DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

February 19 2019

Logistics

- HW3 is due on Friday, February 22
- Project proposal due on Tuesday 02/26
 - 1 page description of your project, including problem statement, dataset, and ML algorithms
- Week of February 25
 - Lecture on 02/26 taught by Lisa Friedland
 - Lecture on 02/28 canceled

Outline

- Ensemble learning review
 - Bagging and Random Forests
- Boosting
 - AdaBoost
 - Comparing Boosting and Bagging
- Density Estimation

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests) Parallel
- Boosting (e.g., AdaBoost)
 Sequential

Bagging

- Leo Breiman (1994)
- Take repeated **bootstrap samples** from training set *D*
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.
- Bagging:
 - Create k bootstrap samples $D_1 \dots D_k$.
 - Train distinct classifier on each D_i .
 - Classify new instance by majority vote / average.

General Idea

Majority Votes

Random Forest Algorithm

1. For b = 1 to B:

- (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
- (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x).$

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{rf}(x) = majority \ vote \ \{\hat{C}_b(x)\}_1^B$.

If m = p, this is equivalent to Bagging Random Forest uses $m = \sqrt{p}$

Lab

```
>
> library(randomForest)
> rf.carseats=randomForest(High~.-Sales,Carseats,subset=train,importance=TRUE)
 > rf.carseats
 Call:
 randomForest(formula = High ~ . - Sales, data = Carseats, importance = TRUE, subset = train)
              Type of random forest: classification
                    Number of trees: 500
 No. of variables tried at each split: 3
        OOB estimate of error rate: 18.5%
 Confusion matrix:
     No Yes class.error
 No 104 14 0.1186441
 Yes 23 59 0.2804878
>
> rf.pred=predict(rf.carseats,Carseats.test,type="class")
> table(rf.pred,High.test)
        High.test
rf.pred No Yes
    No 105 25
    Yes 13 57
> mean(rf.pred==High.test)
[1] 0.81
```

Lab

(rf.carseats,type=2)
MeanDecreaseGini
10.444114
9.204883
12.367002
7.722053
23.437998
15.053694
10.135102
4.879102
1.585268
1.369725

Lab

> varImpPlot(rf.carseats) > >

Price	·····o	Price	·····o
ShelveLoc	••••••	ShelveLoc	•••••
Advertising	••••••	Advertising	••••••
CompPrice	·····0·····	CompPrice	······
Age	•••••	Age	••••••
Income	••••	Income	••••••
US	0	Population	•••••
Urban	···•0	Education	0
Education	•	Urban	••••
Population	o	US	•••
	0 10 20 30)	0 5 15
MeanDecreaseAccuracy MeanDecreas			

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

- A meta-learning algorithm with great theoretical and empirical performance
- Turns a base learner (i.e., a "weak hypothesis") into a high performance classifier
- Creates an ensemble of weak hypotheses by repeatedly emphasizing mispredicted instances

Adaptive Boosting Freund and Schapire 1997

Overview of AdaBoost

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

Boosting [Shapire '89]

- Idea: given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration t:
 - weight each training example by how incorrectly it was classified
 - Learn a weak hypothesis h_t
 - A strength for this hypothesis α_t
- Final classifier:

 $H(X) = sign(\sum \alpha t ht(X))$

Convergence bounds with minimal assumptions on weak learner

If each weak learner h_t is slightly better than random guessing ($\varepsilon_t < 0.5$), then training error of AdaBoost decays exponentially fast in number of rounds T.

Power of Boosting

FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps, as a function of the number of iterations. Also shown are the test error rate for a single stump, and a 244-node classification tree.

1: Initialize a vector of n uniform weights \mathbf{w}_1 2: for t = 1

2: for $t = 1, \ldots, T$

- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t

5: Choose
$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

6: Update all instance weights:

 $w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

Size of point represents the instance's weight

1: Initialize a vector of n uniform weights \mathbf{w}_1 2: for t = 1, ..., TTrain model h_t on X, y with weights \mathbf{w}_t 3: Compute the weighted training error of h_t 4: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$ 5: 6: Update all instance weights: $w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$ Normalize \mathbf{w}_{t+1} to be a distribution 7: 8: end for 9: **Return** the hypothesis $H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$

- β_t measures the importance of h_t
- If $\epsilon_t \leq 0.5$, then $\beta_t \geq 0$ (can trivially guarantee)

- Weights of correct predictions are multiplied by $e^{-eta_t} \leq 1$
- Weights of incorrect predictions are multiplied by $e^{eta_t} \geq 1$

