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Review

• Encryption in practice
– Block ciphers: PRFs 
– Stream ciphers: PRGs

• PRGs
– Functions applied to a secret seed that produce 

output strings indistinguishable from random strings 
of same length

• PRFs
– Family of functions (indexed by secret key) that are 

indistinguishable from random functions
– Adversary can query inputs and get function outputs
– Oracle queries (polynomial number)
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Encryption in Practice
stream ciphers ≈ pseudorandom generators

block ciphers ≈ pseudorandom functions
/permutations

• Practical encryption
– Good  block ciphers that withstood the test of 

time (3DES, AES)
• Widely used in many practical applications
• More scrutiny from the community

– Several recent constructions of stream ciphers 
(eStream)
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Cryptographic PRG

a random string r

G(s) (where s random) 

or

Should not be able to 
distinguish...

outputs:

0 if he thinks it’s r

1 if he thinks it’s G(s)

n – a parameter
S – a variable distributed uniformly over {0,1}n

r – a variable distributed uniformly over {0,1} l(n)  

Definition: G is a cryptographic PRG if for every PPT algorithm D we have:
|  P[ D(G(s)) = 1 ] – P[ D(r) = 1 ]  |

is negligible in n.

Definition

4



Scenario 1

challenger 
chooses a random k є {0,1}n.x1 є {0,1}u

Fk(x1)

x2 є {0,1}u

Fk(x2)

. . .

xt є {0,1}u

Fk(xt)

security parameter
n

distinguisher D
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Scenario 0

challenger
chooses a random function

f : {0,1}u → {0,1}𝒗

security parameter
n

distinguisher D

outputs b є {0,1}

x1 є {0,1}u

f(x1)

x2 є {0,1}u

f(x2)

. . .

xt є {0,1}u

f(xt)
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Pseudorandom Functions (definition)

▪ We say that F is a pseudorandom function  (PRF) family if for all PPT 
distinguisher D the probability to correctly distinguish  scenario 0
from scenario 1 is negligible.

Formally:  For all PPT distinguisher D:

| Pr[ D outputs “1” in scenario 1 ] – Pr[ D outputs “1” in scenario 0]|
is negligible in n

|𝑷𝒓 𝑫𝑭𝒌 ⋅ 𝒏 = 𝟏 − 𝑷𝒓[𝑫𝒇 ⋅ 𝒏 = 𝟏]| ≤ 𝒏𝒆𝒈𝒍(𝒏)
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Polynomial number of queries to oracle



An easy application:   PRF ⇒ PRG

Let   F: K  {0,1}n  {0,1}n be a secure PRF.

Then the following   G: K  {0,1}nt is a secure PRG:

G(k) =   F(k,1)  ll F(k,2)  ll ⋯ ll F(k,t)

Key property:    parallelizable

Security from PRF property:   F(k, )  indist. from 
random function f()

8



Outline

• Relation between PRF and PRG

– Construct PRF from PRG (GGM construction)

• Pseudorandom permutations

• Definitions of security for encryption

– CPA/CCA security

– Relations between definitions

• CPA-secure construction

– Security proof

– Reduction to PRF
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Constructing a 1-bit PRF from PRG

• Let G : 0,1 𝑛 → 0,1 2𝑛 be a PRG.

S

S0
S1

(S0 ,S1) = G(S)

• Define PRF: Fs(x) = Sx
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Reduction proof

• Assume, by contradiction, that F is not a secure 
PRF. There exists a distinguisher D such that:

|Pr[𝐷
𝐹𝑘 ⋅

= 1 ] – Pr[𝐷
𝑓 ⋅

= 1 ] |= ϵ(𝑛)

• We build A a distinguisher for G

• A is given access to string 𝑢 = 𝑢0||𝑢1
– 𝑢 = 𝑟 random in world 0

– 𝑢 = 𝐺 𝑠 = 𝑠0||𝑠1 in world 1

• A runs D; when D makes a query for bit 𝑥 ∈ 0,1
A outputs 𝑢𝑥

• A outputs what D outputs
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Reduction proof

