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Logistics

• HW3 is due on Friday, February 22

• Project proposal due on Tuesday 02/26

– 1 page description of your project, including 
problem statement, dataset, and ML algorithms

• Week of February 25

– Lecture on 02/26 taught by Lisa Friedland

– Lecture on 02/28 canceled 
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Summary Decision Trees
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Strengths
• Fast to evaluate
• Interpretable
• Generate rules
• Supports categorical and 

numerical data

Weaknesses
• Overfitting
• Splitting method  might 

not be optimal
• Accuracy is not always 

high
• Batch learning



Regression Trees

• Split to reduce MSE
• Predict average response of 

all training data at each leaf
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Outline

• Ensemble learning

– Combine multiple classifiers to reduce model 
variance and improve accuracy

• Bagging

– Bootstrap samples

– Random Forests

• Boosting

– AdaBoost
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Decision Trees

How to reduce variance of single decision tree?
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Ensemble Learning

7



Build Ensemble Classifiers
• Basic idea

– Build different “experts”, and let them vote

• Advantages

– Improve predictive performance

– Easy to implement

– No too much parameter tuning

• Disadvantages

– The combined classifier is not transparent and 
interpretable 

– Not a compact representation
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Practical Applications
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Netflix Prize
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Combining Classifiers: Averaging
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Combining Classifiers: Weighted 
Averaging
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Reduce error

• Suppose there are 25 base classifiers

• Each classifier has error rate, 

• Assume independence among classifiers

• Probability that the ensemble classifier makes a 
wrong prediction:
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Reduce Variance
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Assuming models are independent!



How to Achieve Diversity

• Avoid overfitting

– Vary the training data

• Features are noisy

– Vary the set of features

Two main ensemble learning methods

• Bagging (e.g., Random Forests)

• Boosting (e.g., AdaBoost)
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Bagging
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General Idea

17Majority Votes



Example of Bagging
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• Sample each training point with probability 1/n
• Out-Of-Bag (OOB) observation: point not in sample

• For each point: prob (1-1/n)n 

• About 1/3 of data
• OOB error: error on OOB samples

• OOB average error 
• Compute across all models in Ensemble
• Use instead of Cross-Validation error



Bagging

• Can be applied to multiple classification 
models

• Very successful for decision trees
– Decision trees have high variance

– Don’t prune the individual trees, but grow trees to 
full extent

– Precision accuracy of decision trees improved 
substantially

• OOB average error used instead of Cross 
Validation
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Example Distribution
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Decision Tree Decision Boundary
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100 Bagged Trees
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Random Forests
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Random Forests
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Trees are de-correlated by choice of 
random subset of features



Random Forest Algorithm
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If m=p, this is equivalent to Bagging



Effect of Number of Predictors
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• 𝑝 = total number of predictors; 𝑚 = predictors chosen in 
each split

• Random Forests uses 𝑚 = √𝑝



Variable Importance

• Ensemble of trees looses somewhat 
interpretability of decision trees

• Which variables contribute mostly to 
prediction?

• Random Forests computes a Variable 
Importance metric
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Gini index

• Take a node of decision tree 

• Let 𝑝𝑖 be the fraction of examples from class i

• Measures the “purity” of the node

– If node has most examples from one class, Gini 
index is low

• What is the probability that a random 
example is mis-classified at that node?

– σ𝑖=1
𝑘 𝑝𝑖(1 − 𝑝𝑖)

• Close to Information Gain
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Variable Importance Plots
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How to Achieve Diversity

• Avoid overfitting

– Vary the training data

• Features are noisy

– Vary the set of features

Two main ensemble learning methods

• Bagging (e.g., Random Forests)

• Boosting (e.g., AdaBoost)
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