CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

February 5 2018

Review

- Relation between PRF and PRG
 - Construct PRF from PRG (GGM construction)
- Pseudorandom permutations
- Definitions of security for encryption
 - CPA/CCA security
 - Relations between definitions
- CPA-secure construction
 - Security proof
 - Reduction to PRF

How to encrypt using PRF?

Proof of security - Intuition

Proof of security - Intuition

1. Success of adversary to break **I** and **I**' in CPA game is similar

Under the assumption that F is a PRF!

2. Success of adversary to break **I**' in CPA game is negligible

Proof of security – step 2

2. Success of adversary to break **I**' in CPA game is negligible

For any adversary A that makes q(n) queries to Enc oracle: $\Pr[\operatorname{Exp}_{\Pi',A}^{\operatorname{CPA}}(n) = 1] - \frac{1}{2} is \operatorname{negl}(n)$

- Let A be an adversary in CPA game for Π' that makes q = q(n) queries
- For each query to Enc oracle m_1, \dots, m_q , it gets back $c_i = (r_i, f(r_i) \bigoplus m_i)$
- A picks m_0, m_1 and receives back $c = (r, f(r) \bigoplus m_b)$

Proof of security – step 2

2. Success of adversary to break **I**' in CPA game is negligible

For any adversary A that makes q(n) queries to Enc oracle: $\Pr[\operatorname{Exp}_{\Pi',A}^{\operatorname{CPA}}(n) = 1] - \frac{1}{2} is \operatorname{negl}(n)$

- Case 1 r is not used to answer the q queries to Enc : $\Pr[\exp_{\Pi',A}^{CPA}(n) = 1] = \frac{1}{2}$
- Case 2 $r \in \{r_1, \dots, r_q\}$: $\Pr[\operatorname{Exp}_{\Pi', A}^{\operatorname{CPA}}(n) = 1] = 1$ - But $\Pr[r \in \{r_1, \dots, r_q\}] \le \sum_i \Pr[r = r_i] \le q(n)/2^n$

$$\Pr[\operatorname{Exp}_{\Pi',A}^{\operatorname{CPA}}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n}$$

Wrap up

1. Success of adversary to break **I** and **I**' in CPA game is similar

Assume that F is secure PRF. For any adversary A that makes q(n) queries to Enc oracle: $|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] - \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]| \le negl(n)$

2. Success of adversary to break **I**' in CPA game is negligible

For any adversary A that makes q(n) queries to Enc oracle: $\Pr[\operatorname{Exp}_{\Pi',A}^{\operatorname{CPA}}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n}$

$$\Pr[\operatorname{Exp}_{\Pi,A}^{\operatorname{CPA}}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^n} + \operatorname{negl}(n)$$

Block ciphers: crypto work horse

Canonical examples:

1. DES: n = 64 bits, k = 56 bits

2. AES: n=128 bits, k = 128, 192, 256 bits

Block Ciphers Built by Iteration

R(k,m) is called a *round function*

for DES (n=48), for AES-128 (n=10)

Design goals

- Block ciphers should behave like random permutations
 - The number of permutation for *n*-bit strings is $(2^n)! \approx n2^n$
 - Construct set of permutations with concise description (short key)
 - Similar to security property of PRP
- Properties
 - Changing one bit of input should affect all bits of output (good mixing)
- Two main design approaches
 - Substitution-Permutation Network
 - Feistel Network

Substitution-Permutation Network

S boxes and mixing permutation are public

Three rounds of SPN

The avalanche effect

- Changing a single bit of input in S box changes at least 2 bits of output in S box
- The mixing permutations ensure that the *output bits of any S box* are used as *input to multiple S boxes* in the next round

Feistel Networks

Given functions $f_1, ..., f_d: \{0,1\}^n \longrightarrow \{0,1\}^n$

Goal: build invertible function F: $\{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$

- Functions f_i are public
- Round key is derived from main key and secret
- Advantage: *f*_i not invertible!

