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Outline

Linear Discriminant Analysis (LDA)
ab (logistic regression, LDA, kNN)

~eature selection

— Wrapper

— Filter

— Embedded methods
Decision trees

— Information Gain
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Test Data
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Compute error metrics in each fold
Average error across folds

e CV can be used for

— Hyper-parameter selection

— Comparing different models and features

e 1. k-fold Cross-Validation

— Split data into k partitions of equal size



LDA

e Classify to one of k classes

* Logistic regression computes directly
—P[Y = 1|X = «]
— Assume sigmoid function

* LDA uses Bayes Theorem to estimate it

P[X = x|Y = k|p[y=k]

—-PlY =k|X =x]| = r—

— Let m;, = P|Y = k] be the prior probability of class
kand f,(x) = P|X = x|Y = k]



LDA

Pr(Y = k|X =) = g‘*f"“(:”) .

ZI:I WIfE(I)
Assume f; (x) is Gaussian!
Unidimensional case (d=1)

1 1 ;
T) = exp | ——=(x — pp
fi(®) V2o p( Z*Tij}( H) )

1
2w

(@) = —x
pr(r) = —% .
1—1 Tl = EW exp (— EL (2 — pp)? )

exp (—21 (r — ) )

Assumption: 0; = ...0, = O



LDA decision boundary

Pick class k to maximize

M 1
Op(x) =x - — 2;2 + log(m)
Example: k = 2,1y = m,
Classify as class 1 if x > ”1;:2

I
|
|
}
0

True decision boundary Estimated decision boundary
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LDA in practice

Given training data (x(i),y(i)),i =1, ...,

1. Estimate mean
and variance

2. Estimate prior

n,y®W e{q,..,

f, =

nik 3 20

iy =k

1 K
—— > > @Oy’

k=1iy;=k

T = N /n.

Given testing point x, predict k that maximizes:

Eat

Op(x) = - -

JLk

T2

~ 2
‘Hk | l t
i 0 il

K}



LDA vs Logistic Regression

Logistic regression computes directly Pr|Y = 1|X = x] by
assuming sigmoid function

— Uses Maximum Likelihood Estimation

— Discriminative Model

LDA uses Bayes Theorem to estimate it

— Estimates mean, co-variance, and prior from training data
— Generative model

— Assumes Gaussian distribution for f;, (x) = Pr[X = x|Y = k]
Which one is better?

— LDA can be sensitive to outliers

— LDA works well for Gaussian distribution

— Logistic regression is more complex to solve, but more
expressive



Lab

> library (ISLR)

> fix(Smarket)

X

|| 2 f
e
Year Lagl Lag2 Lag3 Lag4 Lags Volume Today Direction
1l |2001 0.381 -0.192 |-2.624 |-1.055 (5.01 1.1913 0.959 Up
2 |2001 0.95%9 0.381 -0.192 |-2.624 |-1.055 [1.2965 1.032 Up
3 |2001 1.032 0.959 0.381 -0.192 |-2.624 |1.4112 -0.623 |Down
4 |2001 -0.623 |1.032 0.959%9 0.381 -0.192 |1.276 0.614 Up
5 |2001 0.614 -0.623 |1.032 0.95%9 0.381 1.2057 0.213 Up
6 |2001 0.213 0.614 -0.623 |1.032 0.959 1.3491 1.392 Up
7 |2001 1.392 0.213 0.614 -0.623 |1.032 1.445 -0.403 |Down
8 |2001 -0.403 |1.392 0.213 0.614 -0.623 |1.4078 0.027 Up
9 (2001 0.027 -0.403 |1.3%92 0.213 0.614 1.164 1.303 Up
10 |2001 1.303 0.027 -0.403 |1.392 0.213 1.2326 0.287 Up
11 |2001 0.287 1.303 0.027 -0.403 |1.392 1.309 -0.498 |Down
12 | 2001 -0.498 |0.287 1.303 0.027 -0.403 |1.258 -0.189 |Down
13 | 2001 -0.189 |-0.498 |0.287 1.303 0.027 1.098 0.68 Up
14 | 2001 0.68 -0.189 |-0.498 |0.287 1.303 1.0531 0.701 Up
15 | 2001 0.701 0.68 -0.189 |-0.498 |(0.287 1.1498 -0.562 |Down




Lab Logistic Regression

Train on data before 2005

> Smarket.2005=5market[!train, ]

[1] 252 9

Direction.2005=Direction['!train]

> glm.fits=glm(Direction~Lagl+LagZ2+Lag3+Lag4+LagS5+Volume,data=Smarket, family=binomial, subset=train)

