CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

February 1 2018

Review

- Encryption in practice
 - Block ciphers: PRFs
 - Stream ciphers: PRGs
- PRGs
 - Functions applied to a secret seed that produce output strings indistinguishable from random strings of same length
- PRFs
 - Family of functions (indexed by secret key) that are indistinguishable from random functions
 - Adversary can query inputs and get function outputs
 - Oracle queries (polynomial number)

Encryption in Practice

stream ciphers ≈ pseudorandom <u>generators</u>

block ciphers ≈ pseudorandom <u>functions</u> /<u>permutations</u>

Practical encryption

- Good block ciphers that withstood the test of time (3DES, AES)
 - Widely used in many practical applications
 - More scrutiny from the community
- Several recent constructions of stream ciphers (eStream)

Cryptographic PRG

Scenario 1

Scenario **O**

Pseudorandom Functions (definition)

We say that F is a pseudorandom function (PRF) family if for all PPT distinguisher D the probability to correctly distinguish scenario 0 from scenario 1 is negligible.

Formally: For all PPT distinguisher D:
Pr[D outputs "1" in scenario 1] – Pr[D outputs "1" in scenario 0] | is negligible in n

$$|Pr[D^{F_k(\cdot)}(n) = 1] - Pr[D^{f(\cdot)}(n) = 1]| \le negl(n)$$

Polynomial number of queries to oracle

An easy application: $PRF \Rightarrow PRG$

Let $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a secure PRF.

Then the following $G: K \rightarrow \{0,1\}^{nt}$ is a secure PRG:

 $G(k) = F(k,1) || F(k,2) || \cdots || F(k,t)$

Key property: parallelizable

Security from PRF property: $F(k, \cdot)$ indist. from random function $f(\cdot)$

Outline

- Relation between PRF and PRG
 - Construct PRF from PRG (GGM construction)
- Pseudorandom permutations
- Definitions of security for encryption
 - CPA/CCA security
 - Relations between definitions
- CPA-secure construction
 - Security proof
 - Reduction to PRF

Constructing a 1-bit PRF from PRG

• Let $G : \{0,1\}^n \to \{0,1\}^{2n}$ be a PRG.

• Define PRF: $F_s(x) = S_x$

Reduction proof

• Assume, by contradiction, that F is not a secure PRF. There exists a distinguisher D such that:

 $|\Pr[D^{F_k(\cdot)}=1] - \Pr[D^{f(\cdot)}=1]| = \epsilon(n)$

- We build A a distinguisher for G
- A is given access to string $u = u_0 || u_1$ -u = r random in world 0 $-u = G(s) = s_0 || s_1$ in world 1
- A runs D; when D makes a query for bit $x \in \{0,1\}$ A outputs u_x
- A outputs what D outputs

Reduction proof

• Assume, by contradiction, that F is not a secure PRF. There exists a distinguisher D such that:

 $|\Pr[D^{F_k(\cdot)} = 1] - \Pr[D^{f(\cdot)} = 1]| = \epsilon(n)$

- We build A a distinguisher for G
- In world 0, $\Pr[A(r) = 1] = \Pr[D^{f(\cdot)} = 1]$
- In world 1, $Pr[A(G(s)) = 1] = Pr[D^{S_0,S_1} = 1]$ = $Pr[D^{F_k(\cdot)} = 1]$

| Pr[A(r) = 1] - Pr[A(G(s)) = 1] | = |Pr[
$$D^{F_k(\cdot)} = 1$$
] -
Pr[$D^{f(\cdot)} = 1$] | = $\epsilon(n)$

Constructing a PRF from PRG [Goldreich-Goldwasser-Micali]

• Let $G : \{0,1\}^n \to \{0,1\}^{2n}$ be a PRG.

Define PRF: F_s(x) = S_x

Pseudorandom Permutations (PRP)

- Sometimes, useful to have a PRF that's also a permutation $F_k(x) : \{0,1\}^u \to \{0,1\}^u$.
- Can efficiently compute inverse
 F_k⁻¹(y) such that F_k⁻¹(F_k(x)) = x.
- <u>Security of PRP</u>: Attacker sees F_k(x) and F_k⁻¹(y) for various values x, y. Cannot distinguish from seeing R(x), R⁻¹(y) for completely random permutation R.

Pseudorandom permutations (definition)

We say that F is a pseudorandom function (PRF) family if for all PPT distinguisher D the probability to correctly distinguish scenario 0 from scenario 1 is negligible.

Formally: For all PPT distinguisher D:
Pr[D outputs "1" in scenario 0] – Pr[D outputs "1" in scenario 1] is negligible in n

$$|\Pr\left[D^{F_k(\cdot),F_k^{-1}(\cdot)}(n)=1\right] - \Pr\left[D^{f(\cdot),f^{-1}(\cdot)}(n)=1\right]| \le \operatorname{negl}(n)$$

Polynomial number of queries to oracle

Security Game

Security definition:

We say that **(Enc,Dec)** is **indistinguishable against eavesdropping (EAV-secure)** if any **polynomial time** adversary, | **Pr[b'=b] -** ½ | is negligible in n.

Ciphertext-only attack

The security definition

- Experiment $Exp_{\Pi,A}^{EAV}(n)$:
 - 1. Choose $k \leftarrow^R Gen(n)$
 - 2. $m_0, m_1 \leftarrow A_1(\cdot)$
 - 3. $b \leftarrow^R \{0,1\}; c \leftarrow Enc_k(m_b)$
 - 4. $b' \leftarrow A_2(m_0, m_1, c)$
 - 5. Output 1 if b = b' and 0 otherwise

We say that (Enc,Dec) is EAV-secure (secure against eavesdropping) if

For every **PPT** adversary $A = (A_1, A_2)$: |**Pr**[Exp^{EAV}_{Π,A}(n) = **1**]- ½ | negligible in n

Stronger notions

- CPA security (security against chosen plaintext attacks)
 - Adversary can submit messages and get back ciphertexts
- CCA security (security against chosen ciphertext attacks)
 - Adversary can additionally submit ciphertexts and receive decryptions
 - E.g., find out if ciphertext has valid format

A chosen-plaintext attack (CPA)

the interaction continues . . .

