DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

February 7 2019

Outline

- Linear Discriminant Analysis (LDA)
- Lab (logistic regression, LDA, kNN)
- Feature selection
 - Wrapper
 - Filter
 - Embedded methods
- Decision trees
 - Information Gain

Cross Validation

Compute error metrics in each fold Average error across folds

• CV can be used for

Test Data

- Hyper-parameter selection
- Comparing different models and features
- 1. k-fold Cross-Validation
 - Split data into k partitions of equal size

LDA

- Classify to one of k classes
- Logistic regression computes directly

$$-P[Y = 1 | X = x]$$

Assume sigmoid function

• LDA uses Bayes Theorem to estimate it

$$-P[Y = k | X = x] = \frac{P[X = x | Y = k]P[Y=k]}{P[X=x]}$$

- Let $\pi_k = P[Y = k]$ be the prior probability of class k and $f_k(x) = P[X = x|Y = k]$

LDA

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}.$$

Assume $f_k(x)$ is Gaussian! Unidimensional case (d=1)

$$f_k(x) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$
$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi\sigma}}}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi\sigma}}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi\sigma}}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu_l)^2\right)}.$$

Assumption: $\sigma_1 = \dots \sigma_k = \sigma$

LDA decision boundary

en s

Pick class k to maximize

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Example: $k = 2, \pi_1 = \pi_2$ Classify as class 1 if $x > \frac{\mu_1 + \mu_2}{2\sigma}$

True decision boundary

Estimated decision boundary

LDA in practice

Given training data $(x^{(i)}, y^{(i)}), i = 1, ..., n, y^{(i)} \in \{1, ..., K\}$

1. Estimate mean and variance

$$\hat{\mu}_{k} = \frac{1}{n_{k}} \sum_{i:y_{i}=k} x^{(i)}$$

$$\hat{\sigma}^{2} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i:y_{i}=k} (x^{(i)} - \hat{\mu}_{k})^{2}$$

2. Estimate prior

$$\hat{\pi}_k = n_k/n.$$

Given testing point *x*, predict k that maximizes:

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

LDA vs Logistic Regression

- Logistic regression computes directly Pr[Y = 1|X = x] by assuming sigmoid function
 - Uses Maximum Likelihood Estimation
 - Discriminative Model
- LDA uses Bayes Theorem to estimate it
 - Estimates mean, co-variance, and prior from training data
 - Generative model
 - Assumes Gaussian distribution for $f_k(x) = \Pr[X = x | Y = k]$
- Which one is better?
 - LDA can be sensitive to outliers
 - LDA works well for Gaussian distribution
 - Logistic regression is more complex to solve, but more expressive

Lab

> library(ISLR)

> fix(Smarket)

🐨 Data Editor										
	Year	Lagl	Lag2	Lag3	Lag4	Lag5	Volume	Today	Direction	
1	2001	0.381	-0.192	-2.624	-1.055	5.01	1.1913	0.959	Up	
2	2001	0.959	0.381	-0.192	-2.624	-1.055	1.2965	1.032	Up	
3	2001	1.032	0.959	0.381	-0.192	-2.624	1.4112	-0.623	Down	
4	2001	-0.623	1.032	0.959	0.381	-0.192	1.276	0.614	Up	
5	2001	0.614	-0.623	1.032	0.959	0.381	1.2057	0.213	Up	
6	2001	0.213	0.614	-0.623	1.032	0.959	1.3491	1.392	Up	
7	2001	1.392	0.213	0.614	-0.623	1.032	1.445	-0.403	Down	
8	2001	-0.403	1.392	0.213	0.614	-0.623	1.4078	0.027	Up	
9	2001	0.027	-0.403	1.392	0.213	0.614	1.164	1.303	Up	
10	2001	1.303	0.027	-0.403	1.392	0.213	1.2326	0.287	Up	
11	2001	0.287	1.303	0.027	-0.403	1.392	1.309	-0.498	Down	
12	2001	-0.498	0.287	1.303	0.027	-0.403	1.258	-0.189	Down	
13	2001	-0.189	-0.498	0.287	1.303	0.027	1.098	0.68	Up	
14	2001	0.68	-0.189	-0.498	0.287	1.303	1.0531	0.701	Up	
15	2001	0.701	0.68	-0.189	-0.498	0.287	1.1498	-0.562	Down	

