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Logistics

• HW3 is due on Friday, February 22

• Project proposal due on Tuesday 02/26

– 1 page description of your project, including 
problem statement, dataset, and ML algorithms

• Week of February 25

– Lecture on 02/26 taught by Lisa Friedland

– Lecture on 02/28 canceled 
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Outline

• Ensemble learning review

– Bagging and Random Forests

• Boosting

– AdaBoost

– Comparing Boosting and Bagging

• Density Estimation
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Ensemble Learning
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How to Achieve Diversity

• Avoid overfitting

– Vary the training data

• Features are noisy

– Vary the set of features

Two main ensemble learning methods

• Bagging (e.g., Random Forests)

• Boosting (e.g., AdaBoost)
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Parallel

Sequential



Bagging
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General Idea

7Majority Votes



Random Forest Algorithm
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If 𝑚 = 𝑝, this is equivalent to Bagging

Random Forest uses 𝑚 = √𝑝



Lab
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Lab
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Lab
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How to Achieve Diversity

• Avoid overfitting

– Vary the training data

• Features are noisy

– Vary the set of features

Two main ensemble learning methods

• Bagging (e.g., Random Forests)

• Boosting (e.g., AdaBoost)
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AdaBoost
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Adaptive Boosting 
Freund and Schapire 1997



Overview of AdaBoost
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Better classifiers will get 
higher weights• Mis-classified examples 

get higher weights
• Correct examples get 

lower weights

Uniform weights



Boosting [Shapire ‘89]
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Convergence bounds with minimal assumptions on weak learner



Power of Boosting
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AdaBoost
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AdaBoost
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AdaBoost

19



AdaBoost
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• Compute importance of hypothesis 𝛽𝑡
• Update weights 𝑤𝑡



AdaBoost
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AdaBoost
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• Compute importance of hypothesis 𝛽𝑡
• Update weights 𝑤𝑡



AdaBoost
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AdaBoost
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Greedy Algorithm



Train with Weighted Instances
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Properties

• If a point is repeatedly misclassified

– Its weight is increased every time

– Eventually it will generate a hypothesis that 
correctly predicts it

• In practice AdaBoost does not typically overfit

• Does not use explicitly regularization
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Resilience to overfitting
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Increases confidence in prediction when adding more rounds



Base Learner Requirements
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AdaBoost with Decision Stumps
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AdaBoost in Practice
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Learn with Cross-Validation

Error less than ½ 



Boosted Decision Trees
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Bagging vs Boosting
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Review
• Ensemble learning are powerful learning methods

– Better accuracy than standard classifiers

• Bagging uses bootstrapping (with replacement), 
trains T models, and averages their prediction

– Random forests vary training data and feature set at 
each split

• Boosting is an ensemble of T weak learners that 
emphasizes mis-predicted examples

– AdaBoost has great theoretical and experimental 
performance 

– Can be used with linear models or simple decision trees 
(stumps, fixed-depth decision trees)
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