CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

April 9 2018

Schedule

- HW 4
 - Due on Thu 04/12
- Programming project 3
 - Due on 04/26 (last day it can be accepted)
 - Grading on 04/27
- Final exam
 - -04/23, 1-3pm
- Office hours during the week of 04/16

Bitcoin

- Digital crypto currencies
 - Advantages over paper cash
- Distributed public ledger
 - Blockchain creation and distribution
 - Proof of Work (PoW)
 - Agreement and resilience to adversaries
 - Incentives for users
- Bitcoin security
- Other cryptocurrencies

Resources

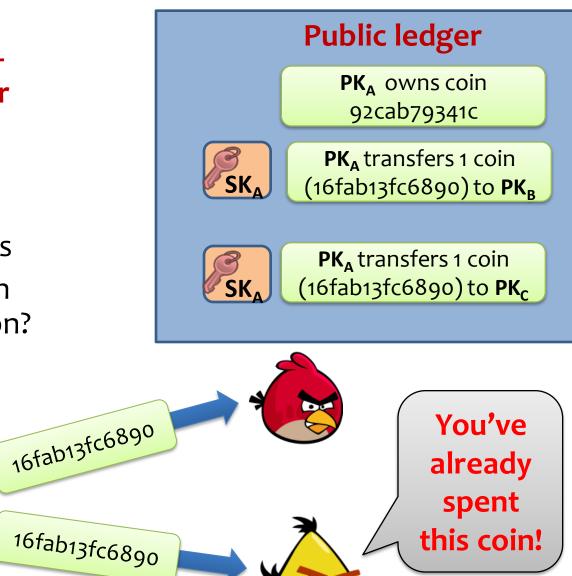
- Book: Bitcoin and Cryptocurrency Technologies
 - <u>http://bitcoinbook.cs.princeton.edu/</u>
- Bonneau et al. Research Perspectives and Challenges for Bitcoin and Cryptocurrencies. <u>https://eprint.iacr.org/2015/261.pdf</u>
- Bitcoin and Cryptocurrency Technologies Course
 - <u>https://www.coursera.org/learn/cryptocurrency</u>
 - <u>https://piazza.com/princeton/spring2015/btctech</u>
 <u>/resources</u>

Bitcoin – a "digital analogue" of the paper money

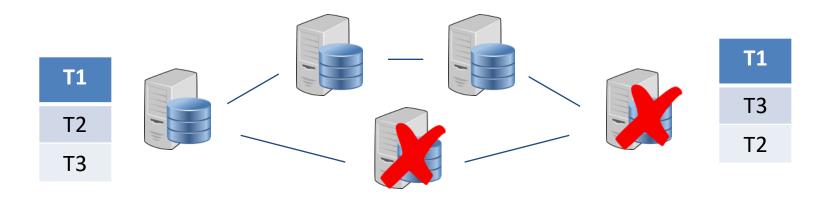
A digital currency introduced by "Satoshi Nakamoto" in 2008

- First e-cash without a centralized issuing authority
 - Store and transfer value without reliance on central banks
 - Anyone can join the system and make transactions
 - Transactions are publicly verifiable
- Built on top of an unstructured P2P system
 - Participants validate transactions and mint currency
 - System works as long as the *majority of users are honest*

Currency unit: **Bitcoin (BTC) 1 BTC = 10^8 Satoshi;** value \approx \$6800


Bitcoin idea

Public trusted bulletinboard (public ledger or DB)


 Includes list of all transactions

16fab13fc6890

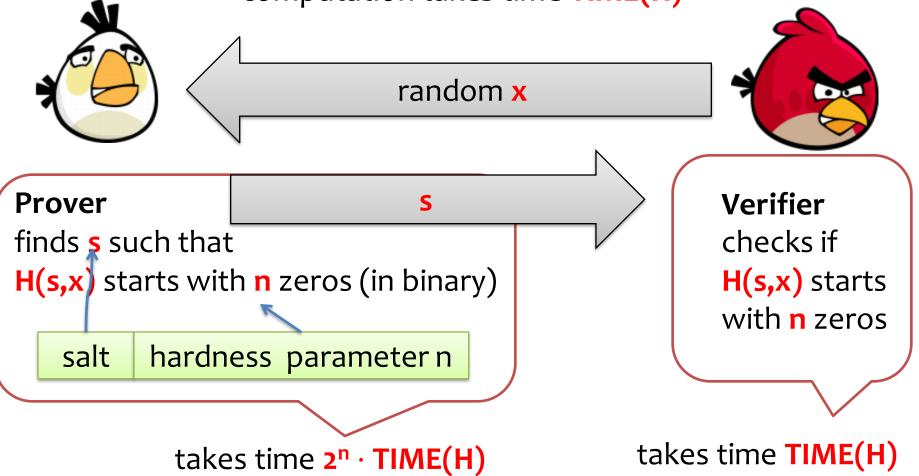
- Verifiable by all users
- How to maintain it in decentralized fashion?