Lab Logistic Regression

Train on data before 2005

```
> train=(Year<2005)</pre>
> Smarket.2005=Smarket[!train,]
> dim(Smarket.2005)
[1] 252 9
> Direction.2005=Direction[!train]
> glm.fits=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,data=Smarket,family=binomial,subset=train)
> summary(glm.fits)
Call:
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
   Volume, family = binomial, data = Smarket, subset = train)
Deviance Residuals:
  Min
      10 Median 30
                               Max
-1.302 -1.190 1.079 1.160 1.350
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.191213 0.333690 0.573 0.567
         -0.054178 0.051785 -1.046 0.295
Lagl
      -0.045805 0.051797 -0.884 0.377
Lag2
         0.007200 0.051644 0.139 0.889
Lag3
      0.006441 0.051706 0.125 0.901
Lag4
Lag5
      -0.004223 0.051138 -0.083 0.934
Volume
        -0.116257
                     0.239618 -0.485
                                      0.628
```

Lab Logistic Regression

Test on data in 2005

```
>
> glm.probs=predict(glm.fits,Smarket.2005,type="response")
> glm.pred=rep("Down", nrow(Smarket.2005))
> glm.pred[glm.probs>.5]="Up"
> head(Smarket.2005)
    Year Lag1 Lag2 Lag3 Lag4 Lag5 Volume Today Direction
999 2005 -0.134 0.008 -0.007 0.715 -0.431 0.7869 -0.812
                                                              Down
1000 2005 -0.812 -0.134 0.008 -0.007 0.715 1.5108 -1.167
                                                              Down
1001 2005 -1.167 -0.812 -0.134 0.008 -0.007 1.7210 -0.363
                                                              Down
1002 2005 -0.363 -1.167 -0.812 -0.134 0.008 1.7389 0.351
                                                                Up
1003 2005 0.351 -0.363 -1.167 -0.812 -0.134 1.5691 -0.143
                                                              Down
1004 2005 -0.143 0.351 -0.363 -1.167 -0.812 1.4779 0.342
                                                                Up
> head(glm.probs)
      999
              1000
                        1001
                                  1002
                                            1003
                                                     1004
0.5282195 0.5156688 0.5226521 0.5138543 0.4983345 0.5010912
> head(glm.pred)
[1] "Up" "Up" "Up" "Down" "Up"
> table(glm.pred,Direction.2005)
       Direction.2005
glm.pred Down Up
    Down 77 97
          34 44
    σU
> mean(glm.pred==Direction.2005)
[1] 0.4801587
```

Lab LDA

```
1
> library(MASS)
> lda.fit=lda(Direction~Lag1+Lag2,data=Smarket,subset=train)
> lda.fit
Call:
lda(Direction ~ Lag1 + Lag2, data = Smarket, subset = train)
Prior probabilities of groups:
   Down Up
0.491984 0.508016
Group means:
           Lagl
                 Lag2
Down 0.04279022 0.03389409
Up -0.03954635 -0.03132544
Coefficients of linear discriminants:
           LD1
Lag1 -0.6420190
Lag2 -0.5135293
> lda.pred=predict(lda.fit, Smarket.2005)
> lda.class=lda.pred$class
> table(lda.class,Direction.2005)
        Direction.2005
lda.class Down Up
    Down 35 35
    Up 76 106
> mean(lda.class==Direction.2005)
[1] 0.5595238
. .
```

Lab kNN

```
>
> library(class)
> train.X=cbind(Lag1,Lag2)[train,]
> test.X=cbind(Lag1,Lag2)[!train,]
> train.Direction=Direction[train]
> set.seed(1)
> knn.pred=knn(train.X,test.X,train.Direction,k=1)
> table(knn.pred,Direction.2005)
        Direction.2005
knn.pred Down Up
    Down 43 58
    Up
         68 83
> mean(knn.pred==Direction.2005)
[1] 0.5
> knn.pred=knn(train.X,test.X,train.Direction,k=3)
> table(knn.pred,Direction.2005)
        Direction.2005
knn.pred Down Up
    Down 48 54
         63 87
    Up
> mean(knn.pred==Direction.2005)
[1] 0.5357143
> knn.pred=knn(train.X,test.X,train.Direction,k=7)
> table(knn.pred,Direction.2005)
        Direction.2005
knn.pred Down Up
    Down 41 65
    Up
          70 76
> mean(knn.pred==Direction.2005)
[1] 0.4642857
```

Linear models

• Perceptron

$$h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x})$$

• Logistic regression

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}}}$$

• LDA

$$Max_k \ \delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Supervised Learning

Testing

Example: Email Classification

- Input: a email message
- Output: is the email...
 - spam,
 - work-related,
 - personal, ...

