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Logistics

• Final exams have been graded!

• Final project presentations

– Thursday, April 11

– Tuesday, April 16 in ISEC 655

– 8 minute slot – 5 min presentation and 3 min 
questions

• Final report due on Tuesday, April 23

– Template in Piazza

– Schedule on Piazza
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What we covered

Linear classification
• Perceptron
• Logistic regression
• LDA
• Linear SVM

• Metrics
• Cross-validation
• Regularization
• Feature selection
• Gradient Descent
• Density Estimation

Linear Regression

Non-linear classification
• kNN
• Decision trees
• Kernel SVM
• Naïve Bayes

Linear algebra Probability and statistics

Adversarial ML

Deep learning
• Feed-forward Neural Nets
• Convolutional Neural Nets
• Recurrent Neural Nets
• Back-propagation

Ensembles
• Bagging
• Random forests
• Boosting
• AdaBoost

Unsupervised
• PCA
• Clustering
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Adversarial Machine Learning

• Studies attacks against machine learning systems 
• Designs robust machine learning algorithms that 

resist sophisticated attacks
• Many challenging open problems! 

TestingData collection

Historical 
data

Training

Model

Real-time data

Evaluation

Prediction
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Source: David Evans, University of Virginia
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Why is it important?

Many critical applications where ML/AI will 
be deployed
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Attacks against supervised learning

Data Learning 
algorithm

ML
model

Training

Testing

New 
data

Unlabeled

Predictions

Poisoning

Privacy Evasion
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Taxonomy

Targeted
Modify predictions on 
targeted set of points

Availability
Corrupt entire 

ML model

Privacy
Learn information about 

model and data

Training Targeted poisoning
Backdoor

Trojan attacks

Poisoning 
availability

-

Testing Evasion attacks
Adversarial examples

- Model extraction
Model inversion

Attacker’s Objective
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Outline

• Evasion (testing-time) attacks

– Adversarial examples

– Optimization formulation

– Applications to connected cars

– Applications to cyber security

• Poisoning (training-time) attacks

– Availability attacks for linear regression

– Applications to health care

– Defenses
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Evasion attacks

• [Szegedy et al. 13] Intriguing properties of neural networks
• [Biggio et al. 13] Evasion Attacks against Machine Learning at Test Time
• [Goodfellow et al. 14] Explaining and Harnessing Adversarial Examples
• [Carlini, Wagner 17] Towards Evaluating the Robustness of Neural Networks
• [Madry et al. 17] Towards Deep Learning Models Resistant to Adversarial 

Attacks
• [Kannan et al. 18] Adversarial Logit Pairing
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Adversarial example definition

• Given ML model 𝑓 and point 𝑥 with class 𝑐
– 𝑓 𝑥 = 𝑐

• Try to modify it minimally to get target class 𝑡

• Point 𝑥′ is an adversarial example if
– 𝑓 𝑥′ = 𝑡 (prediction is targeted class)

– Dist 𝑥, 𝑥′ ≤ 𝛿 (distance from original image is 
small)

• State-of-the-art attack based on Gradient 
Descent optimization to find closest adversarial 
example
– [Carlini and Wagner 2017]
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Optimization Formulation

Given original example x, f(x) =c
Find adversarial example x’

min 𝑥 − 𝑥′
2

2

Such that 𝑓 𝑥′ = 𝑡

min 𝑐 𝑥 − 𝑥′
2

2
+ ℓ𝑡(𝑥′)

ℓ𝑡 𝑥′ is loss function on 𝑥′

Equivalent formulation

[Szegedy et al. 13] Intriguing 
properties of neural networks
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Evasion attacks in logit layer

Logits: Z(x)

Softmax

[Carlini and Wagner 2017]
Penalty method

Input: Images 
represented as 
feature vectors

14
Solve iteratively using Gradient Descent by 𝛿

min 𝑐 𝛿
2

2
+ 𝑍𝑐(𝑥′) − 𝑍𝑡(𝑥′)

