CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea
Associate Professor, CCIS
Northeastern University

February 52018

Review

- Relation between PRF and PRG
- Construct PRF from PRG (GGM construction)
- Pseudorandom permutations
- Definitions of security for encryption
- CPA/CCA security
- Relations between definitions
- CPA-secure construction
- Security proof
- Reduction to PRF

How to encrypt using PRF?

Enc
key k

Ciphertext

Proof of security - Intuition

Proof of security - Intuition

Π

$$
\begin{gathered}
\text { Enc } \\
c=\left(r, F_{k}(r) \oplus m\right)
\end{gathered}
$$

Dec

$$
\begin{gathered}
c=(r, s) \\
m=F_{k}(r) \oplus s
\end{gathered}
$$

1. Success of adversary to break Π and Π^{\prime} in CPA game is similar

Under the assumption that F is a PRF!
Π^{\prime}

Enc

$$
c=(r, f(r) \oplus m)
$$

2. Success of adversary to break Π^{\prime} in CPA game is negligible

Proof of security - step 2

2. Success of adversary to break Π^{\prime} in CPA game is negligible

For any adversary A that makes $q(n)$ queries to Enc oracle:

$$
\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right]-\frac{\mathbf{1}}{\mathbf{2}} \text { is negl(n) }
$$

- Let A be an adversary in CPA game for Π^{\prime} that makes $q=q(n)$ queries
- For each query to Enc oracle m_{1}, \cdots, m_{q}, it gets back $c_{i}=\left(r_{i}, f\left(r_{i}\right) \oplus m_{i}\right)$
- A picks m_{0}, m_{1} and receives back $c=(r, f(r) \oplus$ m_{b})

Proof of security - step 2

2. Success of adversary to break Π^{\prime} in CPA game is negligible

For any adversary A that makes $q(n)$ queries to Enc oracle:

$$
\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right]-\frac{\mathbf{1}}{\mathbf{2}} \text { is negl }(\boldsymbol{n})
$$

- Case 1 - r is not used to answer the q queries to Enc: $\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right]=\frac{1}{2}$
- Case $2-r \in\left\{r_{1}, \cdots, r_{q}\right\}: \operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right]=1$
- But $\operatorname{Pr}\left[r \in\left\{r_{1}, \cdots, r_{q}\right\}\right] \leq \sum_{i} \operatorname{Pr}\left[r=r_{i}\right] \quad \leq q(n) / 2^{n}$

$$
\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right] \leq \frac{\mathbf{1}}{\mathbf{2}}+\frac{\boldsymbol{q}(\boldsymbol{n})}{\mathbf{2}^{\boldsymbol{n}}}
$$

Wrap up

1. Success of adversary to break Π and Π^{\prime} in CPA game is similar

Assume that F is secure PRF.
For any adversary A that makes $q(n)$ queries to Enc oracle:

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{CPA}}(n)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right]\right| \leq \operatorname{negl}(\mathrm{n})
$$

2. Success of adversary to break Π^{\prime} in CPA game is negligible

For any adversary A that makes $q(n)$ queries to Enc oracle:

$$
\begin{gathered}
\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right] \leq \frac{\mathbf{1}}{\mathbf{2}}+\frac{\boldsymbol{q}(\boldsymbol{n})}{\mathbf{2}^{\boldsymbol{n}}} \\
\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{CPA}}(n)=1\right] \leq \frac{\mathbf{1}}{2}+\frac{\boldsymbol{q}(\boldsymbol{n})}{2^{n}}+\operatorname{negl}(\mathrm{n})
\end{gathered}
$$

Block ciphers: crypto work horse

Canonical examples:

1. DES: $\mathrm{n}=64$ bits, $\mathrm{k}=56$ bits
2. AES: $n=128$ bits, $k=128,192,256$ bits

Block Ciphers Built by Iteration

$R(k, m)$ is called a round function for DES ($\mathrm{n}=48$), for AES-128 ($\mathrm{n}=10$)