Challenges in designing public ledger

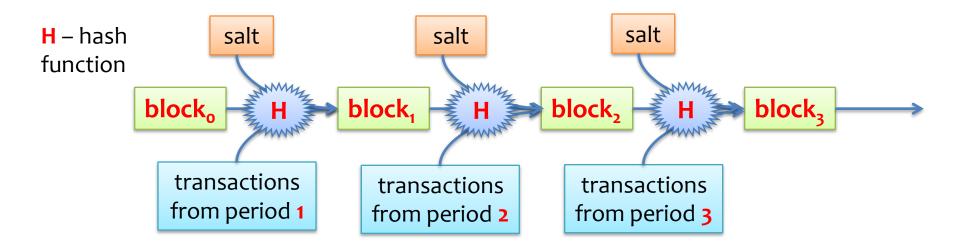
- Decentralized ledger

- Each user maintains a list of transactions ordered across time
- His own transactions and transactions received from other users
- Main challenges: Obtain consensus
 - Order of transactions is the same at all nodes
- Attack models
 - Network failures (messages might not be delivered timely)
 - Offline participants (nodes leave and re-connect to the network)
 - Malicious nodes (nodes try to double spend)

Distributing transactions


- New transactions are *broadcast* to all nodes
 P2P network
- Each node *collects new transactions* into a block
- In each round (e.g., every 10 minutes)

A random node creates the next block (includes outstanding transactions) and broadcasts it to the network


- Other nodes accept the block only if *all transactions in it are valid*
 - Valid signatures
 - Coins not spent before
- Nodes accept the block by including it in their local ledger

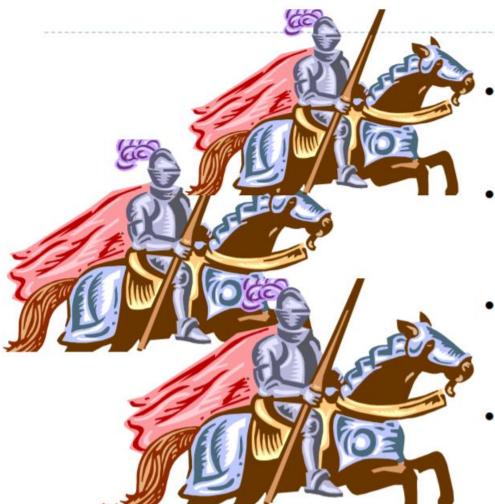
A simple hash-based PoW

H -- a hash function whose
 computation takes time TIME(H)

How are the PoWs used?

Main idea: to extend it one needs to find salt such that

H(salt, block_i, transactions) starts with some number **n** of zeros Process is called block mining


Public ledger

- Tamper-evident log
 - Record and order all transactions
 - Valid transactions can not be modified
 - New transactions are appended after being validated
- How to design it?
 - What data structure and crypto primitives to use?
- How to prevent attackers controlling majority of transactions?
- How to reach agreement?
- How to incentivize users?

Distributed consensus

- Traditional application
 - Reliability in distributed systems
- Fixed number of nodes, each has an input
- Requirements
 - The protocol terminates and all correct nodes output same value
 - The value they output is input to a correct node
- In Bitcoin nodes need to reach consensus on order of transactions
 - Adversary can create arbitrary transactions

Byzantine Generals Problem

- Several Byzantine generals are laying siege to an enemy city
- They can only communicate by messenger
- They have to agree on a common strategy, attack or retreat.
- Some general may be traitors (their identity is not known)

Why consensus is hard

- Many reasons
 - Nodes may crash (benign failures)
 - Nodes may be malicious (adversarial failures)
 - Network is imperfect
 - Faults, dis-connections, variable latency
 - No notion of global time
- Impossibility results
 - Asynchronous setting (messages might be delayed indefinitely)
 - FLP theorem: It is impossible to achieve consensus with single node failing in asynchronous networks

