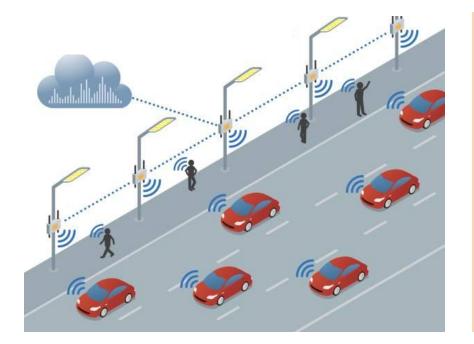
Ivan Evtimov¹, Kevin Eykholt², Earlence Fernandes¹, Tadayoshi Kohno¹, Bo Li⁴, Atul Prakash², Amir Rahmati³, and Dawn Song^{*4}

¹University of Washington
 ²University of Michigan Ann Arbor
 ³Stony Brook University
 ⁴University of California, Berkeley

Road Sign Misclassification



Why Relevant in Self-Driving Cars?



Machine learning has tremendous potential:

- Assist drivers by processing sensor data from ECUs
- Predict road conditions by interacting with other cars
- Recognize risky conditions and warn drivers

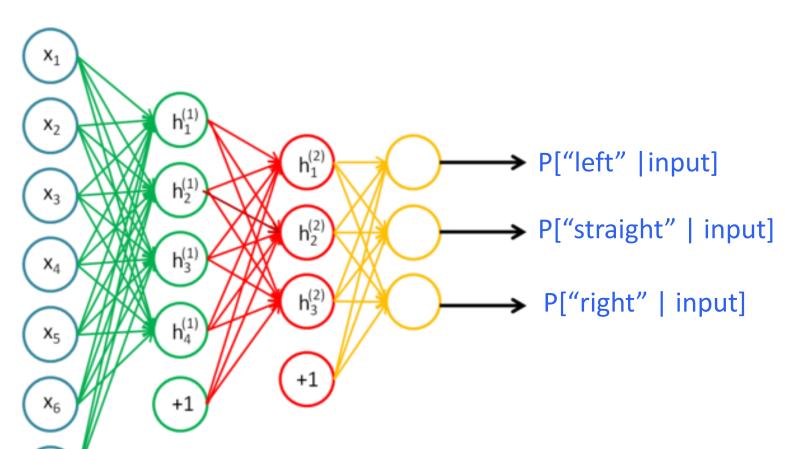
But safety is of paramount importance!

Example Application

- Steering angle prediction by processing camera image
- <u>Udacity challenge</u>: public competition and dataset available

[A. Chernikova, M. Jagielski, A. Oprea, C. Nita-Rotaru, and B. Kim. Are Self-Driving Cars Secure? Evasion Attacks against Deep Neural Networks for Self-Driving Cars. In IEEE SafeThings, 2019]

Deep Neural Networks



lmage pixels

+1

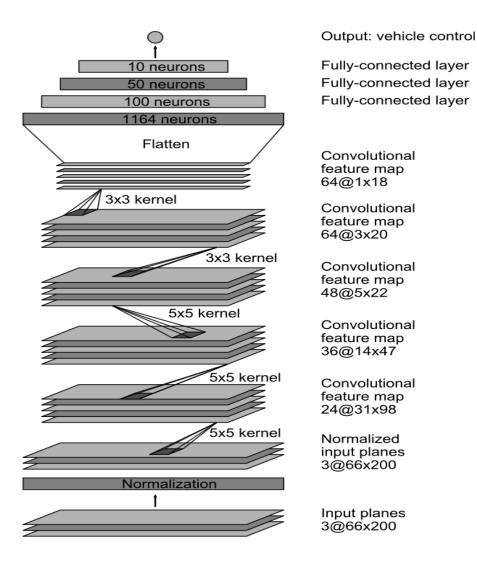
- Convolutional Neural Network (CNN) architectures have won the Udacity challenge
- Example architectures: Epoch model, NVIDIA
- Almost perfect accuracy (close to 100%)

