DS 4400

Machine Learning and Data Mining I

Alina Oprea Associate Professor, CCIS Northeastern University

January 8 2019

Welcome to DS 4400!

Machine Learning and Data Mining I

Introductions

Background

- Ph.D. at CMU
 - Research in storage security & cryptographic file systems
- RSA Laboratories
 - Cloud security, applied cryptography
 - Security analytics (ML in security)
- NEU CCIS since Fall 2016
 - ML for security applications (attack detection, IoT, connected car security)
 - Adversarial ML (study the vulnerabilities of ML in face of attacks and design defenses)

Class Introductions

- Enrollment of 27
- Diverse majors
 - -CCIS
 - Math
 - Economics
 - Biology
 - Engineering

Machine learning is everywhere

Natural Language Processing (NLP)

- Understand language semantics
- Real-time translation, speech recognition

Autonomous vehicles

- Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication
- Assist drivers in making decisions to increase safety

Personalized medicine

- Treatment adjusted to individual patients
- Predictive models using a variety of features related to patient history and genetics

Playing games

Reinforcement learning

- AlphaGo
- Chess

DS-4400

- What is *machine learning*?
 - The science of teaching machines how to learn
 - Design predictive algorithms that learn from data
 - Replace humans in critical tasks
 - Subset of Artificial Intelligence (AI)
- Machine learning very successful in:
 - Machine translation
 - Precision medicine
 - Recommendation systems
 - Self-driving cars
- Why the hype?
 - Availability: data created/reproduced in 2010 reached 1,200 exabytes
 - Reduced cost of storage
 - Computational power (cloud, multi-core CPUs, GPUs)

DS-4400 Course objectives

- Become familiar with machine learning tasks
 - Supervised learning vs unsupervised learning
 - Classification vs Regression vs Clustering
- Study most well-known algorithms and understand their details
 - Regression (linear regression)
 - Classification (SVM, decision trees, neural networks)
 - Clustering (k-means, hierarchical clustering)
- Learn to apply ML algorithms to real datasets

 Using existing packages in R and Python
- Learn about security challenges of ML

 Introduction to adversarial ML

http://www.ccs.neu.edu/home/alina/classes/Spring2019

Class Outline

- Introduction 1 week
 - Probability and linear algebra review
- Supervised learning 7 weeks
 - Linear regression
 - Classification (logistic regression, LDA, kNN, decision trees, random forest, SVM, Naïve Bayes)
 - Model selection, regularization, cross validation
- Neural networks and deep learning 2 weeks
 - Back-propagation, gradient descent
 - NN architectures (feed-forward, convolutional, recurrent)
- Unsupervised learning 1-2 weeks
 - Dimensionality reduction (PCA)
 - Clustering (k-means, hierarchical)
- Adversarial ML 1 lecture
 - Security of ML at testing and training time

Textbook

An Introduction to Statistical Learning

with Applications in R

Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani

This haste answides an interdention to statistical learning matheds. It is simed for suman level surdanges dents students

Specific chapters will be covered

Other resources

- Trevor Hastie, Rob Tibshirani, and Jerry
 Friedman, <u>Elements of Statistical Learning</u>, Second Edition, Springer, 2009.
- Christopher Bishop. <u>Pattern Recognition and Machine</u> <u>Learning</u>. Springer, 2006.
- Ian Goodfellow and Yoshua Bengio and Aaron Courville. <u>Deep Learning</u>. MIT Press. 2016

Policies

Instructors

- Alina Oprea
- TA: Ewen Wang
- Schedule
 - Tue 11:45am 1:25pm, Thu 2:50-4:30pm
 - Shillman Hall 210
 - Office hours:
 - Alina: Thu 4:30 6:00 pm (ISEC 625)
 - Ewen: Monday 5:30-6:30pm (ISEC 605)
- Online resources
 - Slides will be posted after each lecture
 - Use Piazza for questions, Gradescope for homework and project submission

Policies, cont.