> summary(glm.fits)

Call:

glm(formula = Direction ~ Lagl + Lag2 + Lag3 + Lag4 + Lag5 +
Volume, family = binomial, data = Smarket,

Deviance Residuals:
Min 10 Median 3Q
=1.302 -=1.1%90 1.07% 1.160

Coefficients:

Max
1.350

Estimate 5td. Error z wvalue Pr(>|z])

(Intercept) 0.191213 0.3336%90

Lagl -0.054178 0.05178

Lag2 -0.045805 0.051797
Lag3 0.007200 0.051644
Lag4 0.006441 0.051706
Lag5 -0.004223 0.051138
Volume -0.116257 0.239618

0.573
-1.046
-0.88

0.139

0.125
-0.083
-0.485

0.567
0.295
0.377
0.889
0.901
0.934
0.628

subset = train)
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Lab Logistic Regression

Test on data in 2005

> glm.probs=predict (glm.fits,Smarket.2005, tcype="response™)

> glm.pred=rep ("Down",nrow(Smarket.20035))
> glm.pred[glm.probs>.5]="Up"
> head (Smarket.2005)

Year Lagl Lag2 Lag3 Lag4 Lags
999 2005 -0.134 0.008 -0.007 0.715 -0.431
1000 2005 -0.812 -0.134 0.008 -0.007 0.715
1001 2005 -1.167 -0.812 -0.134 0.008 -0.007
1002 2005 -0.363 -1.167 -0.812 -0.134 0.008
1003 2005 0.351 -0.363 -1.167 -0.812 -0.134
1004 2005 -0.143 ©0.351 -0.363 -1.1e7 -0.812
> head(glm.probs)

S99 1000 1001 1002

Volume
0.786e9
1.5108
1.7210
1.7389
1.56891
1.477%

1003

Today Direction

-0.812
-1.167
-0.363
0.3351
-0.143
0.342

1004

0.5282195 0.5156688 0.5226521 0.5138543 0.4983345 0.5010912

> head (glm.pred)
[l] "Up" "Up" "Up" "Up" "Down™ "Up"
> table (glm.pred,Direction.2005)
Direction.2005
glm.pred Down Up
Down 77 97
Up 34 44
> mean (glm.pred==Direction.20035)
[lJ 0.4801587

Down
Down
Down
Up
Down
Up
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> library (MASS)

> lda.fit=lda(Direction~Lagl+Lag2,data=Smarket, subset=train)
> lda.fitc

Call:

lda(Direction ~ Lagl + Lag2, data = Smarket, subset = train)

Prior probabilities of groups:
Down Up
0.491984 0.508016

Group means:

Lagl Lag2
Down 0.0427%022 0.0338%9409
Up -0.03954635 -0.03132544

Coefficients of linear discriminants:
LDl
Lagl -0.64201%90
Lag2 -0.5135293
> lda.pred=predict(lda.fit, Smarket.2005)
» lda.class=lda.predSclass
> table(lda.class,Direction.2005)
Direction.2005
lda.class Down Up
Down 35 35
Up 76 106
> mean(lda.class==Direction.200535)

[1] 0.5595238
]



Lab kNN

library(class)
train.X=cbind(Lagl,Lag2) [train,]
test.X=cbind(Lagl,Lag2) [!train,]
train.Direction=Direction|[train]
set.seed(l)
knn.pred=knn(train.X, test.X,train.Direction, k=1)
table (knn.pred,Direction.2005)

Direction.2005
knn.pred Down Up
Down 43 58

YNNI NN

Up 68 83
> mean (knn.pred==Direction.2005)
[1] 0.5

> knn.pred=knn(train.X, test.X,train.Direction, k=3)
> table (knn.pred,Direction.2005)
Direction.2005
knn.pred Down Up
Down 48 54
Up €3 87
> mean (knn.pred==Direction.2005)
[1] 0.5357143
> knn.pred=knn(train.X,test.X,train.Direction, k=7)
> table (knn.pred,Direction.2005)
Direction.2005
knn.pred Down Up
Down 41 &5
Up 70 76
> mean (knn.pred==Direction.2005)
[1] 0.4642857 13



Linear models

* Perceptron

h(x) = sign(0Tx)

* Logistic regression

|

he(x) =

1+e 0=

14



Supervised Learning

Training
Pre- A Feature . Learning
processing ‘ extraction ' model
Labeled Normalization Feature Classification
Selection Regression
Testing