CNN Architecture Epoch

```
x = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(img_input)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)
x = Dropout(0.25)(x)
x = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(x)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)
x = Dropout(0.25)(x)
x = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(x)
x = MaxPooling2D((2, 2), strides=(2, 2))(x)
x = Dropout(0.5)(x)
y = Flatten()(x)
y = Dense(1024, activation='relu')(y)
y = Dropout(.5)(y)
y = Dense(1)(y)
model = Model(input=img_input, output=y)
model.compile(optimizer=Adam(lr=1e-4), loss = 'mse')
```

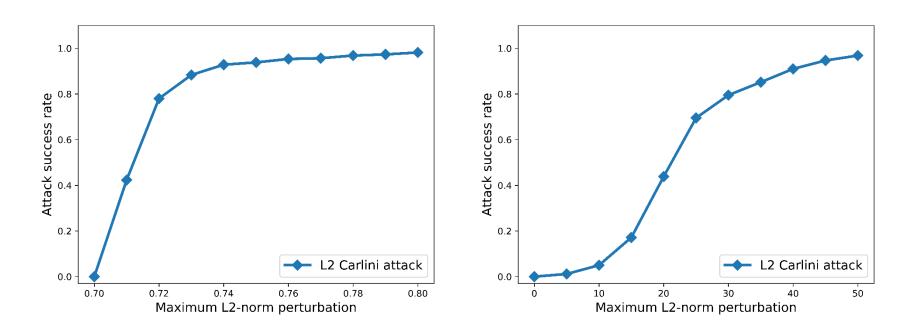
25 million parameters

CNN Architecture NVIDIA



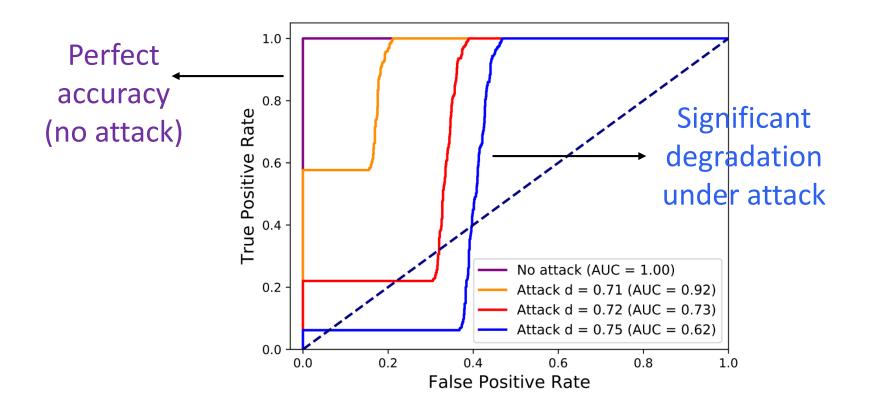
467 million parameters

How successful is the attack?



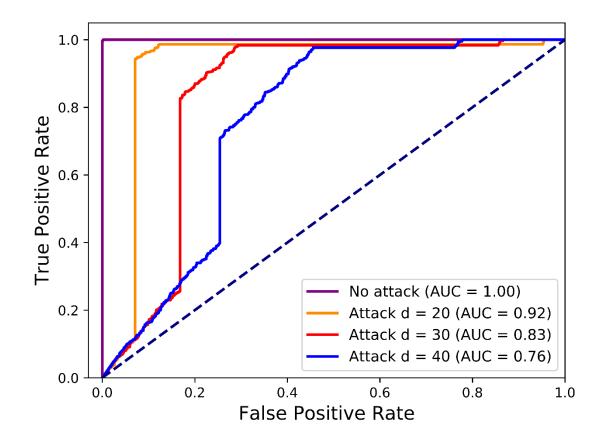
- Both models: small modification to the image results in 100% attack success
- NVIDIA model is more resilient!

How much is the attack impacting the classification?



Epoch model

How much is the attack impacting the classification?