- Compute importance of hypothesis β_t
- Update weights w_t

- 1: Initialize a vector of n uniform weights \mathbf{w}_1 2: for $t = 1, \ldots, T$
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t

5: Choose
$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

6: Update all instance weights:

 $w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

- Compute importance of hypothesis β_t
- Update weights w_t

t = T

- 1: Initialize a vector of n uniform weights \mathbf{w}_1 2: for $t = 1, \ldots, T$
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights: $w_{t+1,i} = w_{t,i} \exp(-\beta_t y_i h_t(\mathbf{x}_i))$
- 7:Normalize \mathbf{w}_{t+1} to be a distribution8:end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

- Final model is a weighted combination of members
 - Each member weighted by its importance

INPUT: training data $X, y = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, the number of iterations T

1: Initialize a vector of *n* uniform weights $\mathbf{w}_1 = \begin{bmatrix} \frac{1}{n}, \dots, \frac{1}{n} \end{bmatrix}$

2: for
$$t = 1, ..., T$$

3: Train model h_t on X, y with instance weights \mathbf{w}_t

4: Compute the weighted training error rate of h_t : $\epsilon_t = \sum_{i:y_i \neq h_t(\mathbf{x}_i)} w_{t,i}$

5: Choose
$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right) \quad \forall i = 1, \dots, n$$

7: Normalize \mathbf{w}_{t+1} to be a distribution:

$$w_{t+1,i} = \frac{w_{t+1,i}}{\sum_{j=1}^{n} w_{t+1,j}} \quad \forall i = 1, \dots, n$$

8: end for

9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

Greedy Algorithm

Train with Weighted Instances

- For algorithms like logistic regression, can simply incorporate weights w into the cost function
 - Essentially, weigh the cost of misclassification differently for each instance

$$J_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} w_i \left[y_i \log h_{\boldsymbol{\theta}}(\mathbf{x}_i) + (1 - y_i) \log \left(1 - h_{\boldsymbol{\theta}}(\mathbf{x}_i)\right) \right] + \lambda \|\boldsymbol{\theta}_{[1:d]}\|_2^2$$

- For algorithms that don't directly support instance weights (e.g., ID3 decision trees, etc.), use weighted bootstrap sampling
 - Form training set by resampling instances with replacement according to w

Properties

- If a point is repeatedly misclassified
 - Its weight is increased every time
 - Eventually it will generate a hypothesis that correctly predicts it
- In practice AdaBoost does not typically overfit
- Does not use explicitly regularization

Resilience to overfitting

- Empirically, boosting resists overfitting
- Note that it continues to drive down the test error even AFTER the training error reaches zero

Increases confidence in prediction when adding more rounds

Base Learner Requirements

- AdaBoost works best with "weak" learners
 - Should not be complex
 - Typically high bias classifiers
 - Works even when weak learner has an error rate just slightly under 0.5 (i.e., just slightly better than random)
 - Can prove training error goes to 0 in O(log n) iterations
- Examples:
 - Decision stumps (1 level decision trees)
 - Depth-limited decision trees
 - Linear classifiers

AdaBoost with Decision Stumps

AdaBoost in Practice

Strengths:

- Fast and simple to program
- No parameters to tune (besides T) Learn with Cross-Validation
- No assumptions on weak learner Error less than ½

When boosting can fail:

- Given insufficient data
- Overly complex weak hypotheses
- Can be susceptible to noise
- When there are a large number of outliers

Boosted Decision Trees

- Boosted decision trees are one of the best "off-the-shelf" classifiers

 i.e., no parameter tuning
- Limit member hypothesis complexity by limiting tree depth
- Gradient boosting methods are typically used with trees in practice

"AdaBoost with trees is the best off-the-shelf classifier in the world" -Breiman, 1996 (Also, see results by Caruana & Niculescu-Mizil, ICML 2006)

Bagging vs Boosting

vs.

Bagging

Resamples data points

Weight of each classifier is the same

Only variance reduction

Boosting Reweights data points (modifies their

Weight is dependent on classifier's accuracy

distribution)

Both bias and variance reduced – learning rule becomes more complex with iterations

Review

- Ensemble learning are powerful learning methods
 - Better accuracy than standard classifiers
- Bagging uses bootstrapping (with replacement), trains T models, and averages their prediction
 - Random forests vary training data and feature set at each split
- Boosting is an ensemble of T weak learners that emphasizes mis-predicted examples
 - AdaBoost has great theoretical and experimental performance
 - Can be used with linear models or simple decision trees (stumps, fixed-depth decision trees)

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
 - Andrew Moore
- Thanks!