𝑥′ = 𝑥 + 𝛿



Attacks on MNIST data

[Carlini and Wagner 2017]
Penalty method

Uses 3 distance metrics
• 𝐿0: number of pixels 

changed
• 𝐿2: Euclidean distance
• 𝐿∞: max perturbation 

of each pixel
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Attacks on Euclidean distance

[Carlini and Wagner 2017]
Penalty method
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Adversarial Glasses

• Physically realizable attacks
• [Sharif et al. 2016] Accessorize to a Crime: Real and Stealthy Attacks on State-of-

the-Art Face Recognition
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Adversarial Road Signs
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Road Sign Misclassification
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Why Relevant in Self-Driving Cars?
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But safety is of paramount importance! 

Machine learning has 
tremendous potential:
• Assist drivers by processing 

sensor data from ECUs
• Predict road conditions by 

interacting with other cars
• Recognize risky conditions 

and warn drivers



Example Application

• Steering angle prediction by processing camera image

• Udacity challenge:  public competition and dataset available 
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[A. Chernikova, M. Jagielski, A. Oprea, C. Nita-Rotaru, and B. Kim. Are 
Self-Driving Cars Secure? Evasion Attacks against Deep Neural 
Networks for Self-Driving Cars. In IEEE SafeThings, 2019]



Deep Neural Networks

P[“left” |input]

P[“straight” | input]

P[“right” | input]

• Convolutional Neural Network (CNN) architectures 
have won the Udacity challenge

• Example architectures: Epoch model, NVIDIA
• Almost perfect accuracy (close to 100%)

22
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CNN Architecture Epoch

25 million parameters
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CNN Architecture NVIDIA

467 million parameters
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How successful is the attack?
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⚫ Both models: small modification to the image results in 100% attack 
success

⚫ NVIDIA model is more resilient!



How much is the attack impacting the 
classification?
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Perfect 
accuracy

(no attack) Significant 
degradation 
under attack

Epoch model 



How much is the attack impacting the 
classification?

NVIDIA model 
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Example Adversarial Images

Original Image
Class “Straight”

Adversarial Image
Class “Right”

Adversarial Image
Class “Left”

Epoch model
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Example Adversarial Images

Original Image
Class “Left”

Adversarial Image
Class “Straight”

Adversarial Image
Class “Right”

NVIDIA model
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Malware Detection

Web logs

Data collection
Labeling

Historical 
data

Training Testing

Model
Pre-

process
Feature 

extraction

Real-time data

Prioritization
Evaluation

Prediction

• Extract 89 features of malicious activities from web logs
– Leverage security domain expertise

• Supervised learning models
– Logistic regression, SVM, Decision trees, Random Forest

• Evaluation of higher risk alerts involves manual investigation
– Prioritize most suspicious connections

• [A. Chernikova and A. Oprea. Adversarial Examples for Deep-Learning Cyber Security 
Analytics. In progress, 2019] 
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• Feed-Forward Neural Network (3 hidden layers)

• Highly imbalanced setting

– 227k legitimate domains, 1730 malicious domains

Classification results

How resilient are Feed-Forward Neural 
Networks to adversarial evasion attacks? 31



Evasion attacks in security

Logits: Z(x)

Sigmoid
Pr[y=0|x]

Pr[y=1|x]

Benign

Raw 
data 

Malicious

Feature 
extraction

Challenges
• In cyber security, classifiers are usually applied to pre-

processed features, not raw data 
• Features have constraints (e.g., min, max, and avg number 

of connections per host)
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Iterative evasion attack algorithm

Logits: Z(x)

Pr[y=0|x]

Pr[y=1|x]

Benign

Raw 
data 

Malicious

Web proxy logs

Feature 
extraction
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𝑥

𝑥′ = 𝑥 + 𝛿

Repeat
• Compute gradient on all features
• Select feature of max gradient
• Modify subset of related features while preserving constraints
• Project to feasible space
Until max distance reached or attack successful

Attack 
Algorithm

Sigmoid



How Effective are Evasion Attacks in 
Security?