Consensus in Bitcoin

- New transactions are *broadcast* to all nodes
- Nodes *collect new transactions* into a block
- In each round the node solving the puzzle generates and sends the next block
 - Other nodes accept the block only if *all* transactions in it are valid
 - They all broadcast the new block to all nodes
- Nodes accept the block by including it in their local ledger and mining on the new block

Probabilistic guarantee to get around impossibility results

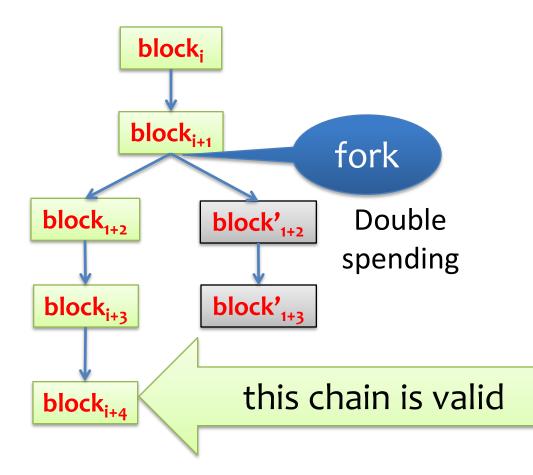
Eventual consistency

- Consensus doesn't happen right away
- At least 10 mins to verify a transaction
 - Agree to pay
 - Wait for one block (10 mins) for the transaction to go through
 - But, for a large transaction (\$\$\$) wait longer.
 - If you wait longer there will be more blocks mined and higher probability that your transaction is on the consensus chain
 - For large \$\$\$, you wait for six blocks (1 hour) or longer
 - E.g., if a vendor requires 6 confirmations and an attacker controls 10% of the CPU power, the attack will succeed 0.02428% of the time

The hardness parameter is periodically changed

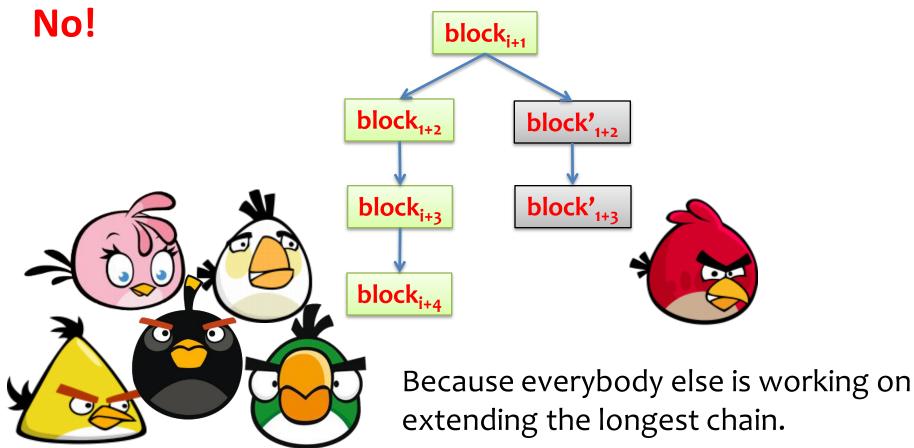
- The computing power of the miners changes.
- The miners should generate the new block each 10 minutes (on average).
- Therefore the hardness parameter is periodically adjusted to the mining power
- This happens once each **2016 blocks**.
- For example the block generated on 2014-03-17 18:52:10 looked like this:

0000000000000006d8733e03fa9f5e5 2ec912fa82c9adfed09fbca9563cb4ce


Bitcoin Snapshot

LOCKCHAIN WALLET	DATA API ABOUT	Q BLOCK, HASH, TRANSACTION, ETC GET A FREE WALLET
Number Of Transactions	1177	Hash 0000000000000000001b838d1be1943a258a2486ea4a7c7a16bca9210d87d988
Output Total	11,861.98601796 BTC	Previous Block 000000000000000000000000000000000000
Estimated Transaction Volume	260.61722391 BTC	Next Block(s) 000000000000000000000000000000000000
Transaction Fees	0.06996607 BTC	Merkle Root 6cc9b1173ca3de8bc409959d839f8b3a84f6cedb2505aa2145f832db9d5531ff
Height	517304 (Main Chain)	
Timestamp	2018-04-09 00:12:32	
Received Time	2018-04-09 00:12:32	•
Relayed By	BTC.com	Be Your Own Bank.
Difficulty	3,511,060,552,899.72	Use your Blockchain wallet to buy bitcoin now.
Bits	391129783	GET STARTED →
Size	552.024 kB	🛷 BLOCKCHAIN
Weight	1647.261 kWU	
buysellads.com/ads/click/x/GTND42OI CK7I42 IUC/	AALYKQMCV7I6K7LCY7DTZ3JCW7DCKQYC6AIL2QKC6BI	6K7I FTAIKK3EH INCI SIZ

Attacks


- Adversary generates new blocks
 - Can happen proportional to his computational power (less than 50%)
- A transaction generated by honest node is not included by adversary in his generated blocks
 - Eventually honest nodes will solve the puzzle and include all outstanding transactions
 - As long the honest node is connected to other honest nodes, his transactions will be included in a block
 - It might take some time!