NVIDIA model

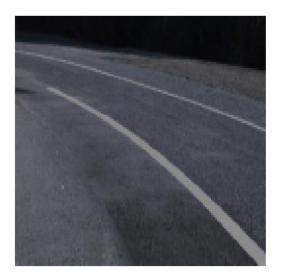
Example Adversarial Images

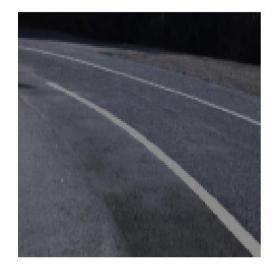
Original Image Class "Straight" Adversarial Image Class "Right"

Epoch model

Adversarial Image Class "Left"

Example Adversarial Images

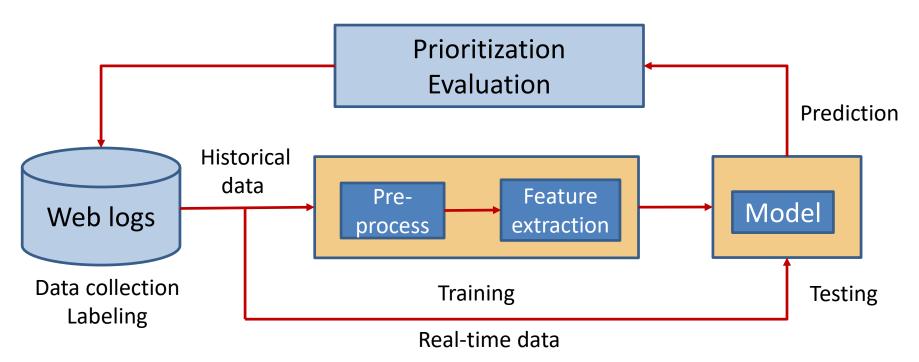




Original Image Class "Left" Adversarial Image Class "Straight" Adversarial Image Class "Right"

NVIDIA model

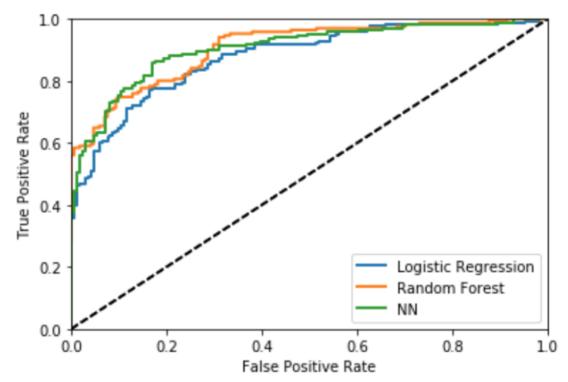
Malware Detection



- Extract 89 features of malicious activities from web logs
 - Leverage security domain expertise
- Supervised learning models
 - Logistic regression, SVM, Decision trees, Random Forest
- Evaluation of higher risk alerts involves manual investigation
 - Prioritize most suspicious connections
- [A. Chernikova and A. Oprea. Adversarial Examples for Deep-Learning Cyber Security Analytics. In progress, 2019]

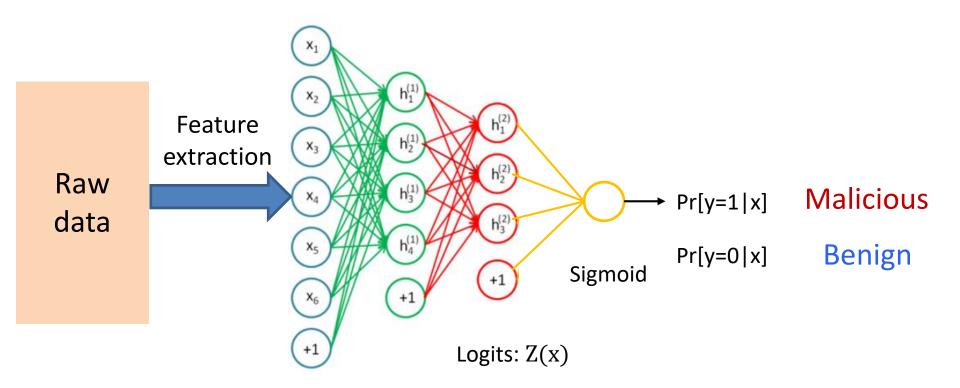
Classification results

- Feed-Forward Neural Network (3 hidden layers)
- Highly imbalanced setting
 - 227k legitimate domains, 1730 malicious domains



How resilient are Feed-Forward Neural Networks to adversarial evasion attacks?

