DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

February 14 2019

Logistics

- HW3 is due on Friday, February 22
- Project proposal due on Tuesday 02/26
 - 1 page description of your project, including problem statement, dataset, and ML algorithms
- Week of February 25
 - Lecture on 02/26 taught by Lisa Friedland
 - Lecture on 02/28 canceled

Summary Decision Trees

- Representation: decision trees
- Bias: prefer small decision trees
- Search algorithm: greedy
- Heuristic function: information gain or information content or others
- Overfitting / pruning

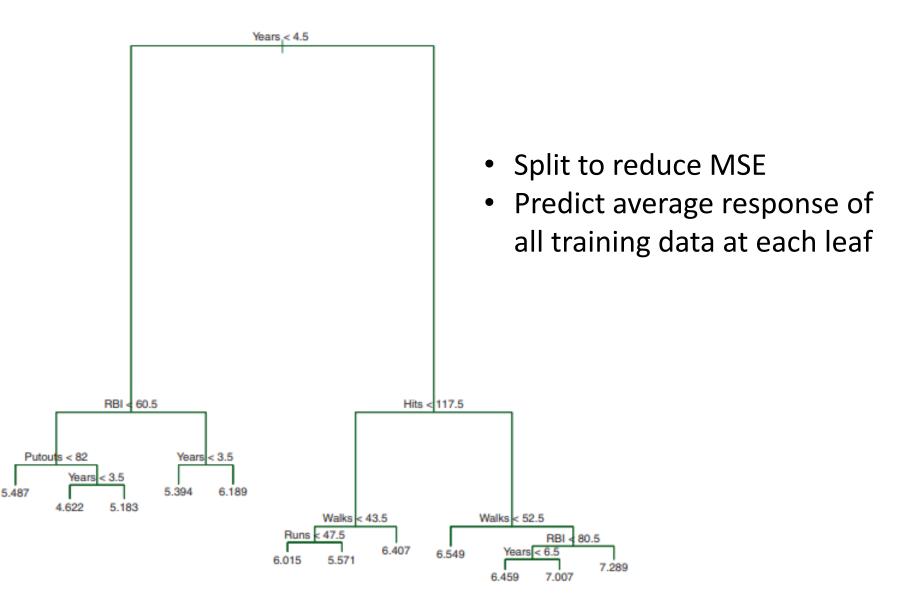
Strengths

- Fast to evaluate
- Interpretable
- Generate rules
- Supports categorical and numerical data

Weaknesses

- Overfitting
- Splitting method might not be optimal
- Accuracy is not always high
- Batch learning

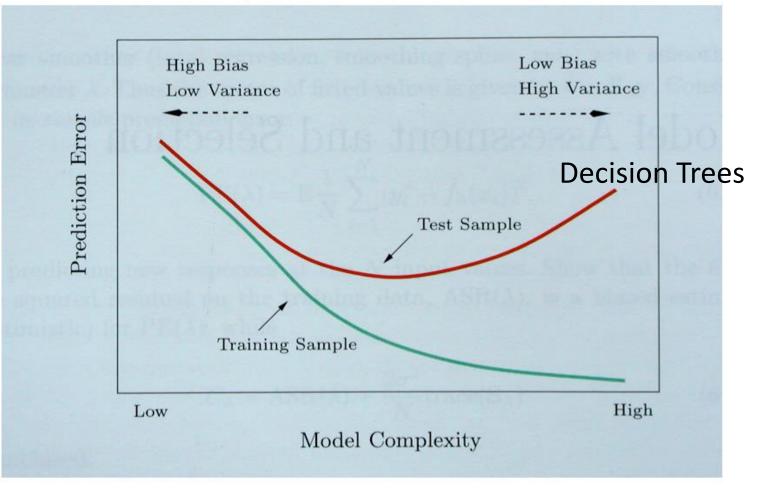
Regression Trees



Outline

- Ensemble learning
 - Combine multiple classifiers to reduce model variance and improve accuracy
- Bagging
 - Bootstrap samples
 - Random Forests
- Boosting
 - AdaBoost

Bias/Variance Tradeoff



Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

How to reduce variance of single decision tree?