Double spending: "forks" The "longest" chain counts. - It includes "more work"

- Malicious nodes spend same coin on different branches
- Once network reconciles, only one of the transaction will be accepted
- The transaction on the longest chain

Does it make sense to "work" on a shorter chain?

Recall: we assumed that the majority follows the protocol.

Bitcoin Protocol

- Each P2P node runs the following algorithm:
 - New transactions are broadcast to all nodes.
 - Each node (miner) collects new transactions into a block.
 - Each node works on solving proof-of-work (PoW) for its block
 - Use computational resources
 - When a node finds a solution, it broadcasts the block to all nodes.
 - Nodes accept the block only if all transactions are valid (digital signature checking) and coins not already spent (check transactions from public ledger).
 - Nodes express their acceptance by working on creating the next block in the chain
 - If multiple valid blocks are available, choose the longest chain and include transactions from discarded blocks in the queue
 - Include the hash of the accepted block as the previous hash.

Nodes eventually reach global consensus on all transactions

Main principles

- 1. It is **computationally hard** to extend the chain (solve puzzle)
- 2. Once a miner finds an extension he broadcasts it to everybody
- The users will always accept "the longest chain" as the valid one

the system incentivizes them to do it


4. Wait longer to perform action according to the value of the transaction

Public ledger

- Tamper-evident log
 - Record and order all transactions
 - Valid transactions can not be modified
 - New transactions are appended after being validated
- How to design it?
 - What data structure and crypto primitives to use?
- How to prevent attackers controlling majority of transactions?
- How to reach agreement?
- How to incentivize users?

How are the miners incentivized to participate in this game?

Short answer: they are paid (in Bitcoins) for this

Incentives

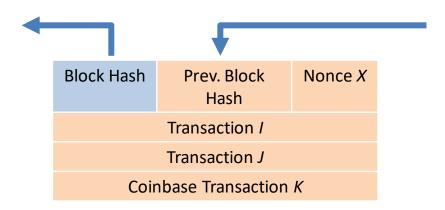
- Transactions may include a transaction fee
 - Paid to whoever mines a block that includes the transaction
- New blocks mint new coins
 - Node who wins "mines" a fixed amount of coins as a prize
 - Called a coinbase transaction
 - The only way to generate new coins in the system

Where does the money come from?

A miner who finds a new block gets a "reward" in BTC: ≈ 4 years

for the first 210,000 blocks: 50 BTC

- for the next **210,000** blocks: **25 BTC**
- for the next **210,000** blocks: **12.5 BTC**,


and so on...

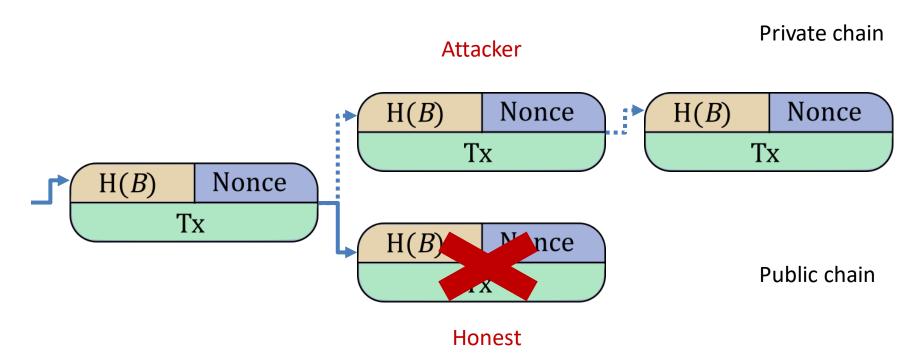
<u>Note</u>: 210,000 · (50 + 25 + 12.5 + ···) → 21,000,000

