CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

April 12 2018

Historical cryptography

Cryptography ≈ Encryption Main applications: **military and diplomacy**

ancient times

world war II

Modern cryptography

Cryptography based on rigorous science/math

multiparty-computations zero-knowledge threshold crypto electronic auctions electronic voting crypto currencies private info public-key cryptography retreival signature schemes computation in cloud rigorous definitions now

information theory

post-war

sevenites

3

Course objectives

- Introduction to basic cryptographic primitives
 - Secret-key cryptography
 - Public-key cryptography
 - Threat models
- Modern cryptographic protocol design
 - Sound, rigorous proofs of security
 - Understand fundamental assumptions
- Applications
 - Secure network communication, TLS, crypto currencies

http://www.ccs.neu.edu/home/alina/classes/Spring2018

What we covered

Key distribution / PKI	TLS / HTTPS	Crypto currencies
Public-key cryptography Key exchange Trapdoor functions and permutations Secure encryption (CPA, CCA) Digital signatures 		 Definitions of security Relationships between primitives Secure and insecure
Collision-Resistant Hash Functions		constructionsSecurity proofs by reduction
Symmetric-key of Pseudorandom generat Pseudorandom function Secure encryption (EAV Message Authenticatio	cryptography cors ns and permutations 7, CPA, CCA) n Codes (MACs)	 Standards for cryptographic primitives

Takeaway 1: Kerckhoffs' principle

Auguste Kerckhoffs (1883):

The enemy knows the system

The cipher should remain secure even if the adversary knows the specification of the cipher.

The only thing that is **secret** is a

key k

that is usually chosen uniformly at random

Takeaway 2: Computational Security

Typically, we will say that a scheme C is secure if

- Scheme C and the adversary A take input security parameter.
- 2 relaxations of perfect security
 - PPT adversary
 - Adversary can succeed, but with very small probability (negligible)

Can be used as a PRF or PRP Building block in many constructions

Takeaway 4: Encryption modes CBC encryption

Let F be a PRP; F: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ - use AES Enc_{CBC}(k,m): choose <u>random</u> IV $\in \{0,1\}^n$ and do:

Takeaway 5: Relation between security notions

- CPA security implies EAV security
- CCA security implies CPA security

Symmetric-key world

- CPA security strictly stronger than EAV security
- CCA security strictly stronger than CPA security Public-key world
- CPA security is equivalent to EAV security

Takeaway 6: Padding might be vulnerable

Takeaway 7: Encryption does not provide integrity!

- Stream ciphers
 - Enc(k, m) = m \oplus G(k), G a secure PRG
 - Modify 1 bit in c implies one bit modification in the decrypted message
- Block ciphers
 - CTR: Enc is one-time pad with output of PRF function
 - Can modify the ciphertext and decrypt to a different message

Need another primitive: MACs

Takeaway 8: Order of encryption and integrity matters!

Takeaway 9: Hash functions have many applications

- Design MACs and digital signatures
- Merkle trees (Blockchain, Git)
- Password management

Takeaway 10: Key exchange without trusted party is possible!

Goal: Alice and Bob want shared secret, unknown to eavesdropper

Takeaway 11: Public-key cryptography relies on number theory

Consider the set of integers: $C(n) := \{ N = p \cdot q, p, q are n-bit primes \}$

RSA assumption: Taking modular roots $c^{1/e}$ in Z_{N}^{*} is hard

Let **G** be a finite cyclic group and **g** generator of G $G = \{1, g, g^2, g^3, ..., g^{q-1}\}, order(G) = q$

DDH assumption: For all PPT adversaries A:

 $|\Pr[A(g^x,g^y,g^{xy})=1] - \Pr[A(g^x,g^y,g^z)=1]|$ is negligible.

x, y, z are chosen at random in {1,...q-1}

Takeaway 12: Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e)
- secret key: (N,d)

Encrypt: $\mathbf{c} \leftarrow \mathbf{m}^{e} \mod \mathbf{N}$ Decrypt: $\mathbf{c}^{d} \rightarrow \mathbf{m} \mod \mathbf{N}$

Insecure cryptosystem !!

- Is not CPA secure and many attacks exist
- Deterministic encryption

⇒ The RSA trapdoor permutation is not an encryption scheme !

Takeaway 13: RSA trapdoor is a building block for secure encryption

Theorem [FOPS'01]: RSA is a trapdoor permutation \Rightarrow RSA-OAEP is CCA secure when H,G are random functions

in practice: use SHA-256 for H and G

Takeaway 14: Converting Diffie-Hellman to public-key encryption

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order q Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{q-1}\}$)

<u>Alice</u>	Bob
choose random X in {1,,	q} choose random y in {1,,q}
$h = g^{X}$	
	compute k=g ^{xy} = h ^y
To decrypt (u,c):	$Enc(m) = [u=g', c= k \cdot m]$
<	
compute $k = u^{x}$	El-Gamal encryption scheme
and decrypt $m = k^{-1} \cdot c$	CPA secure based on DDH assumption

Takeaway 15: RSA trapdoor can be used to design digital signatures

N = pq, such that p and q are large random primes e is such that $gcd(e, \phi(N)) = 1$ d is such that $ed = 1 \pmod{\phi(N)}$

Sign_d:
$$Z_N^* \rightarrow Z_N^*$$
 is defined as:
Sign(m) = H(m)^d mod N.