• Assume, by contradiction, that F is not a secure 
PRF. There exists a distinguisher D such that:

|Pr[𝐷
𝐹𝑘 ⋅

= 1 ] – Pr[𝐷
𝑓 ⋅

= 1 ] |= ϵ(𝑛)

• We build A a distinguisher for G

• In world 0, Pr[A(r) = 1] = Pr[ 𝐷
𝑓 ⋅

= 1]

• In world 1, Pr[A(G(s)) = 1] = Pr[𝐷
𝑆0,𝑆1 = 1]

= Pr[ 𝐷
𝐹𝑘 ⋅

= 1]

| Pr[ A(r) = 1 ] – Pr[ A(G(s)) = 1 ] | = |Pr[𝐷
𝐹𝑘(⋅)= 1 ] –

Pr[𝐷
𝑓 (⋅)

= 1 ] | = 𝜖(n)
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Constructing a PRF from PRG
[Goldreich-Goldwasser-Micali] 

• Let G : 0,1 𝑛 → 0,1 2𝑛 be a PRG.

S

S0
S1

(S0 ,S1) = G(S)

S00 S01 S10 S11

(Sv0 ,Sv1) = G(Sv)

S000 S001 S100 S101S010 S011 S110 S111

• Define PRF: Fs(x) = Sx

…

u levels
=
u-bit
input

13



Pseudorandom Permutations (PRP)

• Sometimes, useful to have a PRF that’s also a 
permutation  Fk(x) : 0,1 𝑢 → 0,1 𝑢 . 

• Can efficiently compute inverse

Fk
-1 (y)    such that Fk

-1 (Fk(x)) = x.

• Security of PRP: Attacker sees Fk(x) and Fk
-1 (y) for 

various values x, y. Cannot distinguish from seeing 
R(x), R-1 (y) for completely random permutation R. 
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Pseudorandom permutations (definition)

▪ We say that F is a pseudorandom function  (PRF) family if for all PPT 
distinguisher D the probability to correctly distinguish  scenario 0
from scenario 1 is negligible.

Formally:  For all PPT distinguisher D:

| Pr[ D outputs “1” in scenario 0 ] – Pr[ D outputs “1” in scenario 1]|
is negligible in n

|𝑷𝒓 𝑫𝑭𝒌 ⋅ ,𝑭𝒌
−𝟏 ⋅ 𝒏 = 𝟏 − 𝑷𝒓[𝑫𝒇 ⋅ ,𝒇−𝟏 ⋅ 𝒏 = 𝟏]|

≤ 𝒏𝒆𝒈𝒍(𝒏)
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Security Game

PPT Adversary A Challenger

chooses m0,m1 such that
|m0|=|m1|

m0,m1 1. Choose random k ← {0,1}n

2. chooses random b ← {0,1}
3. calculate c ← Enc(k,mb)

𝚷= (Enc,Dec): an encryption scheme

cMakes a guess b’

Security definition:
We say that (Enc,Dec) is indistinguishable against eavesdropping (EAV-secure)
if any polynomial time adversary, | Pr[ b’=b ] - ½ |  is  negligible in n.

security parameter
n

16Ciphertext-only attack



The security definition

• Experiment ExpΠ,𝐴
EAV 𝑛 :

1. Choose 𝑘 ←𝑅 𝐺𝑒𝑛(𝑛)

2. 𝑚0, 𝑚1 ← 𝐴1 ⋅

3. 𝑏 ←𝑅 0,1 ; 𝑐 ← 𝐸𝑛𝑐𝑘 𝑚𝑏

4. 𝑏′ ← 𝐴2 𝑚0, 𝑚1, 𝑐

5. Output 1 if 𝑏 = 𝑏′ and 0 otherwise
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We say that (Enc,Dec) is EAV-secure (secure against eavesdropping) if 

