
CS 4770: Cryptography

CS 6750: Cryptography and 
Communication Security

Alina Oprea

Associate Professor, CCIS

Northeastern University

January 22 2018



Review

2

• Perfect security
• Impractical due to the requirements on key 

length
• Computational security

– Relaxation of perfect security
– PPT adversaries
– Succeed with negligible probability

• EAV-secure encryption
‒ Definition of security
‒ Security game
‒ Security experiment



Computational Security

Typically, we will say that  a scheme C is secure if

A
Probabilistic 

polynomial-time
algorithm A

Pr[ A(n) “breaks the scheme” C(n)]  is negligible in n.

• Scheme C and the adversary A take input security parameter.
• 2 relaxations of perfect security 

– PPT adversary
– Adversary can succeed, but with very small probability (negligible)
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Perfect vs. Computational Security

Recall: An encryption scheme is perfectly secret if for all m0,m1, c

Pr[Enc(K, m0) = c] = Pr[ Enc(K, m1) = c]

Meaning: no attacker can distinguish   Enc(K, m0) from Enc(K, m1)

we will require that m0,m1 are chosen by a poly-time adversary 

New: no PPT attacker can distinguish   Enc(K, m0) from Enc(K, m1) with 

better then negligible probability. 
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Security Game

PPT Adversary A Alice
Challenger

chooses m0,m1 such that
|m0|=|m1|

m0,m1 1. Choose k ← Gen(n)
2. chooses random b ← {0,1}
3. calculate c ← Enc(k,mb)

𝚷= (Gen,Enc,Dec): an encryption scheme

cMakes a guess b’

Security definition:
We say that (Gen,Enc,Dec) is indistinguishable against eavesdropping (EAV-
secure) if for any polynomial time adversary, Pr[ b’=b ] - ½  is  negligible in n.

security parameter
n

5



The security definition

• Experiment ExpΠ,𝐴
EAV 𝑛 :

1. Choose 𝑘 ← 𝐺𝑒𝑛(𝑛)

2. 𝑚0, 𝑚1 ← 𝐴1 𝑛

3. 𝑏 ←𝑅 0,1 ; 𝑐 ← 𝐸𝑛𝑐𝑘 𝑚𝑏

4. 𝑏′ ← 𝐴2 𝑚0, 𝑚1, 𝑐

5. Output 1 if 𝑏 = 𝑏′ and 0 otherwise

We say that (Gen, Enc,Dec) is EAV-secure (secure against 
eavesdropping) if:

For every PPT adversary 𝐴 = (𝐴1, 𝐴2):

|Pr[ExpΠ,𝐴
EAV 𝑛 = 1]- ½ | negligible in n

6



We can construct a 
computationally secure 

encryption scheme based on G

Suppose that G is a 
“pseudorandom generator”
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Construct secure encryption

• Impossible to construct from scratch



Outline

• Pseudorandom generators

– Security definition

– Examples

– Proofs by reduction

• PRG implies EAV-secure encryption

– Using PRG to shorten key in one-time pad

– Reduction proof
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Pseudorandom generator: G

s G(s) l(n)n

A pseudorandom generator is a deterministic algorithm                        
G : {0,1}n → {0,1} l(n) .
• Output length: l(n) for all s with |s| = n we have |G(s)| = l(n).
• Stretch: l(n) - n

“seed”

Goal (imprecise): If s chosen randomly from {0,1}n , 
then G(s) “looks” like it was chosen randomly from {0,1}l(n) . 

G
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{0,1}l(n)

“Looks random”

Suppose s  {0,1}n is chosen randomly.

Can 
G(s)  {0,1}l(n)

be uniformly random? 

{0,1}n

G({0,1}n)
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Computationally indistinguishable



PRG – main idea of the definition

a random string R

outputs:

b {0,1}

G(S)

PPT  distinguisher D

should not be able to distinguish...

scenario 0

scenario 1
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Cryptographic PRG

a random string r

G(s) (where s random) 

or

Should not be able to 
distinguish...

outputs:

0 if he thinks it’s r

1 if he thinks it’s G(s)

n – a parameter
s – a variable distributed uniformly over {0,1}n

r – a variable distributed uniformly over {0,1} l(n)  

Definition: G is a secure PRG if for every PPT algorithm D we have:
|  Pr[ D(G(s)) = 1 ] – Pr[ D(r) = 1 ]  |

is negligible in n.

Definition
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PRG Example 1

• Define 𝐺: 0,1 𝑛 → 0,1 𝑛+1 as:
𝐺 𝑠1⋯𝑠𝑛 = 𝑠1⋯𝑠𝑛𝑠𝑛+1 ,where 𝑠𝑛+1 = 𝑠1 ⊕⋯⊕ 𝑠𝑛

• Is G a secure PRG?

Build distinguisher D for G; D is given string u

D outputs 1 if un+1 = 𝑢1 ⊕⋯⊕𝑢𝑛

• World 0 - u = r random: Pr 𝐷 𝑟 = 1 =
1

2

• World 1 - u = G(s): Pr 𝐷 𝐺(𝑠) = 1 = 1

|Pr 𝐷 𝑟 = 1 - Pr 𝐷 𝐺(𝑠) = 1 | = ½ 
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PRG Example 2

• Assume 𝐺: 0,1 𝑛 → 0,1 ℓ(𝑛) is a PRG

• Define 𝐺′: 0,1 𝑛 → 0,1 ℓ(𝑛) as:

𝐺′(𝑠) = ҧ𝐺 𝑠 = 𝐺(𝑠)⊕ 1ℓ(𝑛)

• Is G’ a secure PRG?

