CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

January 29 2018

Review

- PRGs can be used to design EAV secure encryption
 - Reduction proof
- In practice, PRGs are implemented with stream ciphers
- Examples of insecure constructions (LFSR, RC4) and "secure" ciphers (e.g., Salsa20)
- Attacks on protocol implementations
 - Two-time pad in MS PPTP
 - Related keys in WEP

Outline

- Block ciphers vs stream ciphers
- Pseudorandom functions
 - Definitions
 - Examples
- Connections between PRF and PRG
 - Construct PRG from PRF
 - Construct PRF from PRG (GGM construction)
- Pseudorandom permutations
- Stronger notions of security

Stream ciphers vs Block ciphers

• Stream ciphers

- Encrypt variable-length messages to variable-length ciphertexts
- Used in practice to instantiate PRG
- Encrypt messages on demand
- Faster, but more security vulnerabilities
- Block ciphers
 - Map n-bit plaintext to n-bit ciphertext
 - Output is indistinguishable from random permutation
 - Fixed length
 - More secure in general (e.g., AES)

Block ciphers: crypto work horse

Canonical examples:

- 1. 3DES: n = 64 bits, k = 168 bits
- 2. AES: n=128 bits, k = 128, 192, 256 bits

Block Ciphers Built by Iteration

R(k,m) is called a round function

for 3DES (n=48), for AES-128 (n=10)

Performance:

AMD Opteron, 2.2 GHz (Linux)

	<u>Cipher</u>	<u>Block/key size</u>	<u>Speed</u>	(MB/sec)
stream	RC4			126
	Salsa20/12			643
	Sosemanul	<		727
	ſ			
block	3DES	64/168		13
	l AES-128	128/128		109

Encryption in Practice

stream ciphers ≈ pseudorandom <u>generators</u>

block ciphers ≈ pseudorandom <u>functions</u> /<u>permutations</u>

Practical encryption

- Good block ciphers that withstood the test of time (3DES, AES)
 - Widely used in many practical applications
 - More scrutiny from the community
- Several recent constructions of stream ciphers (eStream)

Tool: Pseudorandom Function

 PRG: have short n-bit "seed" s that describes a "random-looking" longer ℓ-bit string r=G(s).

 PRF: have short n-bit "seed" k that describes a "random-looking" function

 $\mathsf{F}_{\mathsf{k}} : \{0,1\}^u \to \{0,1\}^v$

Seeing F_k(x) for various inputs x, looks like seeing uniformly random outputs

Pseudorandom Functions

Syntax: For each security parameter n and each "seed" k ∈ {0,1}ⁿ there is a function
 F_k : {0,1}^u → {0,1}^v

• Efficiency: Given k, x compute $F_k(x)$ in poly(n) time.

• How do we define security?

Scenario 1

Scenario **O**

Pseudorandom Functions (definition)

We say that F is a pseudorandom function (PRF) family if for all PPT distinguisher D the probability to correctly distinguish scenario 0 from scenario 1 is negligible.

Formally: For all PPT distinguisher D:
Pr[D outputs "1" in scenario 0] – Pr[D outputs "1" in scenario 1] is negligible in n

$$|Pr[D^{F_k(\cdot)}(n) = 1] - Pr[D^{f(\cdot)}(n) = 1]| \le negl(n)$$

Polynomial number of queries to oracle

Example 1

Let $F: K \times X \rightarrow \{0,1\}^{128}$ be a secure PRF. Is the following G a secure PRF?

$$G(k, x) = \begin{cases} 0^{128} & \text{if } x=0\\ F(k, x) & \text{otherwise} \end{cases}$$

No, it is easy to distinguish G from a random function
 Yes, an attack on G would also break F
 It depends on F

Example 2

Let F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ be defined as $F_k(x) = k \bigoplus x$

Is F a secure PRF?

Build D - distinguisher for F

- D has access to oracle O
- D chooses x_1, x_2 and gets back $y_1 = O(x_1); y_2 = O(x_2)$
- D outputs 1 if $x_1 \oplus x_2 = y_1 \oplus y_2$

Connection between PRF and PRG

Cryptographic PRG

An easy application: $PRF \Rightarrow PRG$

Let $F: K \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a secure PRF.

Then the following $G: K \rightarrow \{0,1\}^{nt}$ is a secure PRG:

 $G(k) = F(k,1) || F(k,2) || \cdots || F(k,t)$

Key property: parallelizable

Security from PRF property: $F(k, \cdot)$ indist. from random function $f(\cdot)$

Reduction proof

- Assume, by contradiction, that G is not a secure PRG. There exists a distinguisher D such that:
 Pr[D(r) = 1] Pr[D(G(s)) = 1] = ε(n)
- We build A a distinguisher for F
- A is given access to oracle function $O(O = F_k(\cdot))$ in world 0 and $O = f(\cdot)$ in world 1)
- A queries *O* on inputs 1,...,t and computes y_i = O(i)
- A runs D on input $y_1 \dots y_t$
- A outputs what D outputs

Reduction proof

- Assume, by contradiction, that G is not secure PRG. There exists a distinguisher D such that:
 Pr[D(r) = 1] Pr[D(G(s)) = 1] = ε(n)
- We build A a distinguisher for F
- In world 1, $O = F_k(\cdot)$ and $\Pr[A^{F_k(\cdot)} = 1] = \Pr[D(F(k,1) || F(k,2) || \cdots || F(k,t)) = 1] = \Pr[D(G(k)) = 1]$
- In world 0, $O = f(\cdot)$ random function and $Pr[A^{f(\cdot)}=1] = Pr[D(r)=1]$

 $|\Pr[A^{F_k(\cdot)} = 1] - \Pr[A^{f(\cdot)} = 1]| = |\Pr[D(r) = 1] - \Pr[D(G(s)) = 1]| = \epsilon(n)$

Constructing a 1-bit PRF from PRG

• Let $G : \{0,1\}^n \to \{0,1\}^{2n}$ be a PRG.

• Define PRF: $F_s(x) = S_x$

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/