CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

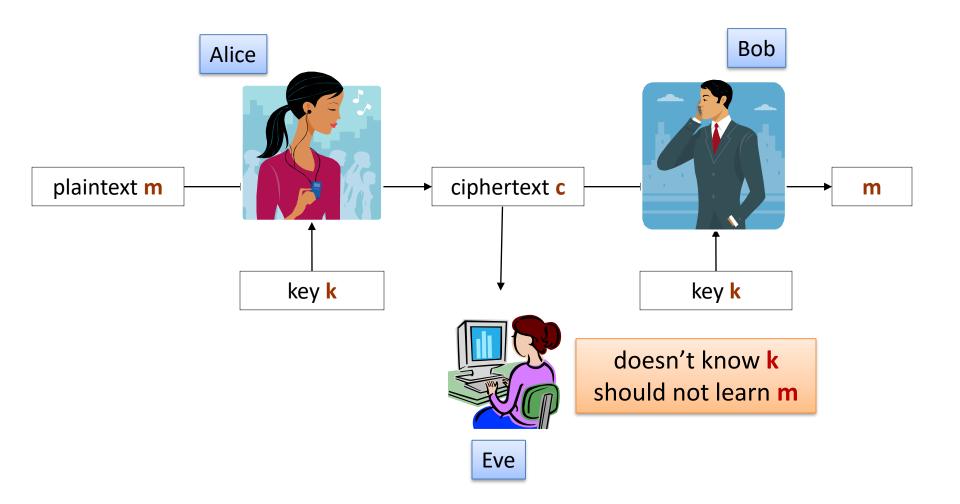
January 18 2018

Outline

• Perfect security

- Review
- Optimality of one-time pad
- Computational security
 - Probabilistic polynomial-time attackers
 - Negligible probability of success
- Definition of security for encryption schemes
 - Security games
 - Computational indistinguishability
- Pseudorandom generators (PRG)
 - Definition
 - Constructing computational secure encryption schemes from PRG

Encryption setting



"The adversary should not learn any information about m."

An encryption scheme is **perfectly secret** if for every distribution of **M** and every **m** $\in \mathcal{M}$ and **c** $\in C$ **Pr[M = m] = Pr[M = m|C = c]**

Ciphertext-only attack

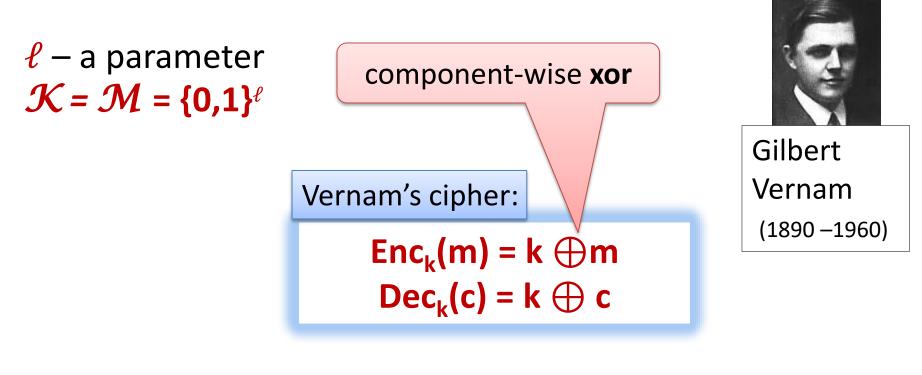
Equivalently:

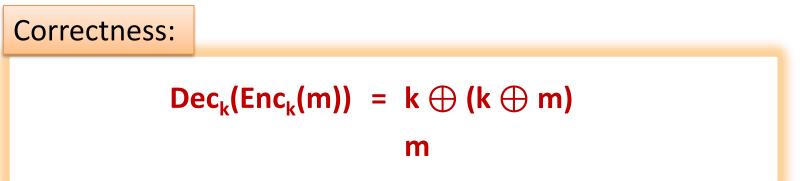
For all m, c: Pr[M = m] = Pr[M = m | C = c]

M and C=Enc(K,M) are independent

For every m, m', c we have: Pr[Enc(K, m) = c] = Pr[Enc(K, m') = c]

A perfectly secret scheme: one-time pad





Theorem (Shannon 1949)

"One time-pad is optimal"

In every perfectly secret encryption scheme $\operatorname{Enc}: \mathcal{K} \times \mathcal{M} \to \mathcal{C}, \operatorname{Dec}: \mathcal{K} \times \mathcal{C} \to \mathcal{M}$ we have $|\mathcal{K}| \ge |\mathcal{M}|$.

