DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

March 12 2019

Logistics

- Feedback on project proposal in Gradescope
- Please start working on your projects!
- Project Milestone due on March 25
 - 2-3 pages describing progress so far
 - Any encountered challenges
- Project Presentations will be last 2 classes
 April 11 and 16
- Exam on Thursday, March 28
 - Review on Tuesday, March 26
 - Office hours on Wednesday, March 27
- HW4 will be out at the end of the week

Outline

- Review SVM
- Review traditional classifiers
- Deep Learning
 - Motivation
 - Goals
- Deep Learning as representation learning
- Categories of neural networks
- Feed-Forward Neural Networks

Review Naïve Bayes

- Density Estimators can estimate joint probability distribution from data
- Risk of overfitting and curse of dimensionality
- Naïve Bayes assumes that features are independent given labels
 - Reduces the complexity of density estimation
 - Even though the assumption is not always true, Naïve
 Bayes works well in practice
- Applications: text classification with bag-of-words representation
 - Naïve Bayes becomes a linear classifier

Generative model

Recall:

Linear classifiers

• Linear classifiers: represent decision boundary by hyperplane

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} \quad \boldsymbol{x}^{\mathsf{T}} = \begin{bmatrix} 1 & x_1 & \dots & x_d \end{bmatrix} \quad \boxed{\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{array}}$$

All the points x on the hyperplane satisfy: $\theta^T x = 0$

$$h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}) \text{ where } \operatorname{sign}(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

- Note that: $\theta^{\intercal} x > 0 \implies y = +1$

 $\theta^{\intercal} x < 0 \implies y = -1$

Separating hyperplane

From separating hyperplane to classifier

- Training data $x^{(1)}, ..., x^{(n)}$ with $x^{(i)} = (x_1^{(i)}, ..., x_d^{(i)})^T$
- Labels are from 2 classes: $y^{(i)} \in \{-1,1\}$
- Let $\theta_0, \dots, \theta_d$ (will be learned) such that:

$$y^{(i)}(\theta_0+\theta_1x_1^{(i)}+\cdots\theta_dx_d^{(i)})>0$$

• Classifier

 $f(z) = \operatorname{sign}(\theta_0 + \theta_1 z_1 + \cdots + \theta_d z_d) = \operatorname{sign}(\theta^T z)$

- Classify new test point x'
 If f(x') > 0 predict y'= 1
 - Otherwise predict y' = -1

Support Vectors (informally)

- Support vectors = points "closest" to hyperplane
- If support vectors change, classifier changes
- If other points change, no effect on classifier

Maximum margin classifier

- Training data $x^{(1)}, ..., x^{(n)}$ with $x^{(i)} = (x_1^{(i)}, ..., x_d^{(i)})^T$
- Labels are from 2 classes: $y_i \in \{-1,1\}$

Support vector classifier

- Allow for small number of mistakes on training data
- Obtain a more robust model

$$\max \mathbf{M} \\ y^{(i)} \Big(\theta_0 + \theta_1 x_1^{(i)} + \dots \theta_d x_d^{(i)} \Big) \ge M(1 - \epsilon_i) \forall i \\ ||\theta||_2 = 1 \\ \epsilon_i \ge 0, \sum_i \epsilon_i = C$$
 Slack

Error Budget (Hyper-parameter)

Properties

- Maximum margin classifier
 - Classifier of maximum margin
 - For linearly separable data
- Support vector classifier
 - Allows some slack and sets a total error budget (hyper-parameter)
- For both, final classifier on a point is a linear combination of inner product of point with support vectors
 - Efficient to evaluate

Kernels

• Support vector classifier

$$- h(z) = \theta_0 + \sum_{i \in S} \alpha_i < z, x^{(i)} >$$
$$= \theta_0 + \sum_{i \in S} \alpha_i \sum_{j=1} z_j x_j^{(i)}$$

Any kernel function!

- S is set of support vectors
- Replace with $h(z) = \theta_0 + \sum_{i \in S} \alpha_i K(z, x^{(i)})$
- What is a kernel?
 - Function that characterizes similarity between 2 observations
 - $K(a, b) = \langle a, b \rangle = \sum_{j} a_{j} b_{j}$ linear kernel!
 - The closer the points, the larger the kernel
- Intuition
 - The closest support vectors to the point play larger role in classification

Kernels

• Linear kernels

 $-K(a,b) = \langle a,b \rangle = \sum_i a_i b_i$

Polynomial kernel of degree m

$$-K(a,b) = \left(1 + \sum_{i=0}^{d} a_i b_i\right)^m$$

 Radial Basis Function (RBF) kernel (or Gaussian)

$$-K(a,b) = \exp(-\gamma \sum_{i=0}^{d} (a_i - b_i)^2)$$

• Support vector machine classifier $-h(z) = \theta_0 + \sum_{i \in S} \alpha_i K(z, x^{(i)})$

Kernel Example

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to the non-linear data from Figure 9.8, resulting in a far more appropriate decision rule. Right: An SVM with a radial kernel is applied. In this example, either kernel is capable of capturing the decision boundary.

