DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

March 19 2019

Topics for Exam

- Linear regression (simple, multiple)
- Gradient descent
- Regularization (Lasso, ridge)
- Learning challenges
 - Overfitting, generalization, bias-variance tradeoff
- Linear classifiers
 - Perceptron, logistic regression
- Evaluation metrics
 - Confusion matrix, ROC curves
 - Cross-validation

Topics for Exam, cont.

- Generative models
 - LDA, Naïve Bayes
- Decision trees
 - Entropy, Information Gain
- Ensemble learning
 - Bagging (Random Forest), Boosting (AdaBoost)
- SVM
 - Linear and kernel, support vectors
- Neural networks
 - Feed-Forward NN (activation, architecture)
 - Convolutional NN (convolution, max pool)
- Compare different techniques (list pros and cons)

Outline

- Feed-Forward architectures
 - Multi-class classification (softmax unit)
 - Representing Boolean functions
 - Lab in Keras
- Convolutional Neural Networks
 - Convolution layer
 - Max pooling layer
 - Examples of famous architectures

References

- Deep Learning books
 - <u>https://www.deeplearningbook.org/</u>
 - http://d2l.ai/
- Stanford notes on deep learning
 - <u>http://cs229.stanford.edu/notes/cs229-notes-</u>
 <u>deep_learning.pdf</u>
- History of Deep Learning
 - <u>https://beamandrew.github.io/deeplearning/2017</u> /02/23/deep_learning_101_part1.html

Neural Network Architectures

Feed-Forward Networks

 Neurons from each layer connect to neurons from next layer Deep Feed Forward (DFF)



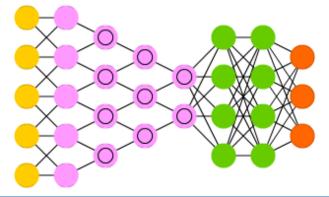
Deep Convolutional Network (DCN)

Convolutional Networks

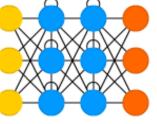
- Includes convolution layer for feature reduction
- Learns hierarchical representations

Recurrent Networks

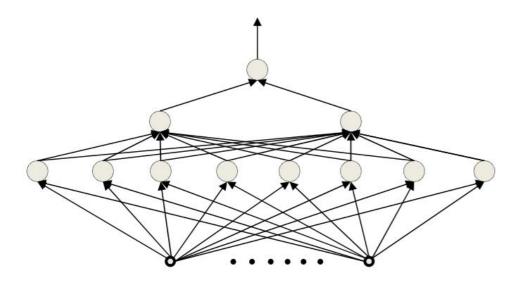
- Keep hidden state
- Have cycles in computational graph



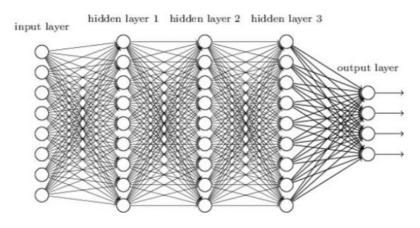
Recurrent Neural Network (RNN)