Design goals

- Block ciphers should behave like random permutations
- The number of permutation for n-bit strings is $\left(2^{n}\right)!\approx n 2^{n}$
- Construct set of permutations with concise description (short key)
- Similar to security property of PRP
- Properties
- Changing one bit of input should affect all bits of output (good mixing)
- Two main design approaches
- Substitution-Permutation Network
- Feistel Network

Substitution-Permutation Network

S boxes and mixing permutation are public

Three rounds of SPN

The avalanche effect

- Changing a single bit of input in S box changes at least 2 bits of output in S box
- The mixing permutations ensure that the output bits of any S box are used as input to multiple S boxes in the next round

Feistel Networks

Given functions $f_{1}, \ldots, f_{d}:\{0,1\}^{n} \longrightarrow\{0,1\}^{n}$
Goal: build invertible function $\mathrm{F}:\{0,1\}^{2 n} \longrightarrow\{0,1\}^{2 n}$

- Functions f_{i} are public
- Round key is derived from main key and secret
- Advantage: f_{i} not invertible!

Claim: for all $f_{1}, \ldots, f_{d}:\{0,1\}^{n} \longrightarrow\{0,1\}^{n}$
Feistel network $\mathrm{F}:\{0,1\}^{2 n} \longrightarrow\{0,1\}^{2 n}$ is invertible Proof: construct inverse

inverse

$$
\begin{aligned}
& R_{i-1}=L_{i} \\
& L_{i-1}=
\end{aligned}
$$

Claim: for all $f_{1}, \ldots, f_{d}:\{0,1\}^{n} \longrightarrow\{0,1\}^{n}$
Feistel network $\mathrm{F}:\{0,1\}^{2 n} \longrightarrow\{0,1\}^{2 n}$ is invertible
Proof: construct inverse

inverse

"Thm:"

(Luby-Rackoff '85):
f: $K \times\{0,1\}^{n} \longrightarrow\{0,1\}^{n}$ a secure PRF
$\Rightarrow 3$-round Feistel F: $\mathrm{K}^{3} \times\{0,1\}^{2 \mathrm{n}} \rightarrow\{0,1\}^{2 \mathrm{n}}$ a secure PRP

Key k_{1}
Key k_{2}
Key k_{3}
Independent

The Data Encryption Standard (DES)

- Early 1970s: Horst Feistel designs Lucifer at IBM key-len = 128 bits ; block-len = 128 bits
- 1973: NBS asks for block cipher proposals. IBM submits variant of Lucifer.
- 1976: NBS adopts DES as a federal standard key-len $=56$ bits ; block-len = 64 bits
- 1997: DES broken by exhaustive search
- 2000: NIST adopts Rijndael as AES to replace DES

DES: 16 round Feistel network

$$
f_{1}, \ldots, f_{16}:\{0,1\}^{32} \longrightarrow\{0,1\}^{32} \quad, \quad f_{i}(x)=F\left(k_{i}, x\right)
$$

The function $\quad F\left(k_{i}, x\right)$

SubstitutionPermutation Network

S-box: function $\{0,1\}^{6} \longrightarrow\{0,1\}^{4}$, implemented as look-up table.

The S-boxes

$$
\begin{gathered}
\text { Look up table } \\
\mathrm{S}_{\mathrm{i}}:\{0,1\}^{6} \longrightarrow\{0,1\}^{4}
\end{gathered}
$$

$$
x_{2} x_{3} x_{4} x_{5}
$$

$x_{1} x_{6}$	S_{5}		Middle 4 bits of input															
			0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	Outer bits	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
		01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
		10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
		11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

$$
x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}
$$

Not invertible

Choosing the S-boxes and P-box

Choosing the S-boxes and P-box at random would result in an insecure block cipher (key recovery after $\approx 2^{24}$ outputs) [BS'89]

Several rules used in choice of S and P boxes:

- No output bit should be close to a linear function of the input bits
- S-boxes are 4-to-1 maps (Exactly 4 inputs are mapped to each output)
- Each row in the table contains each 4-bit string exactly once
- Changing one bit of input to S box results in changing 2 bits of output

