
DS 4400

Alina Oprea

Associate Professor, CCIS

Northeastern University

February 21 2019

Machine Learning and Data Mining I



Logistics
• HW3 is due on Friday, February 22

• Project proposal due on Tuesday 02/26 on 
Gradescope
– Project Title

– Problem Description 

– Dataset

– Feature extraction and selection

– ML algorithms

– Metrics for evaluation

• Week of February 25
– Lecture on 02/26 taught by Lisa Friedland

– Lecture on 02/28 canceled 
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Review
• Ensemble learning are powerful learning methods

– Better accuracy than standard classifiers

• Bagging uses bootstrapping (with replacement), 
trains T models, and averages their prediction

– Random forests vary training data and feature set at 
each split

• Boosting is an ensemble of T weak learners that 
emphasizes mis-predicted examples

– AdaBoost has great theoretical and experimental 
performance 

– Can be used with linear models or simple decision trees 
(stumps, fixed-depth decision trees)

3



Bagging

4Majority Votes



Overview of AdaBoost
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Better classifiers will get 
higher weights• Mis-classified examples 

get higher weights
• Correct examples get 

lower weights

Uniform weights



Bagging vs Boosting
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Outline

• Density Estimation

– Estimating prior and joint probabilities

– Risk of overfitting

• Naïve Bayes classifier

• Application

– Document classification
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Essential probability concepts
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Prior and Joint Probabilities

9

theft

┐theft

Theft

theft



Computing Prior Probabilities
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The Joint Distribution
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Learning Joint Distributions
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Example – Learning Joint Probability 
Distribution
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Density Estimation
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Density Estimation
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Evaluating Density Estimators
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Evaluating Density Estimators
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Example
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Example
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Log Probabilities
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Example
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Evaluation on Test Set
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Overfitting
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Curse of Dimensionality
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Pros and Cons of Density Estimators

• Pros

– Density Estimators can learn distribution of 
training data

– Can compute probability for a record

– Can do inference (predict likelihood of record)

• Cons

– Can overfit to the training data and not generalize 
to test data

– Curse of dimensionality
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Naïve Bayes classifier fixes these cons!



Bayes’ Rule
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LDA
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• Classify to one of k classes

• Logistic regression computes directly

– P 𝑌 = 1 𝑋 = 𝑥

– Assume sigmoid function

• LDA uses Bayes Theorem to estimate it

– P 𝑌 = 𝑘 𝑋 = 𝑥 =
P 𝑋 = 𝑥 𝑌 = 𝑘 P[𝑌=𝑘]

P[𝑋=𝑥]

– Let 𝜋𝑘 = P[𝑌 = 𝑘] be the prior probability of class 
k and 𝑓𝑘 𝑥 = P 𝑋 = 𝑥 𝑌 = 𝑘

Discriminative model

Generative model



LDA
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Assume 𝑓𝑘 𝑥 is Gaussian!
Unidimensional case (d=1)

Assumption: 𝜎1 = …𝜎𝑘 = σ



Naïve Bayes Classifier
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P[𝑌 = 𝑘]P 𝑋1 = 𝑥1 ∧⋯∧ 𝑋𝑑= 𝑥𝑑 𝑌 = 𝑘

P[𝑋1 = 𝑥1 ∧ ⋯∧ 𝑋𝑑= 𝑥𝑑]
P 𝑌 = 𝑘 𝑋 = 𝑥



Naïve Bayes Classifier
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Training Naïve Bayes
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Training Naïve Bayes
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Training Naïve Bayes
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Training Naïve Bayes
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Training Naïve Bayes
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Training Naïve Bayes
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Laplace Smoothing
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Using the Naïve Bayes Classifier
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𝑘 𝑘

𝑘 𝑘

P[𝑌 = 𝑘]P 𝑋1 = 𝑥1 ∧ ⋯∧ 𝑋𝑑= 𝑥𝑑 𝑌 = 𝑘

P[𝑋1 = 𝑥1 ∧ ⋯∧ 𝑋𝑑= 𝑥𝑑]P 𝑌 = 𝑘 𝑋 = 𝑥



Naïve Bayes Classifier
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𝑘 𝑘

• For each class label 𝑘
1. Estimate prior 𝑃[𝑌 = 𝑘] from the data 
2. For each value 𝑣 of attribute 𝑋𝑗

• Estimate P[𝑋𝑗 = 𝑣|𝑌 = 𝑘]



Computing Probabilities
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Naïve Bayes Summary
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Document Classification
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Text Classification: Examples
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Bag of Words Representation
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Bag of Words Representation
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Another View of Naïve Bayes
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Another View of Naïve Bayes
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Document Classification with Naïve 
Bayes
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Review Naïve Bayes

• Density Estimators can estimate joint probability 
distribution from data

• Risk of overfitting and curse of dimensionality

• Naïve Bayes assumes that features are 
independent given labels
– Reduces the complexity of density estimation

– Even though the assumption is not always true, Naïve 
Bayes works well in practice

• Applications: text classification with bag-of-words 
representation
– Naïve Bayes becomes a linear classifier
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