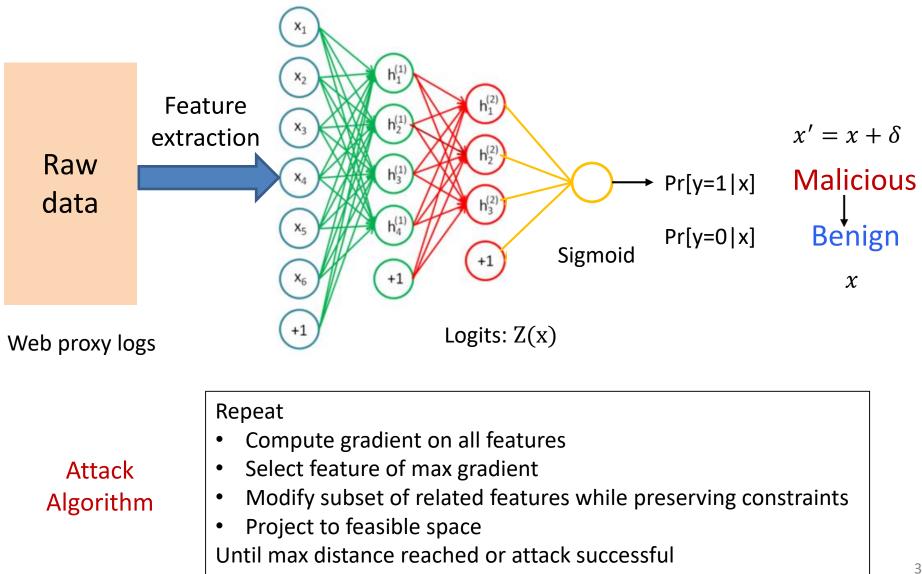
Evasion attacks in security



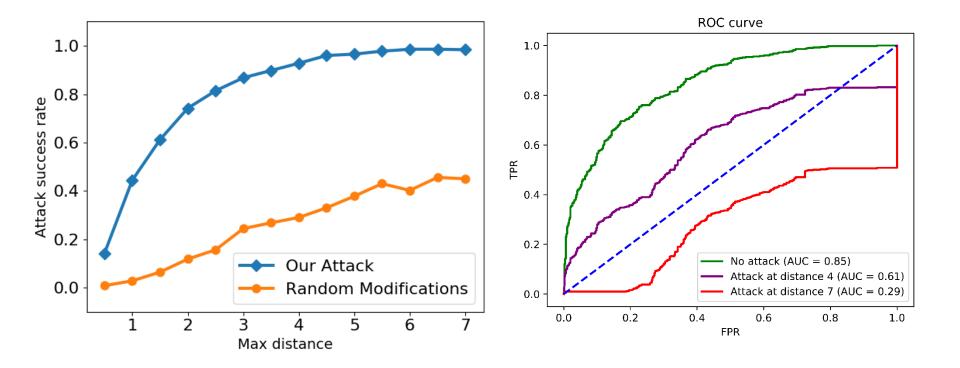
Challenges

- In cyber security, classifiers are usually applied to preprocessed features, not raw data
- Features have constraints (e.g., min, max, and avg number of connections per host)

Iterative evasion attack algorithm



How Effective are Evasion Attacks in Security?



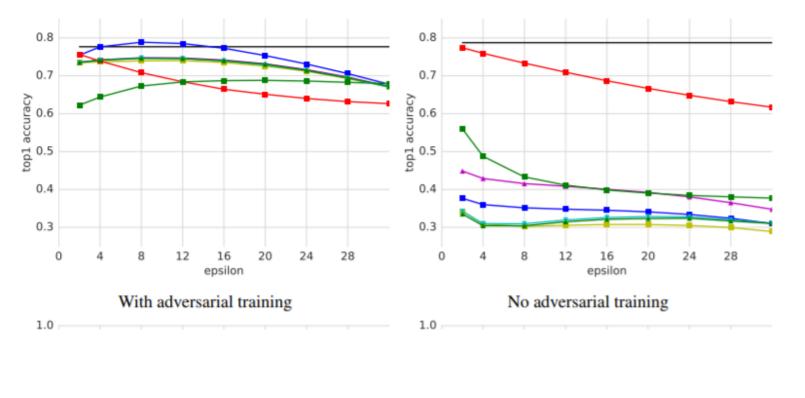
Feed-Forward Neural Network 83 features extracted from enterprise network traffic

Adversarial Training

Algorithm 1 Adversarial training of network N. Size of the training minibatch is m. Number of adversarial images in the minibatch is k.

