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Outline

• Linear Discriminant Analysis (LDA)

• Lab (logistic regression, LDA, kNN)

• Feature selection

– Wrapper

– Filter

– Embedded methods

• Decision trees

– Information Gain
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Cross Validation

• CV can be used for

– Hyper-parameter selection

– Comparing different models and features

• 1. k-fold Cross-Validation

– Split data into k partitions of equal size

Compute error metrics in each fold
Average error across folds
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LDA

• Classify to one of k classes

• Logistic regression computes directly

– P 𝑌 = 1 𝑋 = 𝑥

– Assume sigmoid function

• LDA uses Bayes Theorem to estimate it

– P 𝑌 = 𝑘 𝑋 = 𝑥 =
P 𝑋 = 𝑥 𝑌 = 𝑘 P[𝑌=𝑘]

P[𝑋=𝑥]

– Let 𝜋𝑘 = P[𝑌 = 𝑘] be the prior probability of class 
k and 𝑓𝑘 𝑥 = P 𝑋 = 𝑥 𝑌 = 𝑘
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LDA

Assume 𝑓𝑘 𝑥 is Gaussian!
Unidimensional case (d=1)

Assumption: 𝜎1 = …𝜎𝑘 = σ
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LDA decision boundary

Pick class k to maximize 

Example: 𝑘 = 2, 𝜋1 = 𝜋2
Classify as class 1 if 𝑥 >

𝜇1+𝜇2

2𝜎

True decision boundary Estimated decision boundary
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LDA in practice

Given training data 𝑥(𝑖), 𝑦(𝑖) , 𝑖 = 1, … , 𝑛, 𝑦(𝑖) ∈ {1, … , 𝐾}

1. Estimate mean 
and variance

2. Estimate prior

Given testing point 𝑥, predict k that maximizes:

𝑥(𝑖)

(𝑥(𝑖)− Ƹ𝜇𝑘)
2
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LDA vs Logistic Regression
• Logistic regression computes directly Pr 𝑌 = 1 𝑋 = 𝑥 by 

assuming sigmoid function

– Uses Maximum Likelihood Estimation

– Discriminative Model

• LDA uses Bayes Theorem to estimate it

– Estimates mean, co-variance, and prior from training data

– Generative model

– Assumes Gaussian distribution for 𝑓𝑘 𝑥 = Pr 𝑋 = 𝑥 𝑌 = 𝑘

• Which one is better?

– LDA can be sensitive to outliers

– LDA works well for Gaussian distribution

– Logistic regression is more complex to solve, but more 
expressive
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Lab
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Lab Logistic Regression

Train on data before 2005
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Lab Logistic Regression

Test on data in 2005
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Lab LDA
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Lab kNN
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Linear models

• Perceptron

• Logistic regression

• LDA 

𝑀𝑎𝑥𝑘
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Supervised Learning 

Data
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Feature 
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Learning 

model
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New 
data

Unlabeled

Learning 
model

Predictions

Healthy
Sick

Normalization Feature 
Selection

Price
Risk score

Classification Regression
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Example: Email Classification
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Bag-of-Words

Boston

Could also use frequency
- 𝑓𝑖 𝑥 is the number of times word i appears in 𝑥
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Representation

• Large number of words in dictionary (>50,000)
• Very sparse representation (many features set at 0)
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Feature selection

• Feature Selection

• Process for choosing an optimal subset of features
according to a certain criteria

• Why we need Feature Selection:

1. To improve performance (in terms of speed,
predictive power, simplicity of the model).

2. To visualize the data for model selection.

3. To reduce dimensionality and remove noise.
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Feature Search Space

Exponentially large!
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Methods for Feature Selection

• Wrappers
– Select subset of features that gives best prediction 

accuracy (using cross-validation)

– Model-specific

• Filters
– Compute some statistical metrics (correlation 

coefficient, mutual information)

– Select features with statistics higher than threshold

• Embedded methods
– Feature selection done as part of training

– Example: Regularization (Lasso, L1 regularization)
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Feature Engineering

• Feature engineering is crucial to getting good 
results

• Strategy: overshoot and regularize
– Define as many features as you can

– Use regularization for models that support it

– Use other feature selection methods (e.g., filters) 
otherwise

• Do cross-validation to evaluate selected features 
on multiple runs

• When feature selection is frozen, evaluate on test 
set
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Wrappers: Search Strategy

d 2𝑑
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Wrappers: Sequential Forward 
Selection

Backward feature selection starts with all features 
and eliminates backward

accuracy on validation set
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Search complexity for sequential 
forward selection

2𝑑

• Evaluates 
𝑑 𝑑+1

2
features sets instead of 2𝑑
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Cross Validation

• k-fold CV

– Split data into k partitions of equal size

• Leave-one-out CV (LOOCV)

– k=n (validation set only one point)

Select set of features with best validation performance
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Filters
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Search Complexity for Filter Methods
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Embedded methods: Regularization

• L1 norm for regularization

• No closed form solution

• Algorithms based on gradient descent or 
quadratic programming

𝐽 𝜃 = 

𝑖=1

𝑛

ℎ𝜃 𝑥 𝑖 − 𝑦(𝑖)
2
+ 𝜆

𝑗=1

𝑑

|𝜃𝑗|

Squared 
Residuals

Regularization
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Lasso regression



Embedded methods: Regularization
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Summary: Feature Selection
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Summary: Feature Selection
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Summary: Feature Selection

- Can add regularization in 
optimization objective

- Can be solved with Gradient 
Descent

- Can be applied to many 
models (e.g., linear or 
logistic regression)

- Can not be applied to all 
methods (e.g., kNN)
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Summary: Feature Selection
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Outline

• Linear Discriminant Analysis (LDA)

• Lab (logistic regression, LDA, kNN)

• Feature selection

– Wrapper

– Filter

– Embedded methods

• Decision trees

– Information Gain
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Sample Dataset

Categorical 
data
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Decision Tree
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Decision Tree
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Decision Tree Learning
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Expressiveness

XOR cannot be learned with linear classifiers
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Occam’s Razor
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Learning Decision Trees
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Key Idea: Use Recursion Greedily
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Second Level
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Full Tree
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Splitting

Use entropy-based measure (Information Gain)
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