Intuitive Proof:

Otherwise can do "exhaustive search". Given ciphertext c, try decrypting with every key k. Will rule-out at least 1 message and learn some information about m.

Proof:

Let M be the uniform distribution over \mathcal{M} and c be some ciphertext such that $\Pr[C = c] > 0$. Consider the set $\mathcal{M}' = \{ \operatorname{Dec}(k, c) : k \in \mathcal{K} \}$. If $|\mathcal{K}| < |\mathcal{M}|$ then exists $m \in \mathcal{M} / \mathcal{M}'$. We have: $\Pr[M = m \mid C = c] = 0, \Pr[M = m] = 1/|\mathcal{M}|$.

7

Practicality?

Generally, the **one-time pad** is **not very practical**, since the key has to be as long as the **total** length of the encrypted messages.

However, it is sometimes used because of the following advantages:

- perfect secrecy,
- short messages can be encrypted using pencil and paper.

In the 1960s the Americans and the Soviets established a hotline that was encrypted using the one-time pad.

Venona project (1946 – 1980)

Ethel and Julius Rosenberg

American National Security Agency decrypted Soviet messages that were transmitted in the 1940s.

That was possible because the Soviets reused the keys in the one-time pad scheme.

Outlook

• Saw: limits of "perfect" or "statistical" security.

• Are there other meaningful security notions?

"Real" cryptography starts here!

Restriction:

Eve is computationally-bounded

We will construct schemes that in **principle can be broken** if the adversary has a huge computing power or is extremely lucky.

- E.g., break the scheme by enumerating all possible secret keys.
 ("brute force attack")
- E.g., break the scheme by guessing the secret key.

Goal: cannot be broken with reasonable computing power with reasonable probability.

Computationally-bounded adversary

Eve is computationally-bounded

But what does it mean?

Ideas:

- "She has can use at most 1000

Intel Core 2 Extreme X6800 Dual Core Processors

for at most 100 years..."

- "She can buy equipment worth \$10 million and use it for 30 years..".

it's hard to reason formally about it

First idea – concrete security

Adversary runs for limited amount of time t.

More generally, we could have definitions of a type:

"a system X is (t,ε)-secure if every adversary

that operates in time t

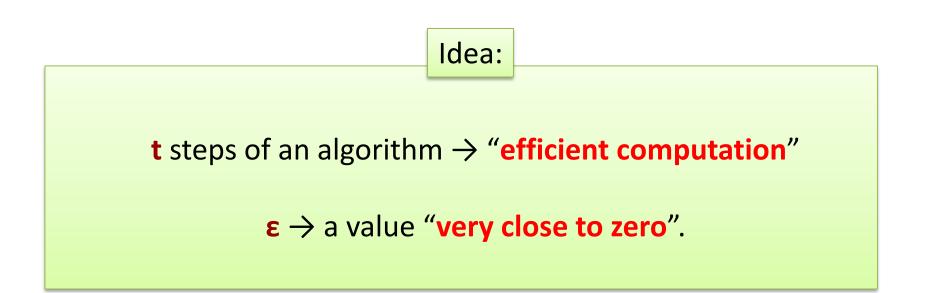
can break it with probability at most $\pmb{\epsilon}.''$

This would be mathematically precise, **but...**

- Exact run-time is not very robust
- Depends on low-level details of hardware and changes over time
- Does not consider parallelization or other computing paradigm shifts

Difficult to work with, <mark>ugly formulas</mark>...

What to do?



How to formalize it?

Use the asymptotics, as in complexity theory!

Efficiently computable?

"efficiently computable"

"polynomial-time algorithm"

Polynomial in what?