New Learnin wy
& Predictions
data model
Healthy Price
Sick Risk score

Unlabeled

Classification Regression




ann Conventum PWE 2000 — Boite de réception
& 5 z 3
Supprimer  Incésable Répondre  Rdp. dtcus Réexpidier  Imprimos

Christian D

Convenban FWD 2000
Saplambar 26, 2008 6:41:23 AM POT
Algin Doyory,  Alawarddne Bouchard <abouchd B8 po-boxmegil cas
Alakanoes Boushan-C o

Borjour & tous

Yai recu ce cowrriel qui paurra sans doute wous intéresser.

wan Droma

Objet - Cod rtum 2000-2010 FWD

Salut tout I monde, NoUS BOMIMEs an train de monter une bangue de
cowrriels des finissants 2000 du PWD efin darganiser le conventum.
0On vous demande danvoyer un courriel aves vl

courrigl & Fadresse sulvante: pedf o ) 4 il all.carm

Faites cirouler c2 courriel & tous ceus qui 0 afin
gu'on puisse rejoindre le plus de monde pour le conventum... mencl &
Lous

§owa

* Input: a email message
« QOutput: is the email...

— spam,
— work-related,
— personal, ...

Example: Email Classification

PERSONAL

16



Bag-of-Words

* Input: @ (email-valuea)
 Feature vector:

Indicator or
Kronecker
delta function

| fi(x)
fa(x) 1 if the email contain |
R o filp) — S T Boston
f(x) 5 . eg filz) { ) otherwise
| fn(mj |

* Learn one weight vector for each class:
w, € R", y € {SPAM,WORK,PERS}

Could also use frequency
- f;(x) is the number of times word i appears in x



Representation

¢ the election’s winner? We
¢ study this problem for

election systems as varied
| as scoring ...

Vector-space
Documents com—, e
— representation

[T ——
e (C PR O TR Y D1|02| D3| 04| DS
:;'::Wefwtt'eoompigﬁty complexity | 2 3 |2 (3
|.iis'5°"‘“"°"°'.'9 elections siaorithm 4
‘aas\throug'u_bnbety. How 9
J d ¢ § computationally complex entropy 2

g sisit for an external actor e > 3
':,gtoddem\imwhcmqby tra
5~e,a certain  amount of network 1 |4
f | ¢ ¢ bribing voters a specified :
' | { ¢ candidate can be made Term-document matrix
{ L

* Large number of words in dictionary (>50,000)
e \Very sparse representation (many features set at 0)
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Feature selection

 Feature Selection

* Process for choosing an optimal subset of features
according to a certain criteria

 Why we need Feature Selection:

1. To improve performance (in terms of speed,
predictive power, simplicity of the model).

2. To visualize the data for model selection.
3. To reduce dimensionality and remove noise.



Feature Search Space

Search
Space:

Empty Set of
Features

Complete Set of
Features

Exponentially large!

20



Methods for Feature Selection

* Wrappers

— Select subset of features that gives best prediction
accuracy (using cross-validation)

— Model-specific
* Filters

— Compute some statistical metrics (correlation
coefficient, mutual information)

— Select features with statistics higher than threshold

* Embedded methods

— Feature selection done as part of training
— Example: Regularization (Lasso, L1 regularization)



Feature Engineering

* Feature engineering is crucial to getting good
results

e Strategy: overshoot and regularize
— Define as many features as you can
— Use regularization for models that support it

— Use other feature selection methods (e.g., filters)
otherwise

Do cross-validation to evaluate selected features
on multiple runs

* When feature selection is frozen, evaluate on test
set



Wrappers: Search Strategy

<+ With an exhaustive search

101110000001000100001000000000100101010

With d features — 2% possible feature subsets.

20 features ... 1 million feature sets to check
25 features ... 33.5 million sets
30 features ... 1.1 billion sets

<+ Need for a search strategy
~ Sequential forward selection
~ Recursive backward elimination
~ Genetic algorithms

» Simulated annealing



Wrappers: Sequential Forward
Selection

Start with the empty set S =0
While stopping criteria not met
For each feature X¢ notin S
 Define §' =S v {X}
« Train model using the features in §’
« Compute the accuracy on validation set
End
S = §" where S’ is the feature set with the greatest accuracy
End

Backward feature selection starts with all features
and eliminates backward

24



Search complexity for sequential
forward selection

(000.0)