Claim: for all $f_1, ..., f_d$: $\{0,1\}^n \rightarrow \{0,1\}^n$ Feistel network F: $\{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ is invertible Proof: construct inverse

"Thm:" (Luby-Rackoff '85):

f: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a secure PRF

 \Rightarrow 3-round Feistel F: $K^3 \times \{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$ a secure PRP

The Data Encryption Standard (DES)

- Early 1970s: Horst Feistel designs Lucifer at IBM key-len = 128 bits ; block-len = 128 bits
- 1973: NBS asks for block cipher proposals. IBM submits variant of Lucifer.
- 1976: NBS adopts DES as a federal standard key-len = 56 bits ; block-len = 64 bits
- 1997: DES broken by exhaustive search
- 2000: NIST adopts Rijndael as AES to replace DES

DES: 16 round Feistel network

 $f_1, \, ..., \, f_{16} \!\!\!: \quad \{0,1\}^{32} \; \longrightarrow \; \{0,1\}^{32} \quad , \qquad f_i(x) = \textbf{F}(\; k_i, \, x \;)$

S-box: function $\{0,1\}^6 \longrightarrow \{0,1\}^4$, implemented as look-up table.

The S-boxes

Look up table $S_i: \{0,1\}^6 \longrightarrow \{0,1\}^4$

$x_2 x_3 x_4 x_5$

S ₅		Middle 4 bits of input															
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

 $x_1 x_6$

 $x_1 x_2 x_3 x_4 x_5 x_6$

Not invertible

Choosing the S-boxes and P-box

Choosing the S-boxes and P-box at random would result in an insecure block cipher (key recovery after ≈2²⁴ outputs) [BS'89]

Several rules used in choice of S and P boxes:

- No output bit should be close to a linear function of the input bits
- S-boxes are 4-to-1 maps (Exactly 4 inputs are mapped to each output)
- Each row in the table contains each 4-bit string exactly once
- Changing one bit of input to S box results in changing 2 bits of output

DES challenge

msg = "The unknown messages is: XXXX ... " $CT = c_1 c_2 c_3 c_4$

- **Goal**: find $k \in \{0,1\}^{56}$ s.t. DES(k, m_i) = c_i for i=1,2,3
- **1997**: Internet search -- **3 months**
- **1998**: EFF machine (deep crack) -- **3 days** (250K \$)
- **1999:** combined search -- **22 hours**
- 2006: COPACOBANA (120 FPGAs) -- 7 days (10K \$)
- \Rightarrow 56-bit ciphers should not be used !! (128-bit key \Rightarrow 2⁷² days)

Double DES

• Define $2E((k_1,k_2),m) = E(k_1,E(k_2,m))$

key length = 112 bits for DES

- Find (k_1, k_2) such that $E(k_1, E(k_2, m)) = C$
- Equivalent to $E(k_2, m) = D(k_1, m)$

Double DES

• Define $2E((k_1,k_2),m) = E(k_1,E(k_2,m))$

key-len = 112 bits for DES

$$m \longrightarrow E(\mathbf{k}_2, \cdot) \longrightarrow E(\mathbf{k}_1, \cdot) \longrightarrow c$$

Attack:
$$M = (m_1, ..., m_u)$$
, $C = (c_1, ..., c_u)$

step 1: build table.
sort on 2nd column

Time $2^{56}\log(2^{56})$

Meet in the middle attack

$$m \longrightarrow E(\mathbf{k}_2, \cdot) \longrightarrow E(\mathbf{k}_1, \cdot) \longrightarrow c$$

Attack: $M = (m_1, ..., m_u)$, $C = (c_1, ..., c_u)$

• Step 1: build table.

k ⁰ = 0000 k ¹ = 0001	E(k ^o , M) E(k ¹ , M)
$k^2 = 0010$	E(k ² , M)
:	:
k ^N = 1111	E(k ^N , M)

 Step 2: for all k∈{0,1}⁵⁶ do: test if D(k, C) is in 2nd column.

if so then $E(k^i,M) = D(k,C) \implies (k^i,k) = (k_2,k_1)$

Meet in the middle attack

$$m \longrightarrow E(\mathbf{k}_2, \cdot) \longrightarrow E(\mathbf{k}_1, \cdot) \longrightarrow c$$

Time = $2^{56}\log(2^{56}) + 2^{56}\log(2^{56}) < 2^{63} << 2^{112}$ Build table Search table

Space $\approx 2^{56}$

Triple DES

- Let $E: K \times M \longrightarrow M$ be a block cipher
- Define **3E**: $K^3 \times M \longrightarrow M$ as

 $3E((k_1,k_2,k_3),m) = E(k_1,D(k_2,E(k_3,m)))$

If $k_1 = k_2 = k_3$ then 3E = DES!

For 3DES: key-size = $3 \times 56 = 168$ bits

3×slower than DES

(simple attack in time $\approx 2^{118}$)

The AES process

- 1997: NIST publishes request for proposal
- 1998: 15 submissions. Five claimed attacks.
- 1999: NIST chooses 5 finalists
- 2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits.

Block size: 128 bits

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/