- 1: Randomly initialize network N
- 2: repeat
- 3: Read minibatch $B = \{X^1, \dots, X^m\}$ from training set
- 4: Generate k adversarial examples $\{X_{adv}^1, \ldots, X_{adv}^k\}$ from corresponding clean examples $\{X^1, \ldots, X^k\}$ using current state of the network N
- 5: Make new minibatch $B' = \{X_{adv}^1, \dots, X_{adv}^k, X^{k+1}, \dots, X^m\}$
- 6: Do one training step of network N using minibatch B'
- 7: until training converged
- I. Goodfellow et al. Explaining and harnessing adversarial examples, ICLR 2015.
- A. Kurakin et al. Adversarial Machine Learning at Scale, ICLR 2017.
- Many other defenses have been broken
 - [Athalye et al. ICML 2018]: Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples

Is Adv Training Effective?



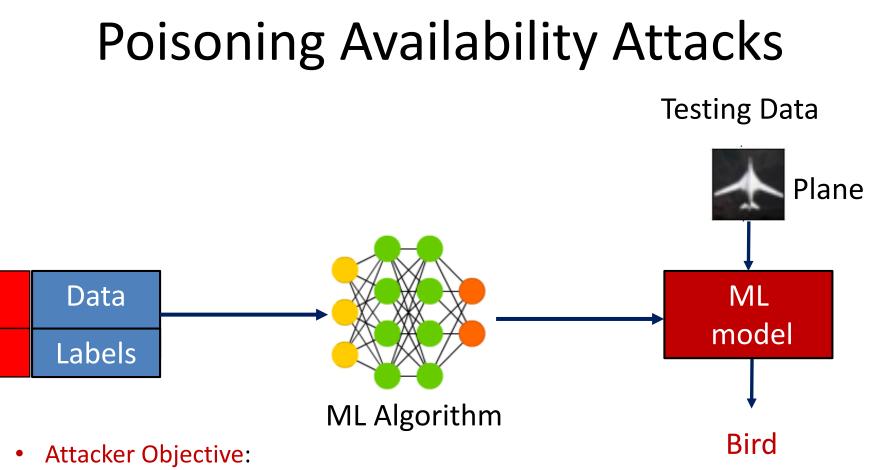
Outline

- Evasion (testing-time) attacks
 - Adversarial examples
 - Optimization formulation
 - Applications to connected cars
 - Applications to cyber security
- Poisoning (training-time) attacks
 - Availability attacks for linear regression
 - Applications to health care
 - Defenses

Training-Time Attacks

- ML is trained by crowdsourcing data in many applications
- Social networks
- News articles
- Tweets

Cannot fully trust training data!



- Corrupt the predictions by the ML model significantly
- Predictions on *most points* are impacted in testing
- Attacker Capability:
 - Insert fraction of poisoning points in training
- [M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning. In IEEE S&P 2018]

Optimization Formulation

Given a training set *D* find a set of poisoning data points D_p

that maximizes the adversary objective A on validation set D_{val}

where corrupted model θ_p is learned by minimizing the loss function L on $D \cup D_p$

$$\operatorname{argmax}_{D_p} A(D_{val}, \boldsymbol{\theta}_p) \text{ s. t.} \\ \boldsymbol{\theta}_p \in \operatorname{argmin}_{\boldsymbol{\theta}} L(D \cup D_p, \boldsymbol{\theta}) \\ \boldsymbol{\theta}_p \in \operatorname{argmin}_{\boldsymbol{\theta}} L(D \cup D_p, \boldsymbol{\theta})$$