- Your responsibilities
 - Please be on time, attend classes, and take notes
 - Participate in interactive discussion in class
 - Submit assignments/ programming projects on time
- Late days for assignments
 - 5 total late days, after that loose 20% for every late day
 - Assignments are due at 11:59pm on the specified date
 - No need to email for late days, Gradescope shows submission time

Grading

- Assignments 25%
 - 4-5 assignments and programming exercises based on studied material in class
- Final project 35%
 - Select your own project based on public dataset
 - Submit short project proposal and milestone
 - Presentation at end of class (10 min) and report
- Exam 35%
 - One exam about 3/4 in the class
 - Tentative end of March
- Class participation 5%

- Participate in class discussion and on Piazza

Assignments

- Mostly programming exercises, occasionally some theory questions
- Language
 - Use R or Python
 - Jupyter notebooks recommended
- Submission
 - Submit PDF report in Gradescope
 - Includes all the results, as well as link to code and instructions to run it

Final project

- Goal: work on a larger data science project
 - Build your portfolio and increase your experience
- Requirements
 - Large dataset: at least 10,000 records (public source)
 - Not recommended to collect your own data
 - Pick application of interest, but instructor will also provide potential list of projects
 - Experiment with at least 3 ML models
 - Perform in-depth analysis (which features contribute mostly to prediction, which model performs best)

• Timeline

- Proposal: mid class; milestone 2-3 weeks after (Instructor will provide early feedback)
- Final presentation (10 mins) and report (5-6 pages)

Academic Integrity

- Homework is done individually!
- Final project is done individually!
- Rules
 - Can discuss with colleagues or instructor
 - Can post and answer questions on Piazza
 - Code cannot be shared with colleagues
 - Cannot use code from the Internet
 - Use python or R packages, but not directly code for ML analysis written by someone else
- NO CHEATHING WILL BE TOLERATED!
- Any cheating will automatically result in grade F and report to the university administration
- <u>http://www.northeastern.edu/osccr/academic-integrity-policy/</u>

Outline

- Supervised learning
 - Classification
 - Regression
- Unsupervised learning
 - Clustering
- Bias-Variance Tradeoff
- Occam's Razor

Slides adapted from

- A. Zisserman, University of Oxford, UK
- S. Ullman, T. Poggio, D. Harari, D. Zysman, D Seibert, MIT
- D. Sontag, MIT
- Figures from "An Introduction to Statistical Learning", James et al.

Introduction

- What is Machine Learning?
 - Subset of AI
 - Design algorithms that learn from real data and can automate critical tasks
- When can it be applied?
 - It cannot solve any problem!
 - When task can be expressed as learning task
 - When high-quality data is available
 - Labeled data (by human experts) is preferable!
 - When some error is acceptable (can rarely achieve 100% accuracy)
 - Example: recommendation system, advertisement engine

Example 1 Handwritten digit recognition

Images are 28 x 28 pixels

Represent input image as a vector $\mathbf{x} \in \mathbb{R}^{784}$ Learn a classifier $f(\mathbf{x})$ such that,

 $f:\mathbf{x} \to \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

MNIST dataset: Predict the digit Multi-class classifier

Data Representation

Model the problem

As a supervised classification problem

Start with training data, e.g. 6000 examples of each digit

- Can achieve testing error of 0.4%
- One of first commercial and widely used ML systems (for zip codes & checks)

Classification

- Suppose we are given a training set of N observations
- $x^{(1)}, \dots, x^{(N)}$ and $y^{(1)}, \dots, y^{(N)} \in \{0, 1\}$ Binary
- Classification problem is to estimate f(x) from this data such that

$$f(x^{(i)}) = y^{(i)}$$

Extended to multi-class classification

Handwritten digit recognition

Supervised Learning: Classification

Training

Testing

Example Classifiers

Nearest Neighbors (kNN)