Multi-Layer Perceptron



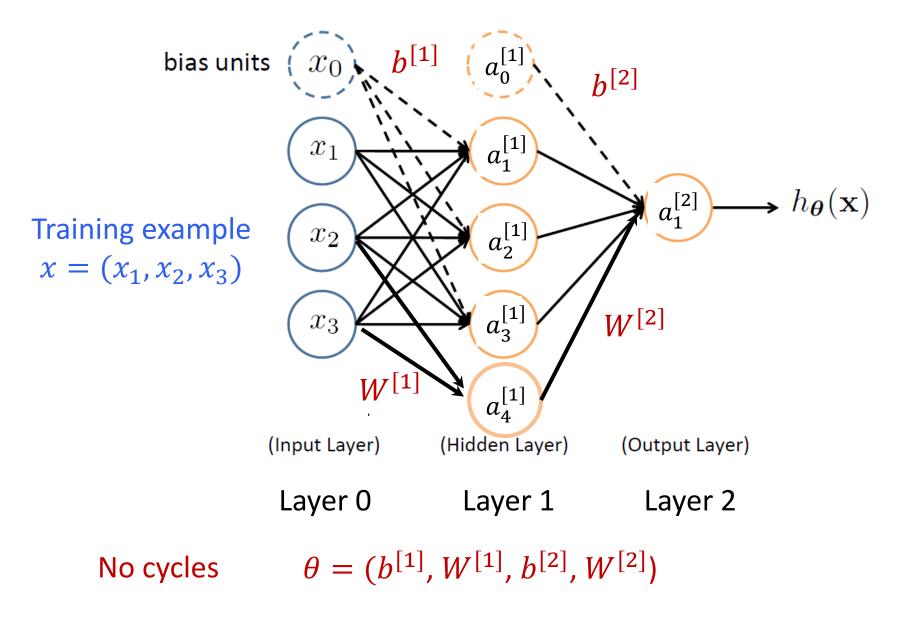
Deep neural network



A network of perceptrons

 Generally "layered"

Feed-Forward Neural Network

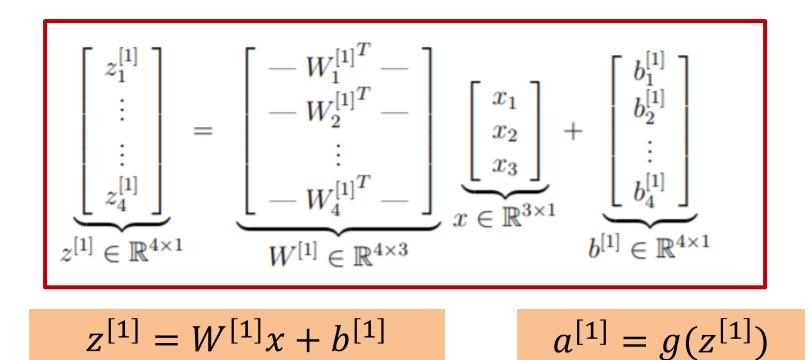


Vectorization

$$z_{1}^{[1]} = W_{1}^{[1]^{T}} x + b_{1}^{[1]} \text{ and } a_{1}^{[1]} = g(z_{1}^{[1]})$$

$$\vdots \qquad \vdots \qquad \vdots$$

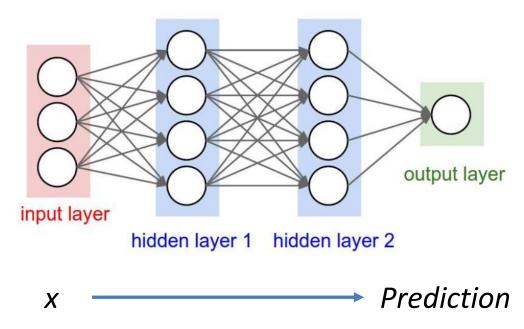
$$z_{4}^{[1]} = W_{4}^{[1]^{T}} x + b_{4}^{[1]} \text{ and } a_{4}^{[1]} = g(z_{4}^{[1]})$$



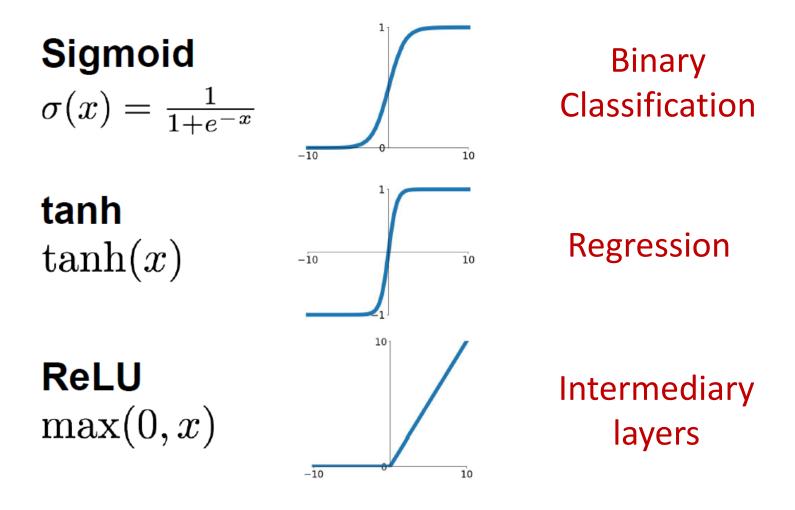
Non-Linear

Forward Propagation

- The input neurons first receive the data features of the object. After processing the data, they send their output to the first hidden layer.
- The hidden layer processes this output and sends the results to the next hidden layer.
- This continues until the data reaches the final output layer, where the output value determines the object's classification.
- This entire process is known as Forward Propagation, or Forward prop.