Bag-of-Words

- Input: x (email-valued)
- Feature vector:

Indicator or Kronecker delta function

$$f(\boldsymbol{x}) = \begin{bmatrix} f_1(\boldsymbol{x}) \\ f_2(\boldsymbol{x}) \\ \vdots \\ f_n(\boldsymbol{x}) \end{bmatrix}, \quad \text{e.g. } f_1(\boldsymbol{x}) = \begin{cases} 1 \text{ if the email contain} \\ 0 \text{ otherwise} \end{cases} \mathsf{Boston}$$

• Learn one weight vector for each class:

 $w_y \in \mathbb{R}^n, y \in \{\text{SPAM}, \text{WORK}, \text{PERS}\}$

Could also use frequency

- $f_i(x)$ is the number of times word i appears in x

Representation

- Large number of words in dictionary (>50,000)
- Very sparse representation (many features set at 0)

Feature selection

- Feature Selection
 - Process for choosing an optimal subset of features according to a certain criteria

- Why we need Feature Selection:
 - 1. To improve performance (in terms of speed, predictive power, simplicity of the model).
 - 2. To visualize the data for model selection.
 - 3. To reduce dimensionality and remove noise.

Feature Search Space

Exponentially large!

Methods for Feature Selection

• Wrappers

- Select subset of features that gives best prediction accuracy (using cross-validation)
- Model-specific

• Filters

- Compute some statistical metrics (correlation coefficient, mutual information)
- Select features with statistics higher than threshold
- Embedded methods
 - Feature selection done as part of training
 - Example: Regularization (Lasso, L1 regularization)

Feature Engineering

- Feature engineering is crucial to getting good results
- Strategy: overshoot and regularize
 - Define as many features as you can
 - Use regularization for models that support it
 - Use other feature selection methods (e.g., filters) otherwise
- Do cross-validation to evaluate selected features on multiple runs
- When feature selection is frozen, evaluate on test set

Wrappers: Search Strategy

With an exhaustive search

10111000000100010000100000000100101010

With d features $\rightarrow 2^d$ possible feature subsets.

20 features ... 1 million feature sets to check25 features ... 33.5 million sets30 features ... 1.1 billion sets

- Need for a search strategy
 - Sequential forward selection
 - Recursive backward elimination
 - Genetic algorithms
 - Simulated annealing

Wrappers: Sequential Forward Selection

Start with the empty set $S = \emptyset$

While stopping criteria not met

For each feature X_f not in S

- Define $S' = S \cup \{X_f\}$
- Train model using the features in S'
- Compute the accuracy on validation set

End

End

S = S' where S' is the feature set with the greatest accuracy

Backward feature selection starts with all features and eliminates backward

Search complexity for sequential forward selection

• Evaluates $\frac{d(d+1)}{2}$ features sets instead of 2^d

Cross Validation

Select set of features with best validation performance

• k-fold CV

- Split data into k partitions of equal size

- Leave-one-out CV (LOOCV)
 - k=n (validation set only one point)

Filters

<u>Principle</u>: replace evaluation of model with quick to compute statistics $J(X_f)$

k	$J(X_k)$
35	0.846
42	0.811
10	0.810
654	0.611
22	0.443
59	0.388
212	0.09
39	0.05

For each feature X_f

• Compute $J(X_f)$

End

Rank features according to $J(X_f)$ Choose manual cut-off point

Examples of filtering criterion

- The mutual information with the target variable $J(X_f) = I(X_f; Y)$
- The correlation with the target variable
- χ^2 statistic

Search Complexity for Filter Methods

Pros:

> A lot less expensive!