For every PPT adversary 𝐴 = (𝐴1, 𝐴2):

|Pr[ExpΠ,𝐴
EAV 𝑛 = 1]- ½ | negligible in n
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Stronger notions

• CPA security (security against chosen plaintext 
attacks)

– Adversary can submit messages and get back 
ciphertexts

• CCA security (security against chosen 
ciphertext attacks)

– Adversary can additionally submit ciphertexts and 
receive decryptions

– E.g., find out if ciphertext has valid format
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A chosen-plaintext attack (CPA)

oracle

chooses m’1 m’1

c1 = Enc(k,m’1)

makes a guess b’

chooses m’t m’t

ct = Enc(k, m’t)

m0,m1

c = Enc(k,mb)

chooses m0,m1

the interaction continues . . .

security parameter
n

1. selects random k Є {0,1}n

2. chooses a random b = 0,1

. . .

challenge phase:
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CPA security definition

• Experiment ExpΠ,𝐴
CPA 𝑛 :

1. Choose 𝑘 ←𝑅 𝐺𝑒𝑛(1𝑛)

2. 𝑚0, 𝑚1 ← 𝐴1
𝐸𝑛𝑐𝑘(⋅) ⋅

3. 𝑏 ←𝑅 0,1 ; 𝑐 ← 𝐸𝑛𝑐𝑘 𝑚𝑏

4. 𝑏′ ← 𝐴2
𝐸𝑛𝑐𝑘(⋅) 𝑚0, 𝑚1, 𝑐

5. Output 1 if 𝑏 = 𝑏′ and 0 otherwise
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We say that (Enc,Dec) is chosen-plaintext attack (CPA) secure if 

For every PPT adversary 𝐴 = (𝐴1, 𝐴2):

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1]- ½ | negligible in n
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CCA security definition

• Experiment ExpΠ,𝐴
CCA 𝑛 :

1. Choose 𝑘 ←𝑅 𝐺𝑒𝑛(1𝑛)

2. 𝑚0, 𝑚1 ← 𝐴1
𝐸𝑛𝑐𝑘 ⋅ ,𝐷𝑒𝑐𝑘(⋅) ⋅

3. 𝑏 ←𝑅 0,1 ; 𝑐 ← 𝐸𝑛𝑐𝑘 𝑚𝑏

4. 𝑏′ ← 𝐴2
𝐸𝑛𝑐𝑘 ⋅ ,𝐷𝑒𝑐𝑘(⋅) 𝑚0, 𝑚1, 𝑐

5. Output 1 if 𝑏 = 𝑏′ and 0 otherwise
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We say that (Enc,Dec) is chosen-ciphertext attack (CCA) secure if 

For every PPT adversary 𝐴 = (𝐴1, 𝐴2):

|Pr[ExpΠ,𝐴
CCA 𝑛 = 1]- ½ | negligible in n

21

Adversary can not 
submit c to 

decryption oracle



Relation between security notions

• CPA security implies EAV security

• CCA security implies CPA security

• EAV security does not imply CPA security

– Will see an example soon

CPA security strictly stronger than EAV security
CCA security strictly stronger than CPA security
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EAV-secure encryption from PRG
Use PRGs to “shorten” the key in the one time pad 

s G(s)

Key: random string of length n

Plaintexts: strings of length l(n)

Enc(s,m)
m

m
xor
G(s)

xor

s G(s) c

c
xor
G(s)

Dec(s,m)

23

Is it CPA secure?



CPA Security Requires Randomness

• Theorem: Any CPA secure encryption scheme 
has to either:

– Keep state (encryption changes the key).

– Have a randomized encryption procedure (for a fixed 
k, m  the output of Enc(k,m) cannot be deterministic). 

• Why?

– Otherwise, easy to tell if the same message is 
encrypted twice! 
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https://xkcd.com/257/
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How to encrypt using PRF/PRP?