Security Parameter *n*

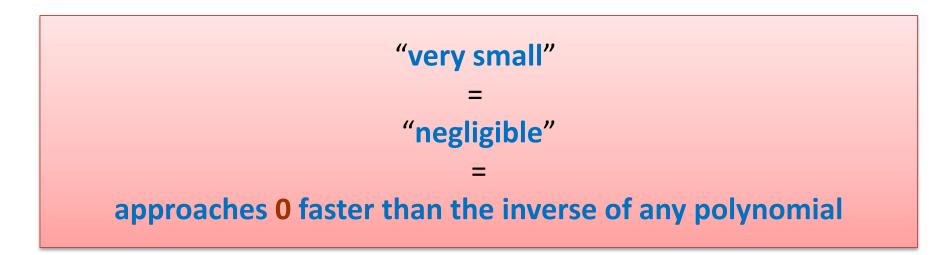
- A flexible parameter that dictates the security of the scheme.
- The scheme and the attacker get *n* (for example the key length)

Probabilistic algorithms

- Our cryptosystems rely on randomness
- The attacker should also get randomness

Probabilistic Polynomial Time (PPT) Algorithms

Very small probability?



Formally

A function $\mu : \mathbb{N} \to \mathbb{R}$ is negligible if for every positive integer *c* there exists an integer n_0 s.t. for all integer $n > n_0$

 $\mu(n) < \frac{1}{n^c}$

Negligible or not?

$$f(n) := \frac{1}{n^2}$$

$$f(n) := 2^{-n}$$

$$f(n) := 2^{-\sqrt{n}}$$

$$f(n) := n^{-\log n}$$

$$f(n) := \frac{1}{n^{1000}}$$

Nice properties of these notions

A sum of two polynomials is a polynomial:
 poly + poly = poly

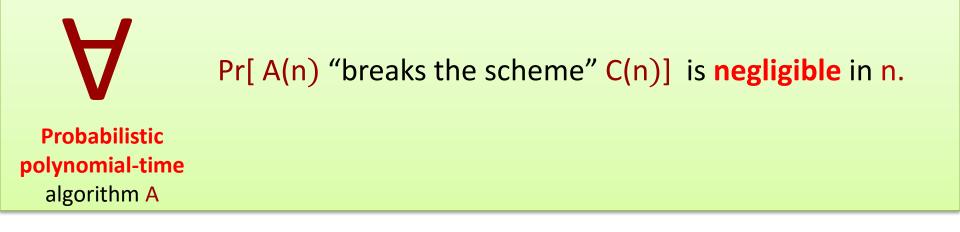
- A product of two polynomials is a polynomial:
 poly * poly = poly
- A sum of two negligible functions is a negligible function:
 negl + negl = negl

Moreover:

 A negligible function multiplied by a polynomial is negligible negl * poly = negl

Computational Security

Typically, we will say that a scheme C is secure if



- Scheme C and the adversary A take input security parameter.
- 2 relaxations of perfect security
 - PPT adversary
 - Adversary can succeed, but with very small probability (negligible)

Example

security parameter **n** = the length of the secret key **k**

in other words: k is always a random element of {0,1}ⁿ

Adversary can always **guess k**.

- Running time is polynomial.
- Probability of success is 2⁻ⁿ = negligible.

Adversary can **enumerate all possible keys k.** (the "brute force" attack)

- Probability of success is **1**.
- Running time is **2**ⁿ (not polynomial).

Computational security is resilient against these

Is this the right approach?

Advantages

- 1. Polynomial time is well-established notion in complexity theory and algorithm analysis.
- 2. The formulas get much simpler.

Disadvantage

Asymptotic results don't tell us anything about security of the **concrete systems**.

However

Usually one can prove **formally** an asymptotic result and then argue **informally** how to choose the "security parameter"

(and can be calculated based on best attacks)₂₁

Computationally Secure Encryption

 \mathcal{K} -key space, \mathcal{M} -plaintext space, C-ciphertext space All spaces can be parameterized by security parameter n. Often consider $\mathcal{K} = \{0, 1\}^n$, $\mathcal{M} = C = \{0, 1\}^*$

An encryption scheme is a tuple (Gen, Enc, Dec), where

• Gen: $\mathcal{N} \rightarrow \mathcal{K}$, Enc: $\mathcal{K} \times \mathcal{M} \rightarrow C$, Dec: $\mathcal{K} \times C \rightarrow \mathcal{M}$

Algorithms Enc and Dec can be randomized. Usually Dec is deterministic

Correctness

For every **k**, **m** we should have **Pr[Dec_k(Enc_k(m)) = m] =1**.