CPA security definition

• Experiment $\operatorname{Exp}_{\Pi,A}^{\operatorname{CPA}}(n)$: 1. Choose $k \leftarrow^R Gen(1^n)$ 2. $m_0, m_1 \leftarrow A_1^{Enc_k(\cdot)}(\cdot)$ 3. $b \leftarrow^R \{0,1\}; c \leftarrow Enc_k(m_b)$ 4. $b' \leftarrow A_2^{Enc_k(\cdot)}(m_0, m_1, c)$ 5. Output 1 if b = b' and 0 otherwise

We say that (Enc,Dec) is chosen-plaintext attack (CPA) secure if

For every **PPT** adversary $A = (A_1, A_2)$: |**Pr**[Exp^{CPA}_{II,A}(n) = **1**]- ½ | negligible in n

CCA security definition

• Experiment $\operatorname{Exp}_{\Pi,A}^{\operatorname{CCA}}(n)$: 1. Choose $k \leftarrow^R Gen(1^n)$ 2. $m_0, m_1 \leftarrow A_1^{Enc_k(\cdot), Dec_k(\cdot)}(\cdot)$ 3. $b \leftarrow^R \{0,1\}; c \leftarrow Enc_k(m_b)$ 4. $b' \leftarrow A_2^{Enc_k(\cdot), Dec_k(\cdot)}(m_0, m_1, c)$ 5. Output 1 if b = b' and 0 otherwise

We say that (Enc,Dec) is chosen-ciphertext attack (CCA) secure if

For every **PPT** adversary $A = (A_1, A_2)$: |**Pr**[Exp^{CCA}_{II,A}(n) = **1**]- ½ | negligible in n

Relation between security notions

- CPA security implies EAV security
- CCA security implies CPA security
- EAV security does not imply CPA security
 - Will see an example soon

CPA security strictly stronger than EAV security CCA security strictly stronger than CPA security

EAV-secure encryption from PRG

Use PRGs to "shorten" the key in the one time pad **Key**: random string of length **n** xor Plaintexts: strings of length $\ell(n)$ m Enc(s,m) **G(s)** S xor m **G(s)** С Dec(s,m) **G(s)** S xor С **G(s)**

Is it CPA secure?

CPA Security Requires Randomness

- <u>Theorem</u>: Any CPA secure encryption scheme has to either:
 - Keep state (encryption changes the key).
 - Have a randomized encryption procedure (for a fixed k, m the output of Enc(k,m) cannot be deterministic).

• Why?

 Otherwise, easy to tell if the same message is encrypted twice!

https://xkcd.com/257/

CODE TALKERS

How to encrypt using PRF/PRP?

A naive idea:

Problems:

- 1. it is **deterministic** and **has no state**, so it **cannot be CPA-secure**.
- 2. the messages have to be short

How to encrypt using PRF?

Proof of security - Intuition

Proof of security - Intuition

1. Success of adversary to break **I** and **I**' in CPA game is similar

Under the assumption that F is a PRF!

2. Success of adversary to break **I**' in CPA game is negligible

Proof of security – step 1

1. Success of adversary to break **I** and **I**' in CPA game is similar

Assume that F is PRF. For any PPT adversary A that makes q(n) encryption queries: $|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] - \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]| \leq negl(n)$

- Let A be a PPT adversary in CPA game for Π st $|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] - \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]| = \epsilon(n)$ and $\epsilon(n)$ is non-negligible
- We build D a distinguisher for PRF
- D is given access to oracle O (in world 0: $O = F_k(\cdot)$ and in world 1: $O = f(\cdot)$)

Proof of security – step 1

1. Success of adversary to break **I** and **I**' in CPA game is similar

Assume that F is PRF. For any PPT adversary A that makes q(n) encryption queries: $|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] - \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]| \le negl(n)$

- When A queries Enc oracle with message m, D outputs $c = (r, O(r) \oplus m)$
- When A chooses 2 messages m_0, m_1 , D chooses $b \leftarrow \{0,1\}$ and responds with $c = (r, O(r) \bigoplus m_b)$
- D outputs what A outputs

Proof of security – step 1

1. Success of adversary to break **I** and **I**' in CPA game is similar

Assume that F is PRF. For any PPT adversary A that makes q(n) encryption queries: $|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] - \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]| \le negl(n)$

In world 1

 $\mathbf{Pr}[D^{F_k(\cdot)}(n) = 1] = \mathbf{Pr}[\mathrm{Exp}_{\Pi,A}^{\mathrm{CPA}}(n) = 1]$

• In world 0

 $\Pr[D^{f(\cdot)}(n) = 1] = \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]$ $\left|\Pr[D^{F_k(\cdot)}(n) = 1] - \Pr[D^{f(\cdot)}(n) = 1]\right| = 1$ $\left|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] - \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]\right| = \epsilon(n)$

Key takeaways

- Stronger notions of security for encryption
 - CPA security strictly stronger than EAV security
 - CCA security strictly stronger than CPA security
- CPA-secure encryption needs to be randomized
- CPA-secure construction from PRF F
 - Works for small messages
 - Expands the ciphertext by a factor of 2
 - Will discuss how to expand to longer messages with minimal ciphertext expansion

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/