//\

(0100 (000D
- ,a"-!-_.. _--i'\\

d(d+1)

e Evaluates features sets instead of 2¢

25



Cross Validation

Training Data 15t Partition 2nd Partition kth Partition
Validation Training

e _ Set Data Training

Validation L. Data
Training Set

R ) Data Training Validation

Data Set
Test Data . . .
Select set of features with best validation performance

e k-fold CV

— Split data into k partitions of equal size
e Leave-one-out CV (LOOCV)

— k=n (validation set only one point)



Filters

Principle: replace evaluation of model with quick to compute statistics J(Xs)

k| J(Xk)
35 | 0.846 For each feature X
42 | 0.811 . Compute](){f)
10 | 0.810
654 | 0.611 End
22 | 0.443 Rank features according to J(X)
59 | 0.388 Choose manual cut-off point
212 | 0.09
39 0.05

Examples of filtering criterion

» The mutual information with the target variable J(X;) = I(X;; Y)
« The correlation with the target variable

« x? - statistic



Search Complexity for Filter Methods

0000
(1000 0,100 (00.10 000.1
I £ . 4 E 1 N
11,00 (10,10 0.1,10 {100, 0,10.1 00,11
< ~— < 7 — % > » oy

11—t

Q1,10

Pros:

» Alot less expensivel

Cons:
» Not model-oriented

28



Embedded methods: Regularization

Lasso regression

n d
J©) = ) (he(x®) = y®)* +2 > oy
i=1 Jj=1

\ ) \ J
Y 1
Squared Regularization
Residuals

* L1 norm for regularization
* No closed form solution

* Algorithms based on gradient descent or
guadratic programming

29



Embedded methods: Regularization

Principle: the classifier performs feature selection as part of the learning procedure

Example: the logistic LASSO (Tibshirani, 1996)

1
fO) = = PV = 1])

With Error Function:

N d
E=- Z{ya log £ (x;) + (1 — y)log(1 — f(x))} + 2 Z [wrl
L T
| |
Cross-entropy error Reqularizing term

Pros:
» Performs feature selection as part of learning the procedure

Cons:
» Computationally demanding

30



Summary: Feature Selection

Filtering
L, regularization

(embedded
methods)

\WWrappers

Forward
selection

Backward
selection

*QOther search
Exhaustive

31



Summary: Feature Selection

“Filtering « Good preprocessing «
-L, regularization step
O| (embedded _
methods) » Falls to capture
‘Wrappers relationship between x
Forward features
selection
-Backward
selection

*Other search
Exhaustive

32



uod

Summary: Feature Selection

Filtering
L, regularization

(embedded
methods)

‘Wrappers

«Forward
selection

«Backward
selection

*Other search
Exhaustive

Can add regularization in «
optimization objective

Can be solved with Gradient
Descent «
Can be applied to many
models (e.g., linear or «

logistic regression)

Can not be applied to all x
methods (e.g., kNN)

33
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Summary: Feature Selection

Filtering
L, regularization

(embedded
methods)

Wrappers

Forward
selection

Backward
selection

«QOther search
Exhaustive

* Most directly optimize «

prediction performance

« Can be very expensive,
even with greedy search
methods

 Cross-validationis a
good objective function to
start with

34



Outline

* Linear Discriminant Analysis (LDA)
* Lab (logistic regression, LDA, kNN)

 Feature selection

— Wrapper
— Filter
— Embedded methods

e Decision trees

— Information Gain




* Columns denote features X,

Sample Dataset

* Rows denote labeled instances <~f“)~y(”>

* Class label denotes whether a tennis game was played

<J_.(?:)_ ym>

Categorical
data

Predictors Response

Outlook Temperature Humidity Wind Class
Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak VYes
Rain Mild High Weak Yes
Rain Cool Normal Weak  Yes
Rain Cool Normal Strong No
Overcast Cool Normal Strong Yes
Sunny Mild High Weak No
Sunny Cool Normal Weak  Yes
Rain Mild Normal Weak  Yes
Sunny Mild Normal Strong  Yes
Overcast Mild High Strong  Yes
Overcast Hot Normal Weak  Yes
Rain Mild High Strong No

36



Decision Tree

* A possible decision tree for the data:

Eac

Eac

Eac

Outlook

M\
Sunny Overcast Rain
Humidity Yes Wind
N B\
High Normal Strong Weak
/ N / N
No Yes No Yes

n internal node: test one attribute X

n branch from a node: selects one value for X,
1 leaf node: predict Y (or p(Y | = € leaf) )

37



Decision Tree

* A possible decision tree for the data:

Outlook
Sunny Overcast Rain
Humidity Yes Wind
AN /N
High Normal Strong Weak
/ N / N
No Yes No Yes

* What prediction would we make for

<outlook=sunny, temperature=hot, humidity=high, wind=weak> ?