A naive idea:

plaintext m

encryption Fk

ciphertext c = Fk (m)

key k

decryption Fk
-1

plaintext m = Fk
-1 (c)

key k

Problems:
1. it is deterministic and has no state, so it cannot be CPA-secure.
2. the messages have to be short
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How to encrypt using PRF?

plaintext m

PRF Fk

ciphertext c 

key k

random r

Fk (r)

⊕

𝑟, 𝐹𝑘 𝑟 ⊕𝑚

Enc

key k

Dec

PRF Fk Fk (r)

cr

Ciphertext

plaintext m ⊕

27

𝐹𝑘 𝑟 ⊕ 𝑐



Proof of security - Intuition

plaintext m

PRF Fk

ciphertext c 

key k

random r

Fk (r)

⊕

𝑟, 𝐹𝑘 𝑟 ⊕𝑚

Π

plaintext m

Random f

ciphertext c 

key k

random r

f(r)

⊕

𝑟, 𝑓 𝑟 ⊕𝑚

Π’
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Proof of security - Intuition

Enc

𝑐 = (𝑟, 𝐹𝑘 𝑟 ⊕𝑚)

Π

𝑐 = (𝑟, 𝑓 𝑟 ⊕𝑚)
Π’

Enc

Dec

𝑐 = (𝑟, s)
𝑚 = 𝐹𝑘 𝑟 ⊕ 𝑠

Dec

𝑐 = (𝑟, s)
𝑚 = 𝑓 𝑟 ⊕ 𝑠

1. Success of adversary to break Π and Π’ in CPA game is similar 

2. Success of adversary to break Π’ in CPA game is negligible

Under the assumption that F is a PRF!

29



Proof of security – step 1

1. Success of adversary to break Π and Π’ in CPA game is similar 

• Let A be a PPT adversary in CPA game for Π st

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]|=ϵ(n)

and ϵ(n) is non-negligible
• We build D a distinguisher for PRF
• D is given access to oracle O (in world 0: 𝑂 = 𝐹𝑘(⋅)

and in world 1: 𝑂 = 𝑓(⋅) ) 

Assume that F is PRF.
For any PPT adversary A that makes q(n) encryption queries:

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| ≤ negl(n)
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Proof of security – step 1

1. Success of adversary to break Π and Π’ in CPA game is similar 

• When A queries Enc oracle with message m, D 
outputs 𝑐 = (𝑟, 𝑂 𝑟 ⊕𝑚)

• When A chooses 2 messages 𝑚0, 𝑚1, D 
chooses 𝑏 ← {0,1} and responds with 𝑐 =
(𝑟, 𝑂 𝑟 ⊕𝑚𝑏)

• D outputs what A outputs

Assume that F is PRF.
For any PPT adversary A that makes q(n) encryption queries:

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| ≤ negl(n)
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Proof of security – step 1

1. Success of adversary to break Π and Π’ in CPA game is similar 

• In world 1

Pr[𝐷
𝐹𝑘 ⋅

(n) = 1] = Pr[ExpΠ,𝐴
CPA 𝑛 = 1]

• In world 0

Pr[𝐷
𝑓 ⋅

(n) = 1] = Pr[ExpΠ′,𝐴
CPA 𝑛 = 1]

|Pr[𝐷
𝐹𝑘 ⋅

(n) = 1] − Pr[𝐷
𝑓 ⋅

(n) = 1] |=

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| =ϵ(n)

Assume that F is PRF.
For any PPT adversary A that makes q(n) encryption queries:

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| ≤ negl(n)
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Key takeaways

• Stronger notions of security for encryption
– CPA security strictly stronger than EAV security

– CCA security strictly stronger than CPA security

• CPA-secure encryption needs to be 
randomized

• CPA-secure construction from PRF F
– Works for small messages

– Expands the ciphertext by a factor of 2

– Will discuss how to expand to longer messages 
with minimal ciphertext expansion
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