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

Build Ensemble Classifiers

- Basic idea
 - Build different "experts", and let them vote
- Advantages
 - Improve predictive performance
 - Easy to implement
 - No too much parameter tuning
- Disadvantages
 - The combined classifier is not transparent and interpretable
 - Not a compact representation

Practical Applications

Goal: predict how a user will rate a movie

- Based on the user's ratings for other movies
- and other peoples' ratings
- with no other information about the movies

This application is called "collaborative filtering"

Netflix Prize: \$1M to the first team to do 10% better then Netflix' system (2007-2009)

Winner: BellKor's Pragmatic Chaos – an ensemble of more than 800 rating systems

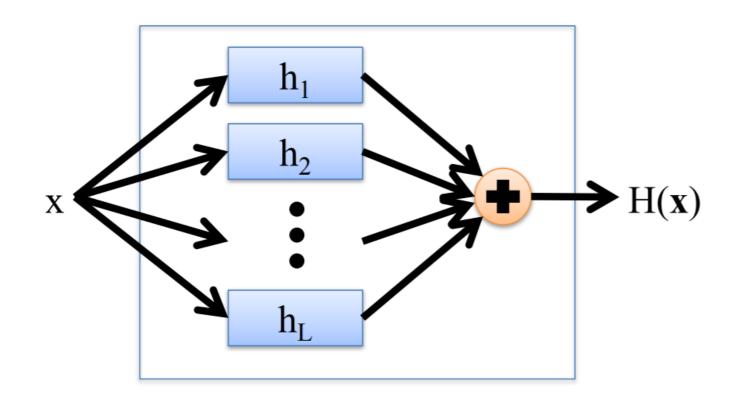
Netflix Prize

Machine learning competition with a \$1 million prize

Rank	Team Name	Best Score	1/2 Improvement	Last Submit Tin	
1	The Ensemble	0.8553	10.10	2009-07-26 18:38	
2	Delinur a magillacciolitada	0.000-4	10.09	2009-07-26 18:18	
Gra	nd Prize - RMSE <= 0.8563				
3	Grand Prize Team	0.8571	9.91	2009-07-24 13:07:	
4	Opera Solutions and Vandelay United	0.8573	9.89	2009-07-25 20:05	
5	Vandelav Industries !	0.8579	9.83	2009-07-26 02:49	
6	PragmaticTheory	0.8582	9.80	2009-07-12 15:09:	
7	BellKor in BigChaos	0.8590	9.71	2009-07-26 12:57	
8	Dace	0.8603	9.58	2009-07-24 17:18	
9	Opera Solutions	0.8611	9.49	2009-07-26 18:02	
10	BellKor	0.8612	9.48	2009-07-26 17:19	
11	BioChaos	0.8613	9.47	2009-06-23 23:06	
12	Feeds2	0.8613	9.47	2009-07-24 20:06	
Pro	aress Prize 2008 - RMSE = 0.8616 -	Winning Team	: BellKor in BigCh	aos	
13	xiangliang	0.8633	9.26	2009-07-21 02:04	
14	Gravity	0.8634	9.25	2009-07-26 15:58	
15	Ces	0.8642	9.17	2009-07-25 17:42	
16	Invisible Ideas	0.8644	9.14	2009-07-20 03:26	
17	Just a guy in a garage	0.8650	9.08	2009-07-22 14:10	
18	Craig Carmichael	0.8656	9.02	2009-07-25 16:00	
19	J Dennis Su	0.8658	9.00	2009-03-11 09:41:	
20	acmehill	0.8659	8.99	2009-04-16 06:29	
Deel	ress Prize 2007 - RMSE = 0.8712 -	Winning Team	r KorBell		

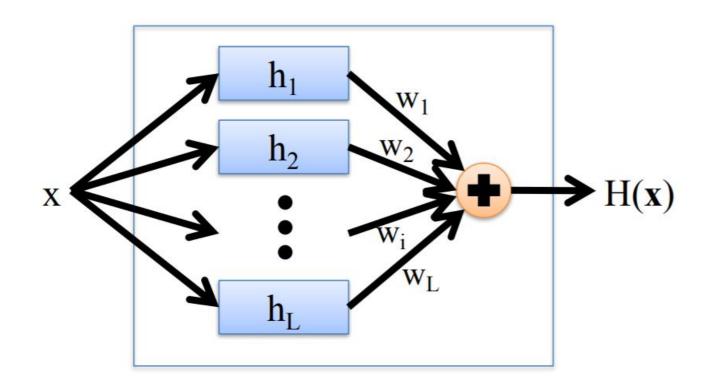
Londorhoard

Combining Classifiers: Averaging



Final hypothesis is a simple vote of the members

Combining Classifiers: Weighted Averaging



 Coefficients of individual members are trained using a validation set

Reduce error

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\mathcal{E} = 0.35$
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction:

Reduce Variance

• Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$

(when predictions are **independent**)

Average models to reduce model variance

One problem:

only one training set

where do multiple models come from?

Assuming models are independent!

