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Review

• CPA-secure construction
– Security proof by reduction to PRF
– Randomized 

• How to design block ciphers
– Substitution Permutation Networks
– Feistel Networks
– Multiple rounds

• DES
– Feistel Network

• AES
– Substitution Permutation Network
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Block Ciphers Built by Iteration

R(k,m) is called a round function

for  DES (n=16),      for AES-128  (n=10)
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Substitution-Permutation Network

Key mixing

Substitution

Permutation

Round key

S-box
Fixed permutation

Invertible

S boxes and  mixing permutation are public 4



Feistel Networks

𝐿𝑖 = 𝑅𝑖−1
𝑅𝑖 = 𝐿𝑖−1⊕ 𝑓𝑖(𝑅𝑖−1)

• Functions 𝑓𝑖 are public
• Round key is derived from main key and secret
• Advantage: 𝑓𝑖 not invertible!

Given functions    f1, …, fd:   {0,1}n ⟶ {0,1}n

Often fi(x) = Fki
(x), for ki secret keys and F a PRF

Goal:    build invertible function (PRP)   F: {0,1}2n ⟶ {0,1}2n
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DES:    16 round Feistel network

f1, …, f16:   {0,1}32 ⟶ {0,1}32 ,      fi(x) = F( ki, x ) 
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key expansion

k1 k2 k16⋯

To invert, use keys in reverse order
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The function    F(ki, x)

S-box:  function {0,1}6 ⟶ {0,1}4  ,  implemented as look-up table.

Key mixing

Substitution

Permutation

Substitution-
Permutation 

Network
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The AES process

• 1997:   NIST publishes request for proposal

• 1998:  15 submissions.     Five claimed attacks.

• 1999:   NIST chooses 5 finalists

• 2000:   NIST chooses Rijndael as AES    (designed in 
Belgium)

Key sizes:   128, 192, 256 bits.        

Block size:  128 bits
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AES is a Subs-Perm network (not Feistel)
in
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AES-128 schematic
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The round function

• ByteSub:    a 1 byte S-box.    256 byte table  
(non- linear, but easily computable

• ShiftRows:  

• MixColumns:

𝐴 𝑖, 𝑗 ← 𝑆 𝐴 𝑖, 𝑗 , ∀𝑖, 𝑗
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Code size/performance tradeoff

Code size Performance

Pre-compute
round functions
(24KB or 4KB)

largest
fastest:

table lookups 
and xors

Pre-compute 
S-box only (256 bytes)

smaller slower

No pre-computation smallest slowest
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AES in hardware

AES instructions in Intel Westmere:

• aesenc,  aesenclast:    do one round of AES

128-bit registers:  xmm1=state,   xmm2=round key

aesenc xmm1, xmm2   ;   puts result in xmm1  

• aeskeygenassist:    performs AES key expansion

• Claim  14 x speed-up over OpenSSL on same 
hardware 

Similar instructions on AMD Bulldozer 
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Attacks

Best key recovery attack:  
four times better than ex. search  [BKR’11]

Related key attack on AES-256:    [BK’09]

Given  299  inp/out  pairs from four related keys 
in AES-256

can recover keys in time ≈299
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Block ciphers

• Suggestions:  

– Don’t think about the inner-workings of AES and 
3DES.

– Don’t implement them yourselves

• We assume both are secure PRPs and will 
see how to use them
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Incorrect use of block cipher

Electronic Code Book (ECB):

Problem:   
– if    m1=m2 then   c1=c2

PT:

CT:

m1 m2

c1 c2

Not EAV-secure!
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In pictures

(courtesy B. Preneel)
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CBC encryption

Let F be a PRP; F: K × {0,1}n ⟶ {0,1}n

EncCBC(k,m):    choose random IV∈ {0,1}n and do:

F(k,) F(k,) F(k,)

m[1] m[2] m[3] m[L]IV

 

F(k,)



c[1] c[2] c[3] c[L]IV

ciphertext

18𝑐𝑖 = 𝐹𝑘(𝑐𝑖−1⊕𝑚𝑖)



Decryption circuit

F-1(k,) F-1(k,) F-1(k,)

m[1] m[2] m[3] m[L]

 

F-1(k,)



c[1] c[2] c[3] c[L]IV

In symbols:    c[1] = Fk( IV⨁m[1] ) ⇒ m[1] = Fk
-1(c[1])⨁ IV

19𝑚𝑖 = F−1
𝑘(𝑐𝑖) ⊕ 𝑐𝑖−1



CBC Theorem:     For any L>0 number of blocks,

If F is a secure PRP over (K, {0,1}n ) then 

EncCBC is CPA-secure over (K, {0,1}nL, {0,1}n(L+1)).