Feed-Forward Neural Network
83 features extracted from enterprise network traffic
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Adversarial Training

• I. Goodfellow et al. Explaining and harnessing adversarial 
examples, ICLR 2015.

• A. Kurakin et al. Adversarial Machine Learning at Scale, ICLR 
2017.

• Many other defenses have been broken
• [Athalye et al. ICML 2018]: Obfuscated Gradients Give a False Sense of 

Security: Circumventing Defenses to Adversarial Examples

35



Is Adv Training Effective?
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Outline

• Evasion (testing-time) attacks

– Adversarial examples

– Optimization formulation

– Applications to connected cars

– Applications to cyber security

• Poisoning (training-time) attacks

– Availability attacks for linear regression

– Applications to health care

– Defenses
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Training-Time Attacks

• ML is trained by crowdsourcing data in 
many applications

• Cannot fully trust 

training data! 

• Social networks
• News articles
• Tweets
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Poisoning Availability Attacks

Data

Labels

Plane

ML
model

ML Algorithm
Bird

Testing Data

• Attacker Objective:
– Corrupt the predictions by the ML model significantly
– Predictions on most points are impacted in testing

• Attacker Capability: 
– Insert fraction of poisoning points in training

• [M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li. 
Manipulating Machine Learning: Poisoning Attacks and 
Countermeasures for Regression Learning. In IEEE S&P 2018] 39



Optimization Formulation

argmax
𝐷𝑝

𝐴(𝐷𝑣𝑎𝑙 , 𝜽𝑝) 𝑠. 𝑡.

𝜽𝑝 ∈ argmin
𝜽

𝐿(𝐷 ∪ 𝐷𝑝, 𝜽)

Given a training set 𝐷 find a set of poisoning data points 𝐷𝑝

that maximizes the adversary objective 𝐴 on validation set 𝐷𝑣𝑎𝑙

where corrupted model 𝜽𝑝 is learned by 

minimizing the loss function 𝐿 on 𝐷 ∪ 𝐷𝑝
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Optimization formulation in white-box setting
– Attacker knows training data D, ML model
Bilevel optimization problem is NP hard in the general case

Implicit 
dependence



• Gradient ascent for classification [Biggio et al. 12, Xiao et al. 15]

• First white-box attack for regression [Jagielski et al. 18]

– Determine optimal poisoning point (𝒙𝑐,𝑦𝑐)

– Objective is MSE; optimize by both 𝒙𝑐 and 𝑦𝑐

𝜕𝐴

𝜕𝒙𝑐
= ෍

𝑖=1

𝑛

2 𝑓 𝒙𝑖 − 𝑦𝑖 𝒙𝑖
𝑇 𝜕𝒘

𝜕𝒙𝑐
+

𝜕𝑏

𝜕𝒙𝑐
+
𝜕Ω

𝜕𝒘

𝜕𝒘

𝜕𝒙𝑐

𝜕𝐴

𝜕𝑦𝑐
= ෍

𝑖=1

𝑛

2 𝑓 𝒙𝑖 − 𝑦𝑖 𝒙𝑖
𝑇 𝜕𝒘

𝜕𝑦𝑐
+

𝜕𝑏

𝜕𝑦𝑐
+
𝜕Ω

𝜕𝒘

𝜕𝒘

𝜕𝑦𝑐

Poisoning attack for Linear Regression

• Different initializations and 
objectives

• Can be extended to multiple 
poisoning points
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Gradient Ascent Algorithm
• Input: poisoned point 𝑥0, label 𝑦0

– Adversarial objective 𝐴

• Output: poisoned point 𝑥, label 𝑦

1. Initialize poisoned point 𝑥 ← 𝑥0; 𝑦 ← 𝑦0
2. Repeat

– Store previous iteration 𝑥𝑝𝑟 ← 𝑥; 𝑦𝑝𝑟 ← 𝑦

– Update in direction of gradients choosing 𝛼 with line 
search and project to feasible space

𝑥 ← Π(x + 𝛼∇𝑥𝐴(𝑥, 𝑦))
y ← Π(y + 𝛼∇𝑦𝐴(𝑥, 𝑦))

3. Until 𝐴 𝑥, 𝑦 − 𝐴 𝑥𝑝𝑟 , 𝑦𝑝𝑟 < 𝜖

4. Return 𝑥, y
42



Attack results
• Improve existing attacks by a factor of 6.83

Existing attack

Novel 
attacks

Predict loan rate with ridge regression 
(i.e. with L2 regularization) 43

Stronger 
attack



Impact of attack

• How much would attack change dosages at 
20% poisoning rate?