DES challenge

$m s g=$ "The unknown messages is: XXXX ... "
CT =
C_{1}
C_{2}
C_{3}
C_{4}

Goal: find $k \in\{0,1\}^{56}$ s.t. $\operatorname{DES}\left(k, m_{i}\right)=c_{i}$ for $i=1,2,3$
1997: Internet search -- 3 months
1998: EFF machine (deep crack) -- 3 days
(250K \$)
1999: combined search -- 22 hours
2006: COPACOBANA (120 FPGAs) -- 7 days (10K \$)
\Rightarrow 56-bit ciphers should not be used !! (128-bit key $\Rightarrow 2^{72}$ days)

Double DES

- Define $2 E\left(\left(k_{1}, k_{2}\right), m\right)=E\left(k_{1}, E\left(k_{2}, m\right)\right)$ key length = 112 bits for DES

Meet-in-the-middle attack

- Find $\left(k_{1}, k_{2}\right)$ such that $\mathrm{E}\left(\mathrm{k}_{1}, \mathrm{E}\left(\mathrm{k}_{2}, \mathrm{~m}\right)\right)=\mathrm{C}$
- Equivalent to $E\left(k_{2}, m\right)=D\left(k_{1}, m\right)$

Double DES

- Define $2 E\left(\left(k_{1}, k_{2}\right), m\right)=E\left(k_{1}, E\left(k_{2}, m\right)\right)$ key-len = 112 bits for DES

Attack: $M=\left(m_{1}, \ldots, m_{u}\right), \quad C=\left(c_{1}, \ldots, c_{u}\right)$

- step 1: build table. sort on $2^{\text {nd }}$ column
$\left.\left.\begin{array}{|c|c|}\hline k^{0}=00 \ldots 00 & E\left(k^{0}, M\right) \\ k^{1}=00 \ldots 01 & E\left(k^{1}, M\right) \\ k^{2}=00 \ldots 10 & E\left(k^{2}, M\right) \\ \vdots & \vdots \\ k^{N}=11 \ldots 11 & E\left(k^{N}, M\right)\end{array}\right] \quad \begin{array}{c} \\ 2^{56} \\ \end{array}\right]$ entries

Time $2^{56} \log \left(2^{56}\right)$

Meet in the middle attack

Attack: $\mathrm{M}=\left(\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{u}}\right), \mathrm{C}=\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{u}}\right)$

- Step 1: build table.

$k^{0}=00 \ldots 00$	$E\left(k^{0}, M\right)$
$k^{1}=00 \ldots 01$	$E\left(k^{1}, M\right)$
$k^{2}=00 \ldots 10$	$E\left(k^{2}, M\right)$
\vdots	\vdots
$k^{N}=11 \ldots 11$	$E\left(k^{N}, M\right)$

- Step 2: for all $k \in\{0,1\}^{56}$ do: test if $D(k, C)$ is in $2^{\text {nd }}$ column. if so then $E\left(k^{i}, M\right)=D(k, C) \Rightarrow\left(k^{i}, k\right)=\left(k_{2}, k_{1}\right)$

Meet in the middle attack

Space $\approx 2^{56}$

Triple DES

- Let $\mathrm{E}: \mathrm{K} \times \mathrm{M} \longrightarrow \mathrm{M}$ be a block cipher
- Define $\mathbf{3 E}: \mathrm{K}^{3} \times \mathrm{M} \rightarrow \mathrm{M}$ as

$$
\begin{gathered}
3 E\left(\left(k_{1}, k_{2}, k_{3}\right), m\right)=E\left(k_{1}, D\left(k_{2}, E\left(k_{3}, m\right)\right)\right) \\
\text { If } k_{1}=k_{2}=k_{3} \text { then } 3 E=D E S!
\end{gathered}
$$

For 3DES: key-size $=3 \times 56=168$ bits
3xslower than DES
(simple attack in time $\approx 2^{118}$)

The AES process

- 1997: NIST publishes request for proposal
- 1998: 15 submissions. Five claimed attacks.
- 1999: NIST chooses 5 finalists
- 2000: NIST chooses Rijndael as AES (designed in Belgium)

Key sizes: 128, 192, 256 bits.
Block size: 128 bits

Acknowledgement

Some of the slides and slide contents are taken from
http://www.crypto.edu.pl/Dziembowski/teaching and fall under the following:
©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:
http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