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

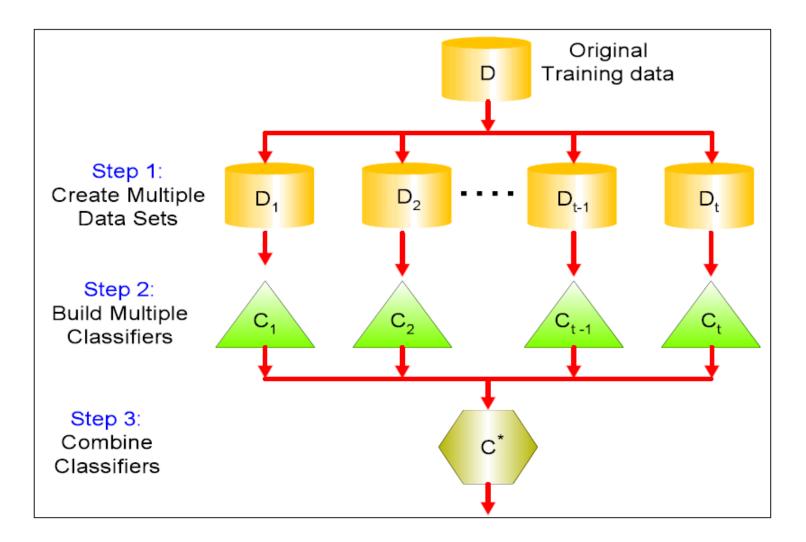
Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- **Boosting** (e.g., AdaBoost)

Bagging

- Leo Breiman (1994)
- Take repeated **bootstrap samples** from training set *D*
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.
- Bagging:
 - Create k bootstrap samples $D_1 \dots D_k$.
 - Train distinct classifier on each D_i .
 - Classify new instance by majority vote / average.

General Idea



Majority Votes

Example of Bagging

Sampling with replacement

Data ID											
Original Data	1	2	3	4	5	6	7	8	9	10	
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9	
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2	
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7	

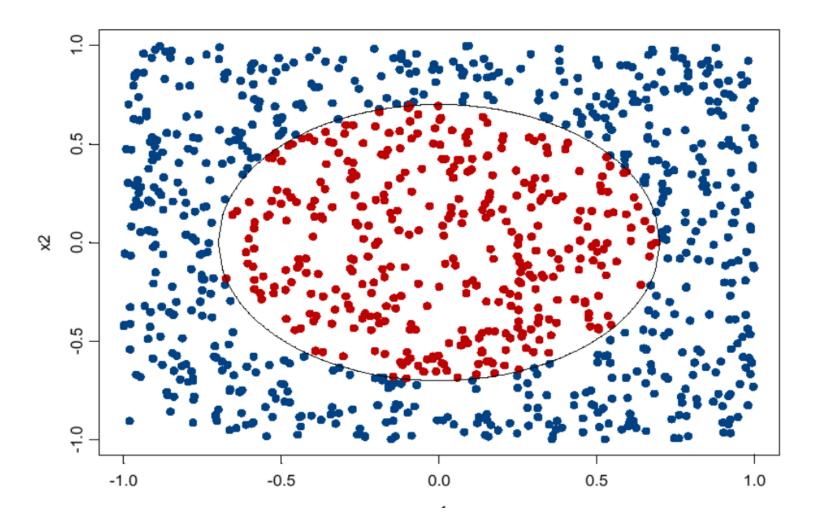
Training Data

- Sample each training point with probability 1/n
- Out-Of-Bag (OOB) observation: point not in sample
 - For each point: prob (1-1/n)ⁿ
 - About 1/3 of data
 - OOB error: error on OOB samples
- OOB average error
 - Compute across all models in Ensemble
 - Use instead of Cross-Validation error

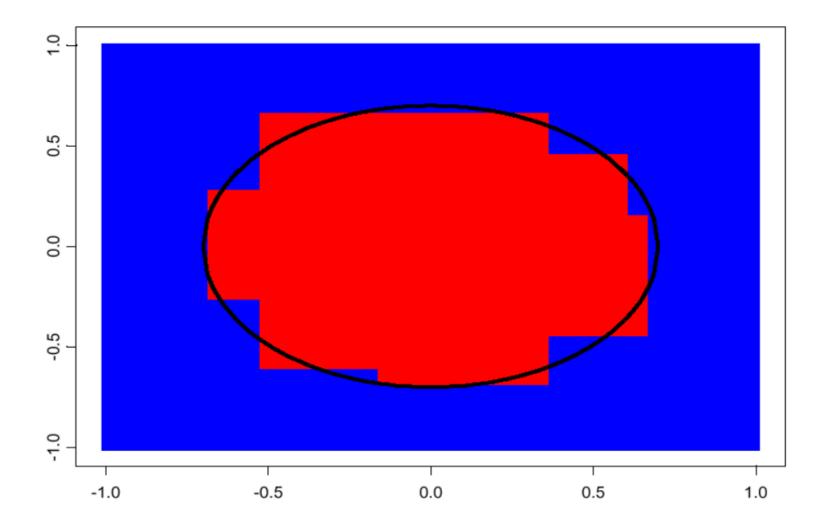
Bagging

- Can be applied to multiple classification models
- Very successful for decision trees
 - Decision trees have high variance
 - Don't prune the individual trees, but grow trees to full extent
 - Precision accuracy of decision trees improved substantially
- OOB average error used instead of Cross Validation