Fixed number of blocks in the system

current reward

Coinbase Transactions

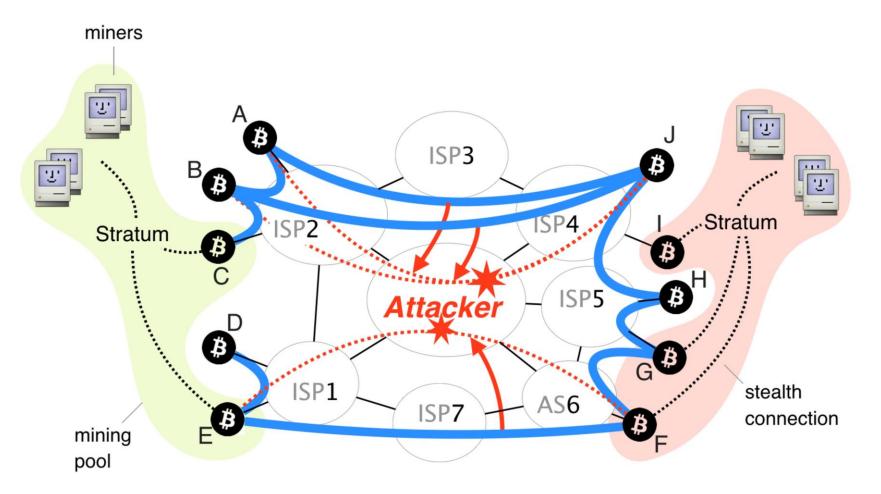
- Generated upon successful mining and included in block chain
- Node will get the reward only if this transaction is on the blockchain
- Elegantly solves several problems
 - Where do bitcoins come from?
 - How are they minted?
 - Who gets newly minted coins?

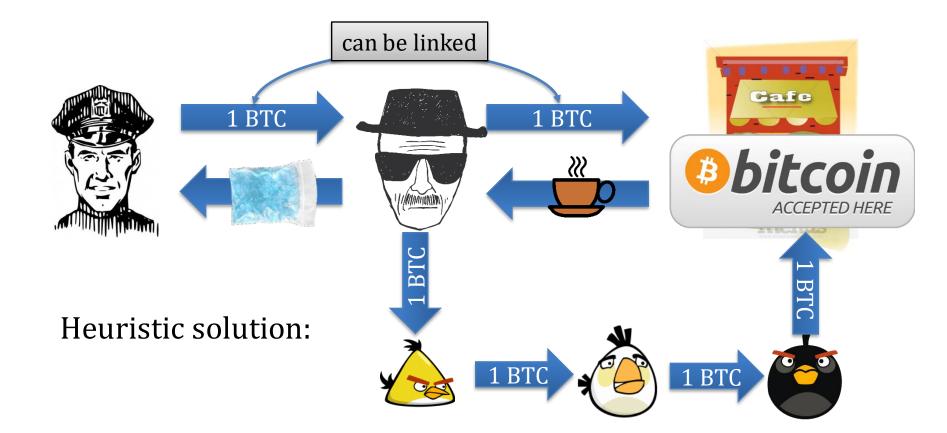

Bitcoin security

- Protection again *invalid transactions* (forgery)
 - Cryptographic (digital signature)
- Protection against *modification of blockchain* (remove or modify old transactions)
 - Cryptography (collision-resistant hash functions and digital signatures)
- Non-repudiation of transactions
 - Based on blockchain
- Protection against *double spending*
 - Enforced by consensus (correct majority)
 - One of the transactions (either one) will be eventually accepted
- Protection against *Sybil attacks*
 - PoW cryptographic puzzles
 - Assume that adversary does not control majority of CPU resources

Selfish mining attacks

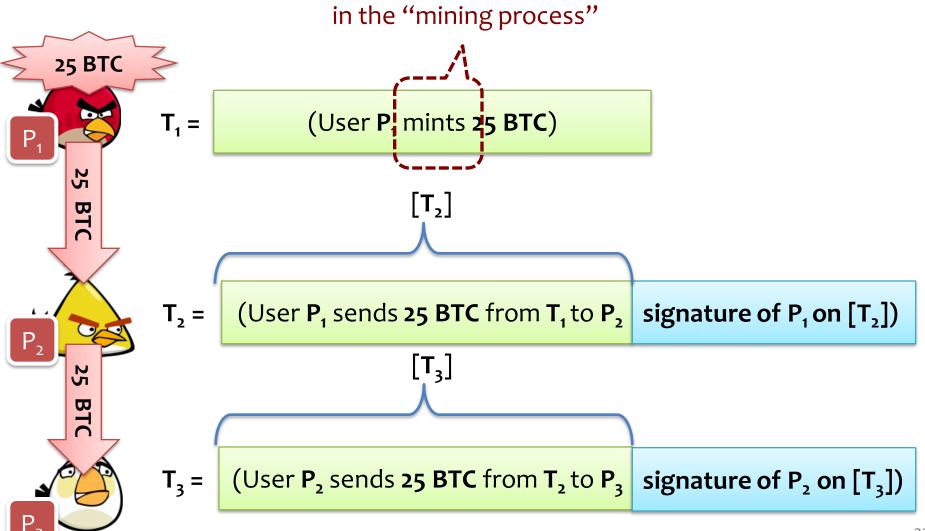
Majority is not Enough: Bitcoin Mining is Vulnerable