Perfect vs. Computational Security

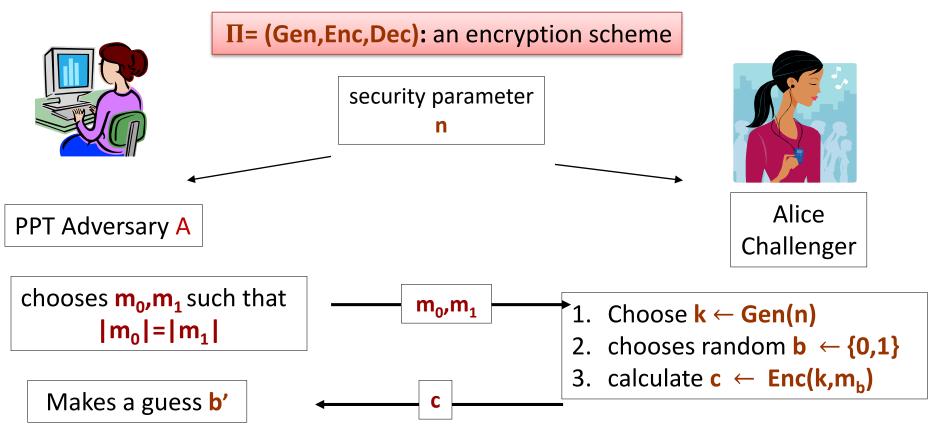
we will require that m₀, m₁ are chosen by a **poly-time adversary**

Recall: An encryption scheme is **perfectly secret** if for all m_0, m_1, c **Pr[Enc(K, m_0) = c] = Pr[Enc(K, m_1) = c]**

Meaning: no attacker can distinguish **Enc(K, m₀)** from **Enc(K, m₁)**

New: no <u>PPT</u> attacker can distinguish **Enc(K, m₀)** from **Enc(K, m₁)** with <u>better then negligible</u> probability.

Security Game



Security definition:

We say that (Gen,Enc,Dec) is indistinguishable against eavesdropping (EAVsecure) if for any polynomial time adversary, | Pr[b'=b] - ½ | is negligible in n.

The security definition

- Experiment $Exp_{\Pi,A}^{EAV}(n)$:
 - 1. Choose $k \leftarrow Gen(n)$
 - 2. $m_0, m_1 \leftarrow A_1(n)$
 - 3. $b \leftarrow^R \{0,1\}; c \leftarrow Enc_k(m_b)$
 - 4. $b' \leftarrow A_2(m_0, m_1, c)$
 - 5. Output 1 if b = b' and 0 otherwise

We say that (Gen, Enc, Dec) is EAV-secure (secure against eavesdropping) if:

For every **PPT** adversary $A = (A_1, A_2)$: $|\Pr[\exp_{\Pi,A}^{EAV}(n) = 1]$ - ½ | negligible in n

Testing the definition

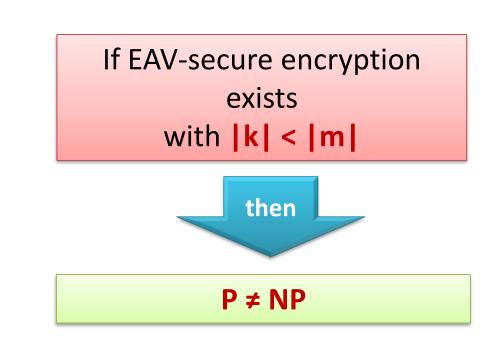
Suppose the adversary can compute **k from Enc(k,m).** Can he win the game? YES!

Suppose the adversary can compute **some bit of m** from **Enc(k,m).** Can he win the game?

Is it possible to prove security?

Bad news:

Theorem



Long-standing open problem

What can we prove?

We can't prove security of crypto schemes from scratch. But...

- Can prove security of a complicated primitive assuming security of a simpler one.
- Can prove security of a primitive assuming some basic algorithmic task is computationally hard.

This is what modern cryptography is all about

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/