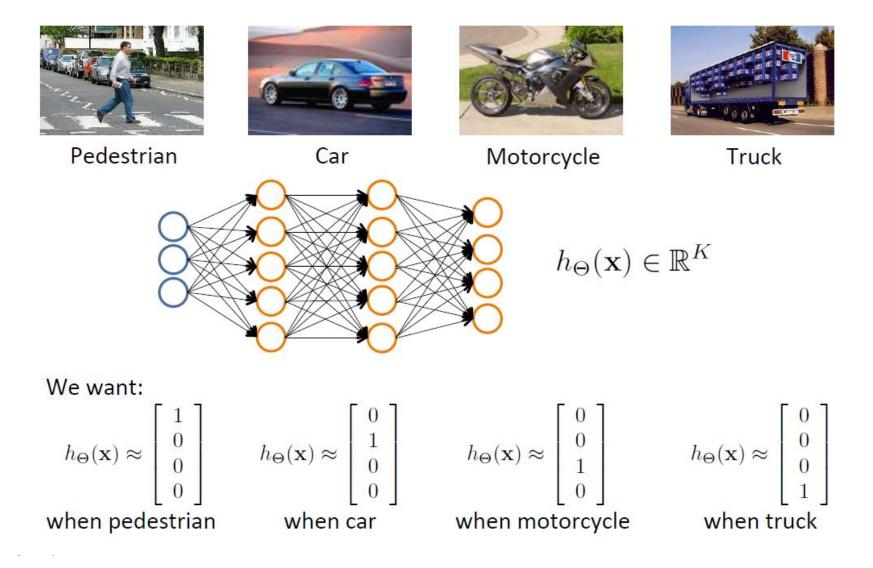


Activation Functions

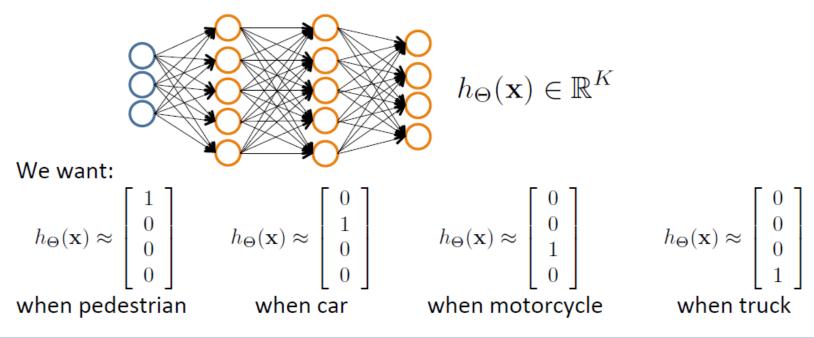


Non-Linear Activations

Multiple Output Units: One-vs-Rest



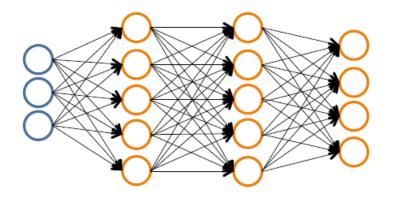
Multiple Output Units: One-vs-Rest



- Given {(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)}
- Must convert labels to 1-of-K representation

- e.g.,
$$\mathbf{y}_i = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
 when motorcycle, $\mathbf{y}_i = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ when car, etc.

Neural Network Classification



Given:

 $\begin{aligned} &\{(\mathbf{x}_1, y_1), \ (\mathbf{x}_2, y_2), \ \dots, \ (\mathbf{x}_n, y_n)\} \\ &\mathbf{s} \in \mathbb{N^+}^L \text{ contains \# nodes at each layer} \\ &- s_0 = d \text{ (\# features)} \end{aligned}$