Implicit dependence

Optimization formulation in white-box setting

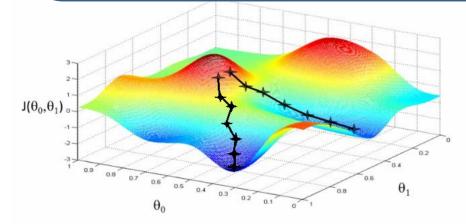
Attacker knows training data D, ML model

Bilevel optimization problem is NP hard in the general case

Poisoning attack for Linear Regression

- Gradient ascent for classification [Biggio et al. 12, Xiao et al. 15]
- First white-box attack for regression [Jagielski et al. 18]
 - Determine optimal poisoning point (x_c, y_c)
 - Objective is MSE; optimize by both x_c and y_c

$$\frac{\partial A}{\partial \boldsymbol{x}_{c}} = \sum_{i=1}^{n} 2(f(\boldsymbol{x}_{i}) - y_{i}) \left(\boldsymbol{x}_{i}^{T} \frac{\partial \boldsymbol{w}}{\partial \boldsymbol{x}_{c}} + \frac{\partial b}{\partial \boldsymbol{x}_{c}}\right) + \frac{\partial \Omega}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial \boldsymbol{x}_{c}}$$
$$\frac{\partial A}{\partial y_{c}} = \sum_{i=1}^{n} 2(f(\boldsymbol{x}_{i}) - y_{i}) \left(\boldsymbol{x}_{i}^{T} \frac{\partial \boldsymbol{w}}{\partial y_{c}} + \frac{\partial b}{\partial y_{c}}\right) + \frac{\partial \Omega}{\partial \boldsymbol{w}} \frac{\partial \boldsymbol{w}}{\partial y_{c}}$$



- Different initializations and objectives
- Can be extended to multiple poisoning points

Gradient Ascent Algorithm

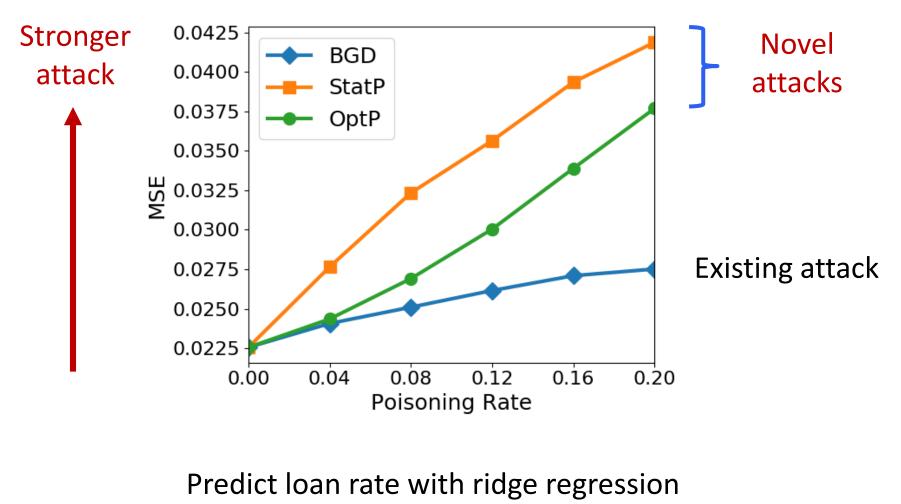
- **Input**: poisoned point x_0 , label y_0
 - Adversarial objective A
- **Output**: poisoned point *x*, label *y*
- 1. Initialize poisoned point $x \leftarrow x_0$; $y \leftarrow y_0$
- 2. Repeat
 - Store previous iteration $x_{pr} \leftarrow x$; $y_{pr} \leftarrow y$
 - Update in direction of gradients choosing α with line search and project to feasible space

$$\begin{aligned} x &\leftarrow \Pi(\mathbf{x} + \alpha \nabla_x A(x, y)) \\ \mathbf{y} &\leftarrow \Pi(\mathbf{y} + \alpha \nabla_y A(x, y)) \end{aligned}$$

- 3. Until $|A(x,y) A(x_{pr},y_{pr})| < \epsilon$
- 4. Return *x*, y

Attack results

• Improve existing attacks by a factor of 6.83



(i.e. with L2 regularization)