Ver_eis defined as: Ver_e(m,σ) = yes iff σ^e = H(m) (mod N)

Hash-and-sign paradigm

Takeaway 16: Cryptographic design is modular

TLS Handshake

1. Get server public key	PKI								
2. Set up pre-master secret	RSA public-key encryption		/	Diffie-Hellman					
				Koy dori	ivat	ion			
3. Derive 4 secret keys	PRG			function		1011			
TLS Record		Auth	enti	cated					
4. Secure communication		encryption							
Composition									
CPA		CBC-AES		CTR-AES					
Secure MAC		CBC-MAC		HMAC		21			

Takeaway 17: Distributed ledger applications on the rise

Cryptographic Primitives

Cryptographic PRG

Pseudorandom Functions

We say that F is a pseudorandom function (PRF) family if for all PPT distinguisher D the probability to correctly distinguish scenario 0 from scenario 1 is negligible.

Formally: For all PPT distinguisher D:
Pr[D outputs "1" in scenario 0] – Pr[D outputs "1" in scenario 1] | is negligible in n

$$|Pr[D^{F_k(\cdot)}(n) = 1] - Pr[D^{f(\cdot)}(n) = 1]| \le negl(n)$$

Polynomial number of queries to oracle

CPA security definition

• Experiment $\operatorname{Exp}_{\Pi,A}^{\operatorname{CPA}}(n)$: 1. Choose $k \leftarrow^R Gen(1^n)$ 2. $m_0, m_1 \leftarrow A_1^{Enc_k(\cdot)}(\cdot)$ 3. $b \leftarrow^R \{0,1\}; c \leftarrow Enc_k(m_b)$ 4. $b' \leftarrow A_2^{Enc_k(\cdot)}(m_0, m_1, c)$ 5. Output 1 if b = b' and 0 otherwise

We say that (Enc,Dec) is chosen-plaintext attack (CPA) secure if

For every **PPT** adversary $A = (A_1, A_2)$: |**Pr**[Exp^{CPA}_{II,A}(n) = **1**]- ½ | negligible in n

CCA security definition

• Experiment $\operatorname{Exp}_{\Pi,A}^{\operatorname{CCA}}(n)$: 1. Choose $k \leftarrow^R Gen(1^n)$ 2. $m_0, m_1 \leftarrow A_1^{Enc_k(\cdot), Dec_k(\cdot)}(\cdot)$ 3. $b \leftarrow^R \{0,1\}; c \leftarrow Enc_k(m_b)$ 4. $b' \leftarrow A_2^{Enc_k(\cdot), Dec_k(\cdot)}(m_0, m_1, c)$ 5. Output 1 if b = b' and 0 otherwise

We say that (Enc,Dec) is chosen-ciphertext attack (CCA) secure if

For every **PPT** adversary $A = (A_1, A_2)$: |**Pr**[Exp^{CCA}_{II,A}(n) = **1**]- ½ | negligible in n

Security experiment for MAC

- Experiment $\text{Exp}_{\Pi,A}^{\text{MAC}}(n)$:
 - 1. Choose $k \leftarrow Gen(n)$
 - 2. $m,t \leftarrow A^{Tag()}(n)$
 - Output 1 if Ver(*m*,*t*) = 1 and *m* was not queried to the Tag() oracle
 - 4. Output 0 otherwise

We say that (Gen, Tag, Ver) is a secure MAC if:

For every **PPT** adversary
$$A = (A_1, A_2)$$
:
Pr[Exp^{MAC} _{Π, A} (*n*) = **1**] is negligible in n

Hash functions – the security definition

H is a collision-resistant hash function if

Pr[A outputs m, m' such that H(m)=H(m')] is negligible polynomial-time adversary A

Security experiment for Signatures

- Experiment $\text{Exp}_{\Pi,A}^{\text{Sign}}(n)$:
 - 1. Choose $(pk,sk) \leftarrow Gen(n)$

2.
$$m, \sigma \leftarrow A^{Sign_{sk}()}(pk)$$

- 3. Output 1 if $Ver_{pk}(m, \sigma) = 1$ and m was not queried to the Sign() oracle
- 4. Output 0 otherwise

(Gen,Tag,Ver) is a secure (existential unforgeable) signature if:

For every **PPT** adversary *A*: **Pr**[Exp $_{\Pi,A}^{\text{Sign}}(n) = 1$] is negligible in n