 $\frac{\text{Binary classification}}{y = 0 \text{ or } 1}$

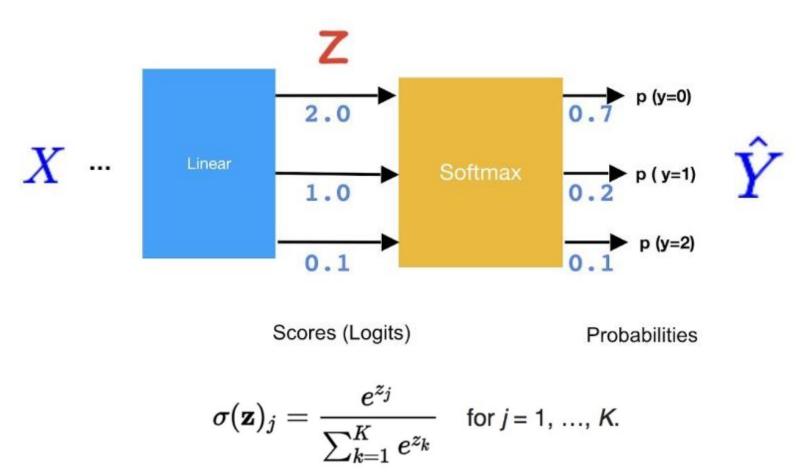
1 output unit
$$(s_{L-1}=1)$$

Sigmoid

$$\begin{split} \underline{\text{Multi-class classification}}_{\mathbf{y} \in \mathbb{R}^{K}} \underbrace{\text{e.g.}}_{\substack{0 \\ 0 \\ 0 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}}_{\substack{0 \\ 0 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}^{\text{figure}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}_{\substack{0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \underbrace{\begin{bmatrix} 0 \\ 0$$

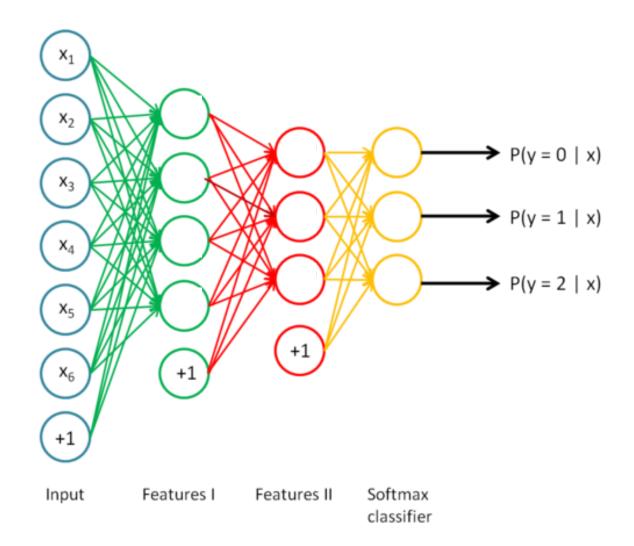
Softmax

Softmax classifier



- Predict the class with highest probability
- Generalization of sigmoid/logistic regression to multi-class

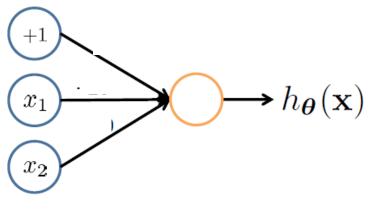
Multi-class classification



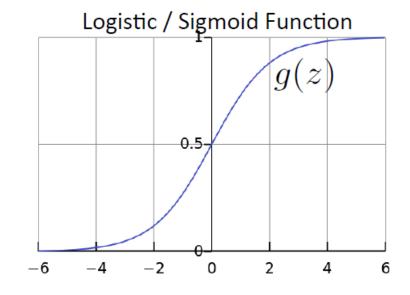
Representing Boolean Functions

Simple example: AND

 $x_1, x_2 \in \{0, 1\}$ $y = x_1 \text{ AND } x_2$



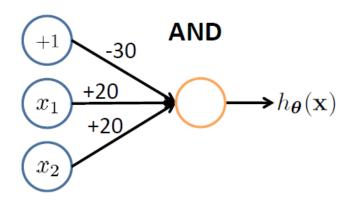
$$h_{\Theta}(\mathbf{x}) = g(\ ? \ + \ ? \ x_1 + \ ? \ x_2)$$

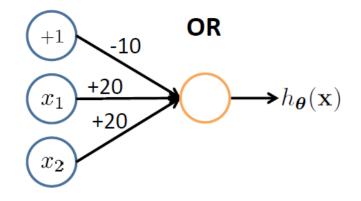


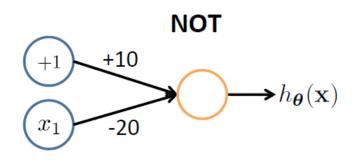
 $\begin{array}{c|cccc} x_1 & x_2 & h_{\Theta}(\mathbf{x}) \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$