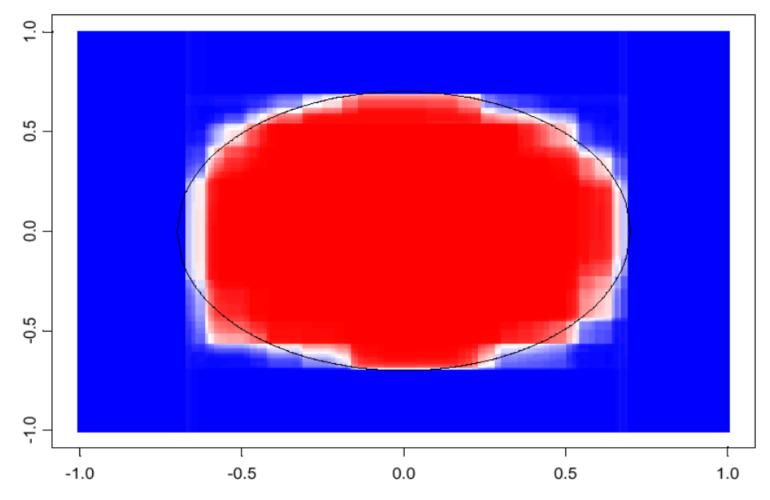
Example Distribution



Decision Tree Decision Boundary



100 Bagged Trees



shades of blue/red indicate strength of vote for particular classification

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of *m* attributes instead of all attributes

Random Forests

- Construct decision trees on bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node
- Do not prune the trees
 - Estimate tree performance on out-of-bootstrap data
- Average the output of all trees (or choose mode decision)

Trees are de-correlated by choice of random subset of features

Random Forest Algorithm

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

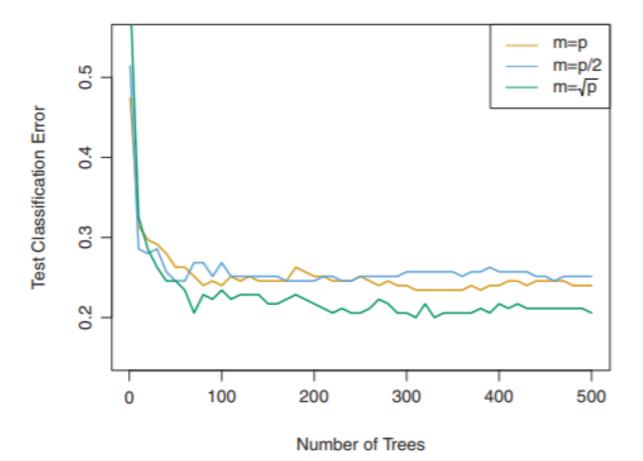
To make a prediction at a new point x:

Regression: $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x).$

Classification: Let $\hat{C}_b(x)$ be the class prediction of the *b*th random-forest tree. Then $\hat{C}^B_{\rm rf}(x) = majority \ vote \ \{\hat{C}_b(x)\}^B_1$.

If m=p, this is equivalent to Bagging

Effect of Number of Predictors



- p = total number of predictors; m = predictors chosen in each split
- Random Forests uses $m = \sqrt{p}$

Variable Importance

- Ensemble of trees looses somewhat interpretability of decision trees
- Which variables contribute mostly to prediction?
- Random Forests computes a Variable
 Importance metric

Gini index

- Take a node of decision tree
- Let p_i be the fraction of examples from class i
- Measures the "purity" of the node
 - If node has most examples from one class, Gini index is low
- What is the probability that a random example is mis-classified at that node?

$$-\sum_{i=1}^k p_i(1-p_i)$$

Close to Information Gain

Variable Importance Plots

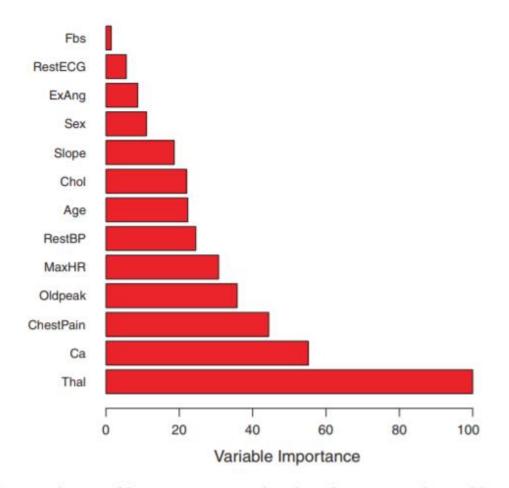


FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum.

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- **Boosting** (e.g., AdaBoost)

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!