In particular,  for a q-query adversary A attacking EncCBC

there exists a PRP adversary B  s.t.:

Pr[ExpEnc
CBC

,𝐴
CPA 𝑛 = 1] ≤ 1/2 + 2AdvF,𝐵

PRP+ 2 q2 L2 /2n

AdvE,𝐵
PRP = |𝑷𝒓 𝑩𝑭𝒌 ⋅ ,𝑭𝒌

−𝟏 ⋅ 𝒏 = 𝟏 − 𝑷𝒓[𝑩𝒇 ⋅ ,𝒇−𝟏 ⋅ 𝒏 |

Note:    CBC is only secure as long as   q2L2 <<  2n

CBC:    CPA Analysis
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An example

q = # messages encrypted with k 
L = length of max message

Suppose we want Pr[ExpEncCBC𝐴
CPA 𝑛 = 1] ≤ 1/2 +  1/232 

q2 L2 /2n < 1/ 232

• AES:  2n = 2128 ⇒ q L < 248

So, after  248 AES blocks, must change key

• 3DES: 2n = 264 ⇒ q L < 216

Pr[ExpE
CBC

,𝐴
CPA 𝑛 = 1] ≤ 1/2+AdvE,𝐵

PRP+ 2 q2 L2 /2n
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Attack on CBC with predictable IV

CBC where attacker can predict the IV is not CPA-secure !!

Suppose  given  c ⟵ EncCBC(k,m)   can predict next IV 

Chal. Adv.

kK
m0=IV⨁IV1 ,   m1 ≠ m0

c  [ IV, Fk(IV1) ]   or

0  {0,1}n

c1  [ IV1,  Fk( 0⨁IV1) ]

output 0
if c[1] = c1[1]

predict IV

Bug in SSL/TLS 1.0:  IV for record #i is last CT block of record #(i-1)

c  [ IV, Fk(m1⨁IV) ]
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CTR-mode encryption

m[1] m[2] …

F(k,IV) F(k,IV+1) …

m[L]

F(k,IV+L)


c[1] c[2] … c[L]

IV

IV

note:  parallelizable (unlike CBC)

msg

ciphertext

Let F: K × {0,1}n ⟶ {0,1}n be a secure PRF.

Enc(k,m):   choose a random  IV  {0,1}n    and do:

23𝑐𝑖 = 𝐹𝑘(𝐼𝑉 + 𝑖) ⊕𝑚𝑖



Comparison:  CTR vs. CBC

CBC CTR mode

Uses PRP PRF

Parallel processing No Yes

Security q^2 L^2  << 2n q^2 L  << 2n

Dummy padding block Yes No
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A CBC technicality:  padding

F(k,) F(k,) F(k,)

m[1] m[2] m[3] m[L]  ll pad

 

F(k,)



c[1] c[2] c[3] c[L]IV

IV

TLS:    for n>0,   n byte pad is

if no pad needed, add a dummy block

n n ⋯n n 
removed
during
decryption
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TLS bugs in older versions

IV for CBC is predictable:     (chained IV)

- IV for next record is last ciphertext block of 
current record.

- Not CPA secure. 

Padding oracle:     during decryption

- If pad is invalid send decryption failed alert

- If mac is invalid send bad_record_mac alert

⇒ attacker learns information about plaintext 

Lesson:   when decryption fails, do not explain why
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Recap

• To encrypt longer messages, use CBC or CTR 
mode
– CPA security

• CTR mode has some advantages
– Parallelizable

– Better security

• CBC encryption with padding is vulnerable to 
padding oracle attack

• Authenticated encryption schemes are CCA 
secure
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