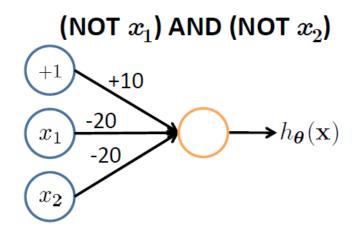
Logistic unit

Representing Boolean Functions



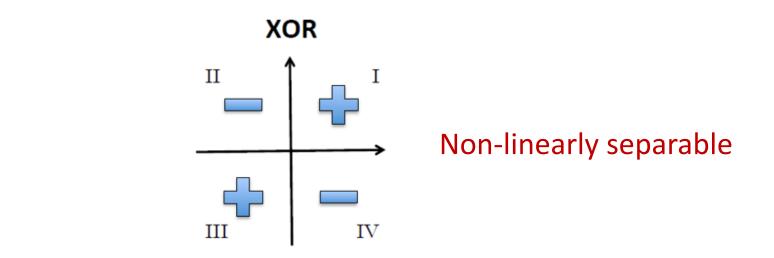






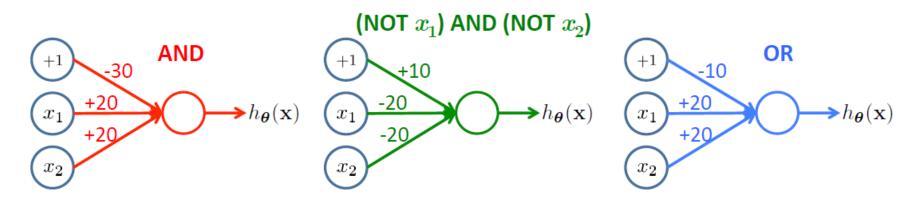
XOR

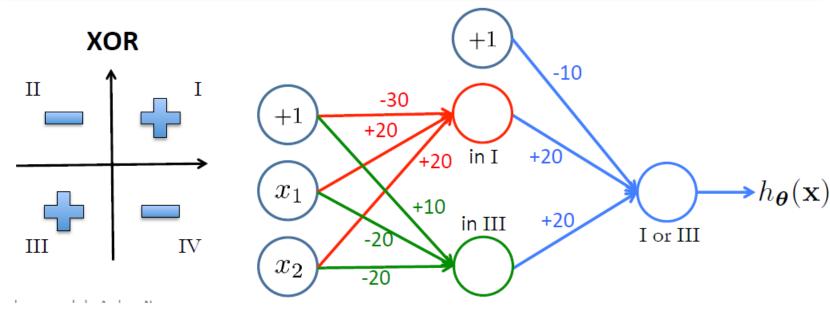
• Need at least one hidden layer to compute XOR!



NOT[X1 XOR X2]=
 (X1 AND X2) OR ((NOT X1) AND (NOT X2))

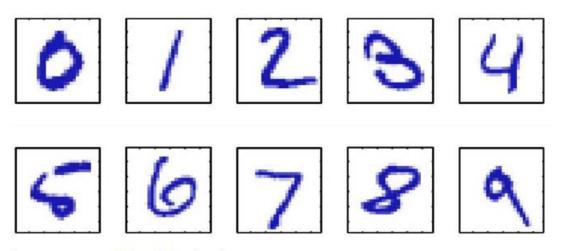
Combining Representations





XOR is non-linear!

MNIST: Handwritten digit recognition



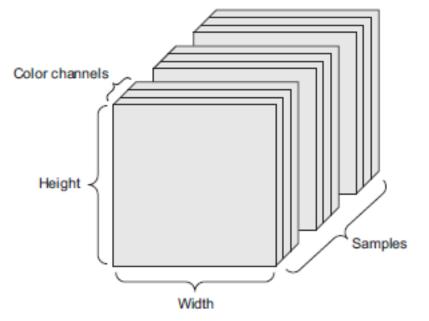
Images are 28 x 28 pixels

Represent input image as a vector $\mathbf{x} \in \mathbb{R}^{784}$ Learn a classifier $f(\mathbf{x})$ such that, $f: \mathbf{x} \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