Impact of attack

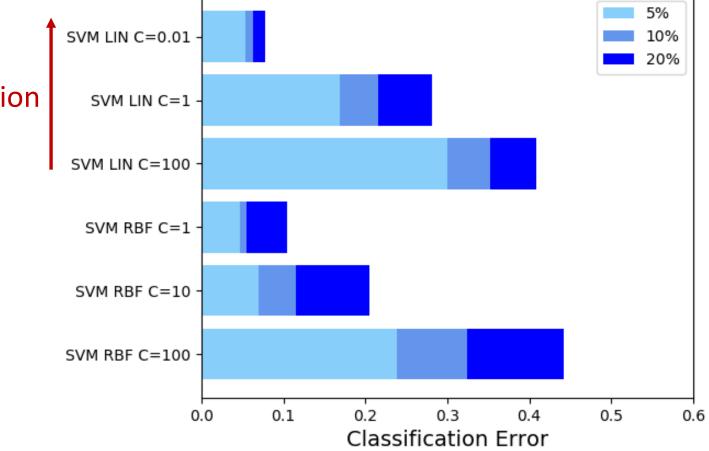
- How much would attack change dosages at 20% poisoning rate?
- Modifies 75% of patients' dosages by 87.5% for Ridge and 93.49% for Lasso

Quantile	Initial Dosage	Ridge Difference	LASSO Difference
0.1	15.5 mg/wk	31.54%	37.20%
0.25	21 mg/wk	87.50%	93.49%
0.5	30 mg/wk	150.99%	139.31%
0.75	41.53 mg/wk	274.18%	224.08%
0.9	52.5 mg/wk	459.63%	358.89%

Case study on healthcare dataset

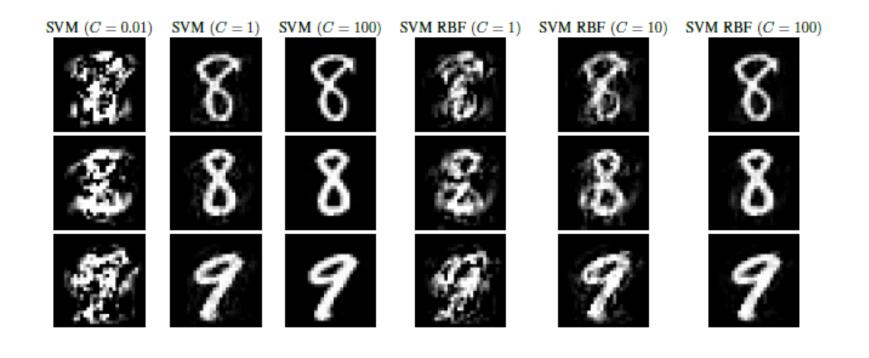
Poisoning and Regularization

More regularization



Stronger regularization provides more robustness to poisoning [Demontis et al. 18]

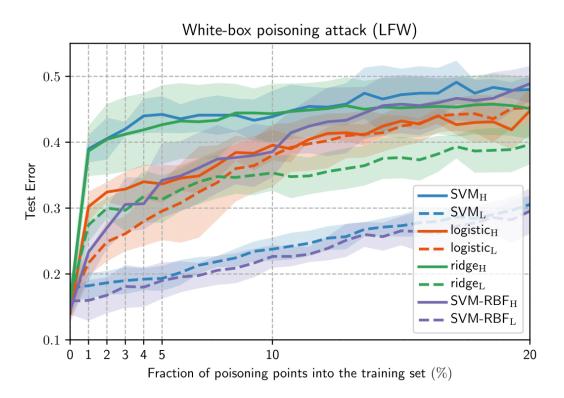
Poisoning and Regularization



More regularization

More regularization

Poisoning Classifiers



- More complex models (i.e., lower regularization) are more prone to poisoning
- Non-linear models more resilient than linear models
- Similar results for evasion