Cons:

Not model-oriented

Embedded methods: Regularization

Lasso regression

- L1 norm for regularization
- No closed form solution
- Algorithms based on gradient descent or quadratic programming

Embedded methods: Regularization

Principle: the classifier performs feature selection as part of the learning procedure

Example: the logistic LASSO (Tibshirani, 1996)

$$f(x) = \frac{1}{1 + e^{-(w^T x)}} = P(Y = 1 | x)$$

With Error Function:

$$E = -\sum_{i=1}^{N} \{y_i \log f(\mathbf{x}_i) + (1 - y_i) \log(1 - f(\mathbf{x}_i))\} + \lambda \sum_{f=1}^{d} |w_f|$$

Cross-entropy error Regularizing term

Pros:

Performs feature selection as part of learning the procedure

Cons:

Computationally demanding

Filtering

- •L₁ regularization
- (embedded methods)
- •Wrappers
 - •Forward selection
 - Backward
 - selection
 - Other search
 - Exhaustive

-

•<u>Filtering</u>

Computational

8

õ

•L₁ regularization (embedded methods)
•Wrappers
•Forward selection

- Backward selection
- •Other search
- Exhaustive

- Good preprocessing step
- Fails to capture relationship between features

 Filtering
 L₁ regularization
 (embedded methods)
 Wrappers

•Forward selection

- Backward selection
- •Other search
- Exhaustive

- Can add regularization in optimization objective
- Can be solved with Gradient
 Descent
- Can be applied to many models (e.g., linear or logistic regression)
- Can not be applied to all methods (e.g., kNN)

- Filtering
 L₁ regularization
 (embedded methods)
- •<u>Wrappers</u>
 - •Forward selection
 - Backward selection
 - Other search
 - Exhaustive

- Most directly optimize
 prediction performance
- Can be very expensive, even with greedy search methods
- ✓ ×
- Cross-validation is a good objective function to start with

Outline

- Linear Discriminant Analysis (LDA)
- Lab (logistic regression, LDA, kNN)
- Feature selection
 - Wrapper
 - Filter
 - Embedded methods
- Decision trees
 - Information Gain

Sample Dataset

- Columns denote features X_i
- Rows denote labeled instances $\langle x^{(i)}, y^{(i)} \rangle$
- Class label denotes whether a tennis game was played

	Response			
Outlook	Temperature	Humidity	Wind	Class
Sunny	Hot	High	Weak	No
Sunny	Hot	High	Strong	No
Overcast	Hot	High	Weak	Yes
Rain	Mild	High	Weak	Yes
Rain	Cool	Normal	Weak	Yes
Rain	Cool	Normal	Strong	No
Overcast	Cool	Normal	Strong	Yes
Sunny	Mild	High	Weak	No
Sunny	Cool	Normal	Weak	Yes
Rain	Mild	Normal	Weak	Yes
Sunny	Mild	Normal	Strong	Yes
Overcast	Mild	High	Strong	Yes
Overcast	Hot	Normal	Weak	Yes
Rain	Mild	High	Strong	No

 $\left\langle x^{(i)}, y^{(i)} \right\rangle$

Categorical data

Decision Tree

• A possible decision tree for the data:

- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

Decision Tree

• A possible decision tree for the data:

 What prediction would we make for <outlook=sunny, temperature=hot, humidity=high, wind=weak> ?

Decision Tree Learning

Problem Setting:

- Set of possible instances X
 - each instance x in X is a feature vector
 - e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
- Unknown target function $f: X \rightarrow Y$
 - Y is discrete valued
- Set of function hypotheses $H=\{h \mid h : X \rightarrow Y\}$
 - each hypothesis h is a decision tree
 - trees sorts x to leaf, which assigns y

Expressiveness

 Decision trees can represent any boolean function of the input attributes

 In the worst case, the tree will require exponentially many nodes

XOR cannot be learned with linear classifiers

Occam's Razor

- Principle stated by William of Ockham (1285-1347)
 - "non sunt multiplicanda entia praeter necessitatem"
 - entities are not to be multiplied beyond necessity
 - AKA Occam's Razor, Law of Economy, or Law of Parsimony

Idea: The simplest consistent explanation is the best

- Therefore, the smallest decision tree that correctly classifies all of the training examples is best
 - Finding the provably smallest decision tree is NP-hard
 - ...So instead of constructing the absolute smallest tree consistent with the training examples, construct one that is pretty small

Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Key Idea: Use Recursion Greedily

Second Level

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

Full Tree

Splitting

Would we prefer to split on X_1 or X_2 ?

Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

Use entropy-based measure (Information Gain)

Acknowledgements

- Slides made using resources from:
 - Andrew Ng
 - Eric Eaton
 - David Sontag
- Thanks!