> Predict the digit Multi-class classifier

Image Representation

- Image is 3D "tensor": height, width, color channel (RGB)
- Black-and-white images are 2D matrices: height, width
 - Each value is pixel intensity



Lab – Feed Forward NN

```
import time
 import numpy as np
from keras.utils import np utils
 import keras.callbacks as cb
 from keras.models import Sequential
 from keras.layers.core import Dense, Dropout, Activation
 from keras.optimizers import RMSprop
 from keras.datasets import mnist
 import matplotlib
 matplotlib.use('agg')
 import matplotlib.pyplot as plt
def load data():
    print("Loading data")
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    # Normalize
    X train /= 255
    X test /= 255
    y train = np utils.to categorical(y train, 10)
    y_test = np_utils.to_categorical(y_test, 10)
    X_{train} = np.reshape(X_{train}, (60000, 784))
    X_test = np.reshape(X_test, (10000, 784))
    print("Data Loaded")
    return [X_train, X_test, y_train, y_test]
```

Import modules

Load MNIST data Processing

Vector representation

Neural Network Architecture

```
imit model():
     start_time = time.time()
     print("Compiling Model")
     model = Sequential()
                                                                   10 hidden units
     model.add(Dense(10, input_dim=784))
                                                                   ReLU activation
     model.add(Activation('relu'))
     model.add(Dense(10))
                                                                   Output Layer
     model.add(Activation('softmax'))
                                                                   Softmax activation
     rms = RMSprop()
     model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy'])
     print("Model finished"+format(time.time() - start_time))
     return model
                                                          Optimizer
                           Loss function
```

Feed-Forward Neural Network Architecture

- 1 Hidden Layer ("Dense" or Fully Connected)
- 10 neurons
- Output layer uses softmax activation

Train and evaluate

```
>def run network(data=None, model=None, epochs=10, batch=256):
    try:
        start time = time.time()
        if data is None:
            X_train, X_test, y_train, y_test = load_data()
        else:
            X train, X test, y train, y test = data
         if model is None:
             model = init model()
        print("Training model")
         history = model.fit(X_train, y_train, nb_epoch=epochs, batch_size=batch,
                   validation_data=(X_test, y_test), verbose=2)
        print("Training duration:"+format(time.time() - start time))
        score = model.evaluate(X test, y test, batch size=16)
        print("\nNetwork's test loss and accuracy:"+format(score))
        return model, history
    except KeyboardInterrupt:
         print("KeyboardInterrupt")
        return model, history
```

Training/testing results

2s - loss: 0.9114 - acc: 0.7649 - val loss: 0.4499 - val acc: 0.8819 Epoch 2/10 0s - loss: 0.3935 - acc: 0.8907 - val loss: 0.3378 - val acc: 0.9049 Epoch 3/10 0s - loss: 0.3296 - acc: 0.9063 - val loss: 0.3042 - val acc: 0.9128 Epoch 4/10 0s - loss: 0.3036 - acc: 0.9132 - val loss: 0.2889 - val acc: 0.9181 Epoch 5/10 0s - loss: 0.2888 - acc: 0.9189 - val loss: 0.2874 - val acc: 0.9185 Epoch 6/10 0s - loss: 0.2785 - acc: 0.9210 - val loss: 0.2703 - val acc: 0.9257 Epoch 7/10 0s - loss: 0.2705 - acc: 0.9241 - val loss: 0.2718 - val acc: 0.9239 Epoch 8/10 0s - loss: 0.2649 - acc: 0.9257 - val loss: 0.2694 - val acc: 0.9240 Epoch 9/10 0s - loss: 0.2601 - acc: 0.9264 - val loss: 0.2616 - val acc: 0.9261 Epoch 10/10 0s - loss: 0.2561 - acc: 0.9277 - val loss: 0.2607 - val acc: 0.9274 Training duration:10.31288456916809 9840/10000 [----->.] - ETA: 0s Network's test loss and accuracy: [0.26067940444946291, 0.9274]