G secure PRG G’ secure PRG

Distinguisher D’ for G’ Distinguisher D for G

Reduction proof
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PRG Example 2
Assume 𝐺: 0,1 𝑛 → 0,1 ℓ(𝑛) is a PRG

Define 𝐺′: 0,1 𝑛 → 0,1 ℓ(𝑛) as: 𝐺′ 𝑠 = ҧ𝐺 𝑠

• Let D’ be a distinguisher for G’ with prob 𝜖(𝑛) non-negligible
|Pr 𝐷′ 𝑟 = 1 - Pr 𝐷′ 𝐺′(𝑠) = 1 = 𝜖(n) 

• Design D dist. for G

– D given string 𝑢 (𝑢 = G s in world 1 and 𝑢 = r random in world 0)

– D gives ത𝑢 input to D’ and outputs what D’ outputs

• World 0: Pr 𝐷 𝑟 = 1 = Pr 𝐷′ 𝑟 = 1

• World 1:  Pr 𝐷 𝐺 𝑠 = 1 = Pr 𝐷′ ҧ𝐺 𝑠 = 1

Thus:

| Pr 𝐷 𝑟 = 1 - Pr 𝐷 𝐺 𝑠 = 1 |

=    |Pr 𝐷′ 𝑟 = 1 - Pr 𝐷′ 𝐺′(𝑠) = 1 |

= 𝜖(n) 
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PRG Example 3

• Assume 𝐺1, 𝐺2: 0,1
𝑛 → 0,1 ℓ(𝑛) are PRGs

• Define 𝐺: 0,1 𝑛 → 0,1 2ℓ(𝑛) as:
𝐺 𝑠 = 𝐺1 𝑠 ||𝐺2(𝑠)

• Is G a secure PRG?

• Take 𝐺2 𝑠 = ҧ𝐺1 𝑠 , then 𝐺 𝑠 = 𝐺1(𝑠) ҧ𝐺1 𝑠

• Build D distinguisher for G; D given string 𝑢 = 𝑢1𝑢2
• D outputs 1 if u2 = ത𝑢1

• World 0 - u = r random: Pr 𝐷 𝑟 = 1 =
1

2ℓ(𝑛)

• World 1 - u = G(s): Pr 𝐷 𝐺(𝑠) = 1 = 1

|Pr 𝐷 𝑟 = 1 - Pr 𝐷 𝐺(𝑠) = 1 | = 1-
1

2ℓ(𝑛)
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Using a PRG to build efficient OTP
Use PRGs to “shorten” the key in the one time pad 

s PRG(s)

Key: random string of length n
Plaintexts: strings of length l(n)

Enc(s,m)
m

m
xor

PRG(s)

xor

s PRG(s) c

c
xor

PRG(s)

Dec(s,m)
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EAV-secure one-time pad

Key



Theorem

If G is a secure PRG then the 
encryption scheme 
constructed before is
secure.

cryptographic PRGs
exist

EAV-secure encryption
exists

s G(s) m

m
xor
G(s)

xor

(for simplicity consider only the single message case)

Attack on encryption Attack on PRG

19

Reduction proof



Chooses m0,m1 m0,m1

Tries to guess b
c

1. b = 0,1 random 
2. c := G(s) xor mb

Recall: Security Game

If exists PPT “encryption attacker” A that  breaks security of encryption:

Pr[ “guess b correctly” ] = 
1

2
+ 𝛿(𝑛).

where 𝛿 is not negligible. 

Then exists PPT “PRG distinguisher” that break security of PRG G.
20

b’ If b=b’ then “success”

A



Design distinguisher D for PRG

Let A be PPT attacker that  breaks security of encryption:

Pr[ b’ =b ] = 
1

2
+ 𝛿 𝑛 where 𝛿 is not negligible. 

Design PPT “PRG distinguisher” D that breaks security of PRG G.
D is given an input u (either random string or G(s)) and needs to 
distinguish them. 
D interacts with A by playing the challenger 21

Chooses m0,m1
m0,m1

Tries to guess b
c

1. b = 0,1 random 
2. c := G(s) xor mb

World 0:   u = r random

World 1:  u = G(s)

b’

A D



Design distinguisher D for PRG
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Chooses m0,m1
m0,m1

Tries to guess b
c

1. b = 0,1 random 
2. c := u xor mb

World 0:   u = r random

World 1:  u = G(s)

b’

If the adversary A 
guessed b correctly

otherwise

output 1: 
“u is pseudorandom”.

output 0: 
“u is random”.

A D
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Chooses m0,m1
m0,m1

Tries to guess b
c

1. b = 0,1 random 
2. c := u xor mb

World 0:   u = r random

World 1:  u = G(s)

b’

If the adversary A 
guessed b correctly

otherwise

output 1: 
“u is pseudorandom”.

output 0: 
“u is random”.

A D

“World 0”: u is a random string

prob 0.5
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Chooses m0,m1
m0,m1

Tries to guess b
c

1. b = 0,1 random 
2. c := G(s) xor mb

World 0:   u = r random

World 1:  u = G(s)

b’

If the adversary A 
guessed b correctly

otherwise

output 1: 
“u is pseudorandom”.

output 0: 
“u is random”.

A D

“World 1”: x = G(S)

Prob A guesses correctly = 0.5 + δ(n)



u is a random string r u = G(s)

the adversary A guesses b correctly 
with probability 0.5 

the adversary A guesses b correctly 
with probability 0.5 + δ(n)

Pr[ D(r) = 1] = .5 Pr [ D(G(s)) = 1 ] = .5+δ(n)outputs:

| P(D(r) = 1) – P(D(G(s)) = 1) |

Hence

Distinguisher D breaks the PRG! 

=  | 0.5 – (0.5 + δ(n)) | =  δ(n) 
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The complexity

The distinguisher simply simulated

one execution of  the adversary

Hence he works in polynomial time.
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