Decision Tree Learning

Problem Setting:
« Set of possible instances .Y
— each instance x in X is a feature vector
— e.g., <Humidity=low, Wind=weak, Outlook=rain, Temp=hot>
« Unknown target function /: XY
— Y is discrete valued
« Set of function hypotheses H={ h | h: X2V}

— each hypothesis / is a decision tree
_ _
— trees sorts x to leaf, which assigns y

Sunmny Ove t R
High Normal Strong Weak
No Y No ¥

Slide by Tom Mitchell
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Expressiveness

* Decision trees can represent any boolean function of
the input attributes

A

AxorB . . Truth table row = path to leaf
; /\

T B B
T F/N\T F/N\T
F

* |n the worst case, the tree will require exponentially
many nodes

~ =TT >
M- T W

XOR cannot be learned with linear classifiers

40



Occam’s Razor

* Principle stated by William of Ockham (1285-1347)

»

— “non sunt multiplicanda entia praeter necessitatem’
— entities are not to be multiplied beyond necessity
— AKA Occam’s Razor, Law of Economy, or Law of Parsimony

Idea: The simplest consistent explanation is the best

* Therefore, the smallest decision tree that correctly
classifies all of the training examples is best

* Finding the provably smallest decision tree is NP-hard

» ...So instead of constructing the absolute smallest tree
consistent with the training examples, construct one that
is pretty small

41



Learning Decision Trees

* Learning the simplest (smallest) decision tree is
an NP-complete problem [Hyafil & Rivest '76]
* Resort to a greedy heuristic:
— Start from empty decision tree
— Split on next best attribute (feature)
— Recurse

42



Key ldea: Use Recursion Greedily

mpg values:

_

bad good

root

22 18

pchance = 0.001

o

cylinders = 3 || cylinders = 4 || cylinders =5 | cylinders = 6 | cylinders = 8
00 4 17 10 8 0 9 1
Predict bad Predict good Predict bad Predict bad Predict bad

\

Build tree from
These records..

Build tree from
These records..

Build tree from
These records..

Build tree from
These records..

! Records in

Records in which cylinders
which cylinders =8
. Records in =6
Racords in which cylinders
which cylinders =5
=4
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Second Level

mpg values: bad good

root
22 18
pchance = 0.001

—— | S~

cylinders = 3 | cylinders = 4 cylinders =5 || cylinders =6 || cylinders = 8

00 4 17 10 8 0 9 1

Predict bad | pchance =0.135 | Predict bad  Predict bad |pchance =0.085

__——— / 7 =

maker = america || maker = asia | maker = europe || horsepower = low || horsepower = medium || horsepower = high

0 10 5 2 2 00 01 90

Predict good redict good Predict bad Predict bad Predict good Predict bad

Recursively build a tree from the seven (Similar recursion in
records in which there are four cylinders h h
and the maker was based in Asia the other cases)



Full Tree

mpg values: bad good

root

22 18

pchance = 0.001

A full tree

| T

Predict bad

cylinders = 3 || cylinders = 4

pchance =0.135

cylinders =5 | cylinders =6
00 4 17 1 0

8 0

cylinders =8
9 1

— /

Predict bad  Predict bad

pchance = 0.085

0 10

maker = america || maker = asia

Predict good

maker = europe

pchance = 0.317 |pchance = 0.717

2 5 2 2 00

el B

horsepower = low || horsepower = medium || horsepower = high
01 90
Predict bad Predict good Predict bad

horsepowert = low
0 4

Predict good

_—

horsepower = medium
2 1
pchance = 0.894

horsepower = high || acceleration = low || acceleration = medium || acceleration = high
00 10 01 1 1
Predict bad Predict bad Predict good pchance = 0.717

\

7

acceleration = low

acceleration = medium

acceleration = high

modelyear = 70to74

modelyear = 75to78

modelyear = 79083

10 1 1 00 01 10 00
Predict bad (unexpandable) Predict bad Predict good Predict bad Predict bad
Predict bad
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Splitting

Would we prefer to split on X, or X,?

t/x1\f 22
Y=t:4  y=t:1 Y=t:3 v=t:2
Y=Ff:0 Y=f:3 Y=f:1 Y=f:2

ldea: use counts at leaves to define
probability distributions, so we can
measure uncertainty!

Pe

>
N

m|m|m|m|A|H]H ]|

M |M|A |||

Use entropy-based measure (Information Gain)
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