Epoch Output

Metrics

- Loss
- Accuracy

Reported on both training and testing

Changing Number of Neurons

```
>def init model():
    start_time = time.time()
    print("Compiling Model")
    model = Sequential()
                                                                         500 hidden units
    model.add(Dense(500, input dim=784))
    model.add(Activation('relu'))
    model.add(Dense(10))
    model.add(Activation('softmax'))
    rms = RMSprop()
    model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy'])
    print("Model finished"+format(time.time() - start_time))
    return model
              2s - loss: 0.3169 - acc: 0.9088 - val loss: 0.1652 - val acc: 0.9502
              Epoch 2/10
              0s - loss: 0.1277 - acc: 0.9626 - val loss: 0.1071 - val acc: 0.9679
              Epoch 3/10
              0s - loss: 0.0847 - acc: 0.9749 - val loss: 0.0861 - val acc: 0.9731
              Epoch 4/10
              0s - loss: 0.0607 - acc: 0.9822 - val loss: 0.0746 - val acc: 0.9767
              Epoch 5/10
              0s - loss: 0.0471 - acc: 0.9863 - val loss: 0.0655 - val acc: 0.9796
              Epoch 6/10
              0s - loss: 0.0359 - acc: 0.9895 - val loss: 0.0636 - val acc: 0.9813
              Epoch 7/10
              0s - loss: 0.0280 - acc: 0.9920 - val loss: 0.0599 - val acc: 0.9810
              Epoch 8/10
              0s - loss: 0.0223 - acc: 0.9937 - val loss: 0.0678 - val acc: 0.9795
              Epoch 9/10
              0s - loss: 0.0174 - acc: 0.9952 - val loss: 0.0607 - val acc: 0.9815
              Epoch 10/10
              0s - loss: 0.0134 - acc: 0.9964 - val loss: 0.0672 - val acc: 0.9806
              Training duration:10.458189249038696
              9456/10000 [----->..] - ETA: 0s
              Network's test loss and accuracy:[0.067179036217656543, 0.98060000000000003]
```

Two Layers

```
def init model():
     start time = time.time()
     print("Compiling Model")
     model = Sequential()
     # Hidden Layer 1
    model.add(Dense(500, input_dim=784))
                                                                           Layer 1
     model.add(Activation('relu'))
     # Hidden Layer 2
                                                                           Layer 2
     model.add(Dense(300))
    model.add(Activation('relu'))
    model.add(Dense(10))
                                                                          Output Softmax Layer
     model.add(Activation('softmax'))
     rms = RMSprop()
     model.compile(loss='categorical_crossentropy', optimizer=rms, metrics=['accuracy'])
     print("Model finished"+format(time.time() - start_time))
     return model
               2s - loss: 0.2800 - acc: 0.9132 - val loss: 0.1821 - val acc: 0.9409
               Epoch 2/10
               1s - loss: 0.0974 - acc: 0.9699 - val loss: 0.0951 - val acc: 0.9703
               Epoch 3/10
               0s - loss: 0.0616 - acc: 0.9803 - val loss: 0.0843 - val acc: 0.9754
               Epoch 4/10
               0s - loss: 0.0429 - acc: 0.9862 - val loss: 0.0670 - val acc: 0.9809
               Epoch 5/10
               0s - loss: 0.0303 - acc: 0.9904 - val loss: 0.0820 - val acc: 0.9777
               Epoch 6/10
               0s - loss: 0.0233 - acc: 0.9922 - val loss: 0.0794 - val acc: 0.9783
               Epoch 7/10
               0s - loss: 0.0180 - acc: 0.9941 - val loss: 0.0866 - val acc: 0.9792
               Epoch 8/10
               0s - loss: 0.0137 - acc: 0.9956 - val loss: 0.0788 - val acc: 0.9814
               Epoch 9/10
               0s - loss: 0.0116 - acc: 0.9963 - val loss: 0.0901 - val acc: 0.9795
               Epoch 10/10
               1s - loss: 0.0100 - acc: 0.9966 - val loss: 0.0812 - val acc: 0.9827
               Training duration:11.816290140151978
                9744/10000 [----->.] - ETA: 0s
```

Monitor Loss

```
def plot_losses(history):
    plt.plot(history.history['Loss'])
    plt.plot(history.history['val_Loss'])
    plt.title('Model Loss')
    plt.ylabel('Loss')
    plt.xlabel('Epoch')
    plt.legend(['Train', 'Test'], loc='upper Left')
    plt.show()
    plt.savefig('output.png')
```

Model Loss Train 0.35 Test 0.30 0.25 0.20 Loss 0.15 0.10 0.05 0.00 20 40 80 0 60 100 Epoch

Acknowledgements

- Slides made using resources from:
 - Yann LeCun
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!