• Modifies 75% of patients’ dosages by 87.5% 
for Ridge and 93.49% for Lasso

Quantile Initial Dosage Ridge 
Difference

LASSO 
Difference

0.1 15.5 mg/wk 31.54% 37.20%

0.25 21 mg/wk 87.50% 93.49%

0.5 30 mg/wk 150.99% 139.31%

0.75 41.53 mg/wk 274.18% 224.08%

0.9 52.5 mg/wk 459.63% 358.89%

Case study on healthcare dataset 44



Poisoning and Regularization

Stronger regularization provides more robustness to 
poisoning [Demontis et al. 18]

More 
regularization
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Poisoning and Regularization

46

More 
regularization

More 
regularization



Poisoning Classifiers

• More complex models (i.e., lower regularization) are 
more prone to poisoning

• Non-linear models more resilient than linear models
• Similar results for evasion
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Resilient Linear Regression

• Goal
– Train a robust linear regression model, assuming 𝛼 ⋅ 𝑛

poisoned points among N points in training

– MSE should be close to original MSE

– No ground truth on data distribution available

• Existing techniques 
– Robust statistics

• Huber [Huber 1964], RANSAC [Fischler and Bolles 1961]

• Resilient against outliers and random noise

– Adversarial resilient regression: [Chen et al. 13]
• Make simplifying assumption on data distribution (e.g., 

Gaussian)
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Our Defense: TRIM

• Given dataset on n points and 
𝛼𝑛 attack points,  find best 
model on 𝑛 of 1 + 𝛼 𝑛 points

• If 𝒘, 𝑏 are known, find points 
with smallest residual

• But 𝒘, 𝑏 and true data 
distribution are unknown!

argmin
𝑤,𝑏,𝐼

𝐿 𝑤, 𝑏, 𝐼 =
1

|𝐼|
෍

𝑖∈𝐼

𝑓 𝒙𝑖 − 𝑦𝑖
2 + 𝜆Ω(𝒘)

𝑁 = 1 + 𝛼 𝑛, 𝐼 ⊂ 1,… ,𝑁 , 𝐼 = 𝑛

TRIM: alternately estimate model and find low residual points
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Trimmed optimization

• Estimate model parameters and identify 
points with minimum residual alternatively
– Alternating optimization

• Select 𝐼 a random subset in 1,… , 𝑁 , 𝐼 = 𝑛
– Assume poisoning rate (or upper bound) is known

• Repeat
– Estimate (𝑤, 𝑏) = argmin 𝐿 𝑤, 𝑏, 𝐼

– Select new set 𝐼 of points, 𝐼 = 𝑛, with lowest 
residuals under new model 

• Until convergence (loss does not decrease)
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Defense results
• TRIM MSE is within 1% of the original model MSE

• Significant improvement over existing methods

Our defense

Existing 
methods

No defense

Predict house price with LASSO regression
(i.e., with L1 regularization) 51

Better 
defense



Conclusions

• Resilience of Machine Learning in face of 
attacks needs to be better understood

• Supervised learning (both classification and 
regression) can be attacked relatively easily 

• Implications in self-driving car and security 
applications has huge impact on safety

• Designing robust models in adversarial 
settings is still an open problem! 
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Taxonomy

Targeted
Modify predictions on 
targeted set of points

Availability
Corrupt entire 

ML model

Privacy
Learn information about 

model and data

Training Targeted poisoning
Backdoor

Trojan attacks

Poisoning 
availability

-

Testing Evasion attacks
Adversarial examples

- Model extraction
Model inversion

Attacker’s Objective
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