Classification axes

- Linearity of decision boundary
 - Linear models: logistic regression, perceptron, LDA, SVM
 - Non-linear models: kNN, decision trees, ensembles
- Generative models
 - Discriminative: logistic regression, perceptron, SVM, kNN, decision trees, ensembles
 - Generative: LDA, Naïve Bayes
- Training procedure
 - Gradient descent: logistic regression, SVM, perceptron
 - Probabilistic: LDA, Naïve Bayes
 - Greedy: decision trees, random forests

Comparing classifiers

Algorithm	Interpretable	Model size	Predictive accuracy	Training time	Testing time
Logistic regression	High	Small	Lower	Low	Low
kNN	Medium	Large	Lower	No training	High
LDA	Medium	Small	Lower	Low	Low
Decision trees	High	Medium	Lower	Medium	Low
Ensembles	Low	Large	High	High	High
Naïve Bayes	Medium	Small	Lower	Medium	Low
SVM	Medium	Small	High	High	Low
Neural Networks	Low	Large	High	High	Low

Roadmap to End-of-Semester

- Deep Learning
 - Motivation
 - Feed-Forward Neural Networks
 - Training by backpropagation
 - Convolutional and Recurrent Neural Networks
- Unsupervised learning
 - Principal Component Analysis (PCA)
 - Feature representation (Autoencoders)
 - Clustering (k-means, Hierarchical Clustering)
- Adversarial learning

History of Deep Learning

Before 2013

Fe

ature

Extracto

Wi

The first learning machine: the Perceptron

The Perceptron was a linear classifier on

The vast majority of practical applications

of ML today use glorified linear classifiers

top of a simple feature extractor

or glorified template matching.

Designing a feature extractor requires

Built at Cornell in 1960

Deep Learning

The traditional model of pattern recognition (since the late 50's)

Fixed/engineered features (or fixed kernel) + trainable classifier

End-to-end learning / Feature learning / Deep learning

Trainable Feature Hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image recognition

▶ Pixel \rightarrow edge \rightarrow texton \rightarrow motif \rightarrow part \rightarrow object

📕 Text

▶ Character \rightarrow word \rightarrow word group \rightarrow clause \rightarrow sentence \rightarrow story

🗾 Speech

Sample \rightarrow spectral band \rightarrow sound \rightarrow ... \rightarrow phone \rightarrow phoneme \rightarrow

Learning Representations

Deep Learning addresses the problem of learning hierarchical representations

End-to-end learning

A hierarchy of trainable feature transforms

- Each module transforms its input representation into a higher-level one.
- High-level features are more global and more invariant
- Low-level features are shared among categories

Learned Internal Representations

How can we make all the modules trainable and get them to learn appropriate representations?

Deep Learning vs Traditional Learning

The Visual Cortex is Hierarchical

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT

Lots of intermediate representations

Neural Function

- Brain function (thought) occurs as the result of the firing of **neurons**
- Neurons connect to each other through synapses, which propagate action potential (electrical impulses) by releasing neurotransmitters
 - Synapses can be excitatory (potential-increasing) or inhibitory (potential-decreasing), and have varying activation thresholds
 - Learning occurs as a result of the synapses' plasticicity: They exhibit long-term changes in connection strength
- There are about 10¹¹ neurons and about 10¹⁴ synapses in the human brain!

Biology of a Neuron

Analogy to Human Brain

Human Brain

Biological Neuron

Comparison of computing power

INFORMATION CIRCA 2012	Computer	Human Brain
Computation Units	10-core Xeon: 10 ⁹ Gates	10 ¹¹ Neurons
Storage Units	10 ⁹ bits RAM, 10 ¹² bits disk	10 ¹¹ neurons, 10 ¹⁴ synapses
Cycle time	10 ⁻⁹ sec	10 ⁻³ sec
Bandwidth	10 ⁹ bits/sec	10 ¹⁴ bits/sec

- Computers are way faster than neurons...
- But there are a lot more neurons than we can reasonably model in modern digital computers, and they all fire in parallel
- Neural networks are designed to be massively parallel
- The brain is effectively a billion times faster

Neural Networks

- Origins: Algorithms that try to mimic the brain.
- Very widely used in 80s and early 90s; popularity diminished in late 90s.
- Recent resurgence: State-of-the-art technique for many applications
- Artificial neural networks are not nearly as complex or intricate as the actual brain structure

Performance of Deep Learning

References

- Deep Learning book
 - <u>https://www.deeplearningbook.org/</u>
- Stanford notes on deep learning
 - <u>http://cs229.stanford.edu/notes/cs229-notes-</u> <u>deep_learning.pdf</u>
- History of Deep Learning
 - <u>https://beamandrew.github.io/deeplearning/2017</u> /02/23/deep_learning_101_part1.html

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!