CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

February 8 2018

Review

- CPA-secure construction
 - Security proof by reduction to PRF
 - Randomized
- How to design block ciphers
 - Substitution Permutation Networks
 - Feistel Networks
 - Multiple rounds
- DES
 - Feistel Network
- AES
 - Substitution Permutation Network

Block Ciphers Built by Iteration

R(k,m) is called a *round function*

for DES (n=16), for AES-128 (n=10)

Substitution-Permutation Network

S boxes and mixing permutation are public

Feistel Networks

Given functions $f_1, ..., f_d: \{0,1\}^n \longrightarrow \{0,1\}^n$ Often $f_i(x) = F_{k_i}(x)$, for k_i secret keys and F a PRF

Goal: build invertible function (PRP) $F: \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$

- Functions f_i are public
- Round key is derived from main key and secret
- Advantage: *f*_i not invertible!

DES: 16 round Feistel network

 $f_1, \, ..., \, f_{16} \!\!\!: \ \{0,1\}^{32} \ \longrightarrow \ \{0,1\}^{32} \ , \ f_i(x) = \textbf{F}(\ k_i, \, x \)$

S-box: function $\{0,1\}^6 \longrightarrow \{0,1\}^4$, implemented as look-up table.

The AES process

- 1997: NIST publishes request for proposal
- 1998: 15 submissions. Five claimed attacks.
- 1999: NIST chooses 5 finalists
- 2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits.

Block size: 128 bits

AES is a Subs-Perm network (not Feistel)

AES-128 schematic

The round function

• **ByteSub**: a 1 byte S-box. 256 byte table (non-linear, but easily computable

 $A[i,j] \leftarrow S\big[A[i,j]\big], \forall i,j$

• ShiftRows:

• MixColumns:

Code size/performance tradeoff

	Code size	Performance
Pre-compute round functions (24KB or 4KB)	largest	fastest: table lookups and xors
Pre-compute S-box only (256 bytes)	smaller	slower
No pre-computation	smallest	slowest

AES in hardware

AES instructions in Intel Westmere:

- aesenc, aesenclast: do one round of AES
 128-bit registers: xmm1=state, xmm2=round key
 aesenc xmm1, xmm2 ; puts result in xmm1
- aeskeygenassist: performs AES key expansion
- Claim 14 x speed-up over OpenSSL on same hardware

Similar instructions on AMD Bulldozer

Attacks

Best key recovery attack: four times better than ex. search [BKR'11]

Related key attack on AES-256: [BK'09] Given 2⁹⁹ inp/out pairs from four related keys in AES-256

can recover keys in time $\approx 2^{99}$

Block ciphers

- Suggestions:
 - Don't think about the inner-workings of AES and 3DES.
 - Don't implement them yourselves

 We assume both are secure PRPs and will see how to use them

Incorrect use of block cipher

Electronic Code Book (ECB):

<u>Problem</u>: $- if m_1 = m_2$ then $c_1 = c_2$

Not EAV-secure!

In pictures

(courtesy B. Preneel)

CBC encryption

Let F be a PRP; F: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ Enc_{CBC}(k,m): choose <u>random</u> IV $\in \{0,1\}^n$ and do:

Decryption circuit

In symbols:
$$c[1] = F_k(IV \oplus m[1]) \implies m[1] =$$

$$m_i = F^{-1}_k(c_i) \oplus c_{i-1}$$

CBC: CPA Analysis

<u>CBC Theorem</u>: For any L>0 number of blocks, If F is a secure PRP over (K, {0,1}ⁿ) then Enc_{CBC} is CPA-secure over (K, {0,1}^{nL}, {0,1}^{n(L+1)}).

In particular, for a q-query adversary A attacking Enc_{CBC} there exists a PRP adversary B s.t.:

 $\Pr[\exp_{\text{Enc}_{CBC'}A}^{CPA}(n) = 1] \le 1/2 + 2\text{Adv}_{F,B}^{PRP} + 2 q^2 L^2 / 2^n$

$$\operatorname{Adv}_{\mathrm{E},B}^{\mathrm{PRP}} = |\mathbf{Pr}\left[\mathbf{B}^{F_{k}(\cdot),F_{k}^{-1}(\cdot)}(\mathbf{n}) = \mathbf{1}\right] - \mathbf{Pr}\left[\mathbf{B}^{f(\cdot),f^{-1}(\cdot)}(\mathbf{n})\right]$$

Note: CBC is only secure as long as $q^2L^2 << 2^n$

An example

 $\Pr[\exp_{E_{CBC'}A}^{CPA}(n) = 1] \le 1/2 + Adv_{E,B}^{PRP} + 2 q^2 L^2 / 2^n$

- q = # messages encrypted with k
- L = length of max message

Suppose we want $\Pr[\exp_{\text{Enc}_{CBC}A}^{CPA}(n) = 1] \le 1/2 + 1/2^{32}$

 $q^2 L^2 / 2^n < 1 / 2^{32}$

• AES: $2^n = 2^{128} \implies q L < 2^{48}$

So, after 2⁴⁸ AES blocks, must change key

• 3DES:
$$2^n = 2^{64} \implies q L < 2^{16}$$

Attack on CBC with predictable IV

CBC where attacker can <u>predict</u> the IV is not CPA-secure !!

Suppose given $c \leftarrow Enc_{CBC}(k,m)$ can predict next IV

Bug in SSL/TLS 1.0: IV for record #i is last CT block of record #(i-1)

CTR-mode encryption

Let F: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ be a secure PRF.

Enc(k,m): choose a random $IV \in \{0,1\}^n$ and do:

note: parallelizable (unlike CBC)

$$c_i = F_k(IV + i) \oplus m_i$$

Comparison: CTR vs. CBC

	CBC	CTR mode
Uses	PRP	PRF
Parallel processing	No	Yes
Security	q^2 L^2 << 2 ⁿ	q^2 L << 2 ⁿ
Dummy padding block	Yes	No

A CBC technicality: padding

TLS bugs in older versions

IV for CBC is predictable: (chained IV)

- IV for next record is last ciphertext block of current record.
- Not CPA secure.
- Padding oracle: during decryption
- If pad is invalid send decryption failed alert
- If mac is invalid send bad_record_mac alert
- ⇒ attacker learns information about plaintext

Lesson: when decryption fails, do not explain why

Recap

- To encrypt longer messages, use CBC or CTR mode
 - CPA security
- CTR mode has some advantages
 - Parallelizable
 - Better security
- CBC encryption with padding is *vulnerable to padding oracle attack*
- Authenticated encryption schemes are CCA secure

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/