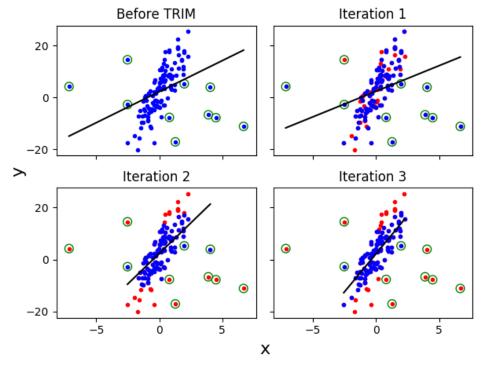
Resilient Linear Regression

• Goal

- Train a robust linear regression model, assuming $\alpha \cdot n$ poisoned points among N points in training
- MSE should be close to original MSE
- No ground truth on data distribution available
- Existing techniques
 - Robust statistics
 - Huber [Huber 1964], RANSAC [Fischler and Bolles 1961]
 - Resilient against outliers and random noise
 - Adversarial resilient regression: [Chen et al. 13]
 - Make simplifying assumption on data distribution (e.g., Gaussian)

Our Defense: TRIM

- Given dataset on n points and αn attack points, find best model on n of $(1 + \alpha)n$ points
- If *w*, *b* are known, find points with smallest residual
- But *w*, *b* and true data distribution are unknown!



TRIM: alternately estimate model and find low residual points $\underset{w,b,I}{\operatorname{argmin}} L(w,b,I) = \frac{1}{|I|} \sum_{i \in I} (f(\boldsymbol{x}_i) - y_i)^2 + \lambda \Omega(\boldsymbol{w})$ $N = (1 + \alpha)n, \quad I \subset [1, \dots, N], \quad |I| = n$

Trimmed optimization

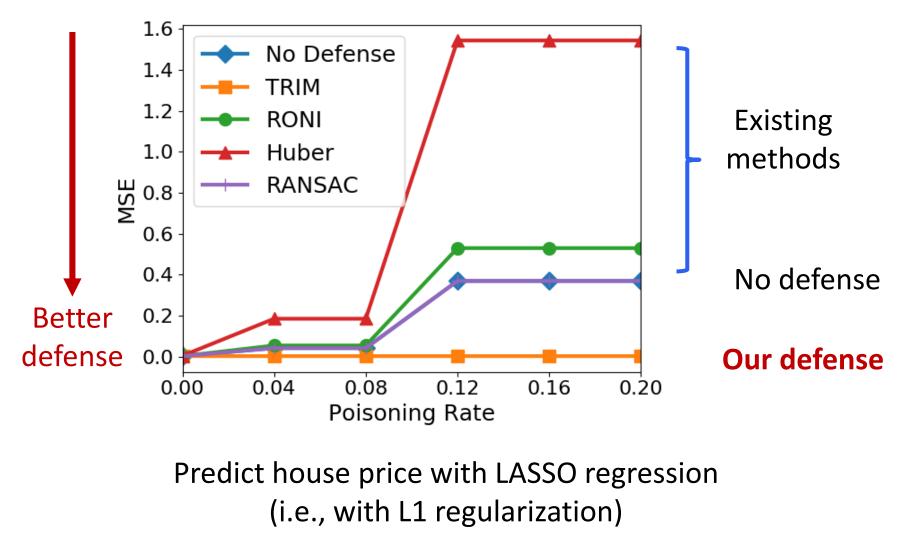
 Estimate model parameters and identify points with minimum residual alternatively

Alternating optimization

- Select *I* a random subset in {1, ..., *N*}, |*I*| = n
 Assume poisoning rate (or upper bound) is known
- Repeat
 - -Estimate $(w, b) = \operatorname{argmin} L(w, b, I)$
 - Select new set I of points, |I| = n, with lowest residuals under new model
- Until convergence (loss does not decrease)

Defense results

- TRIM MSE is within 1% of the original model MSE
- Significant improvement over existing methods



Conclusions

- Resilience of Machine Learning in face of attacks needs to be better understood
- Supervised learning (both classification and regression) can be attacked relatively easily
- Implications in self-driving car and security applications has huge impact on safety
- Designing robust models in adversarial settings is still an open problem!

Taxonomy

Attacker's Objective

		Targeted Modify predictions on targeted set of points	Availability Corrupt entire ML model	Privacy Learn information about model and data
219C	Training	Targeted poisoning Backdoor Trojan attacks	Poisoning availability	-
0	Testing	Evasion attacks Adversarial examples	-	Model extraction Model inversion