Ittay Eyal, and Emin Gün Sirer

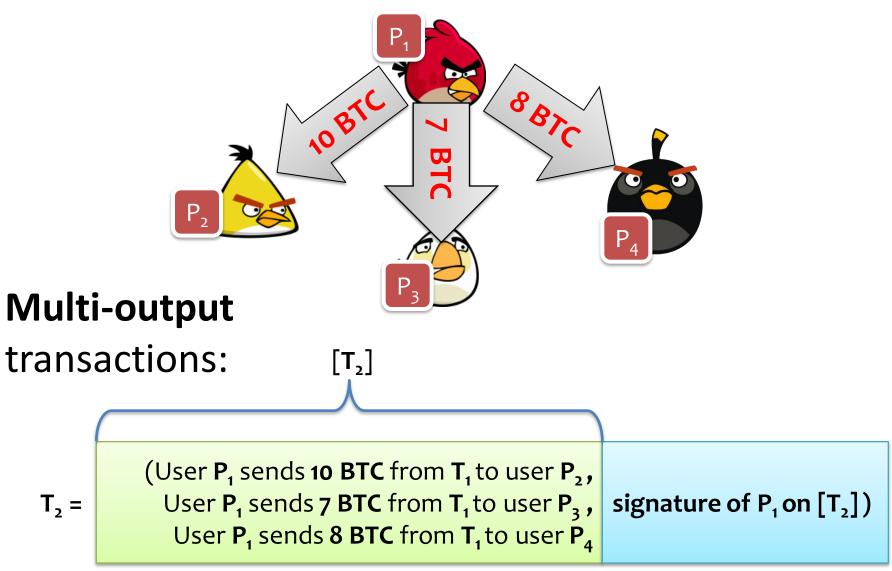

- Attacker: I'll keep these blocks for myself!
 - Create private chain
- When attacker reveal blocks in private chain, honest blocks will switch to longer chain and waste resources
 - Creates incentives for honest users to join attacker coalition

Partitioning attacks

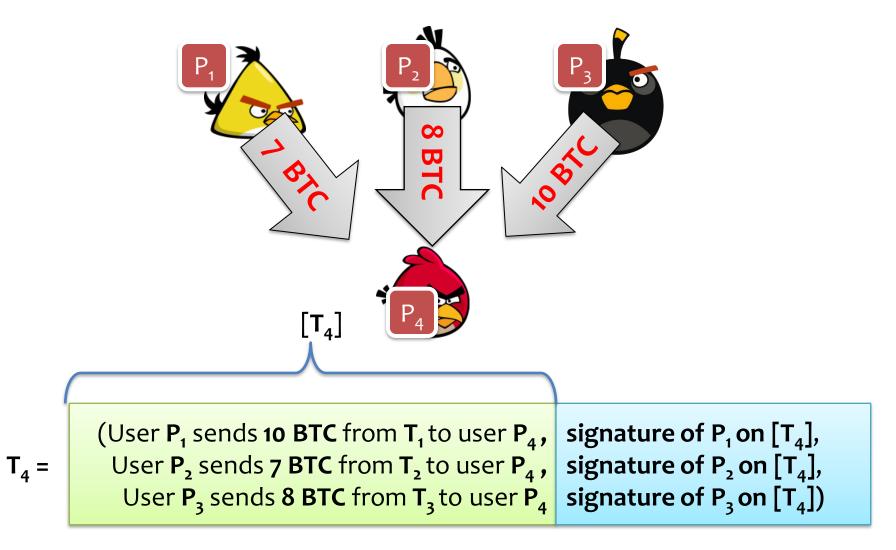
<u>Hijacking Bitcoin: Routing Attacks on Cryptocurrencies</u> Maria Apostolaki, Aviv Zohar, Laurent Vanbever



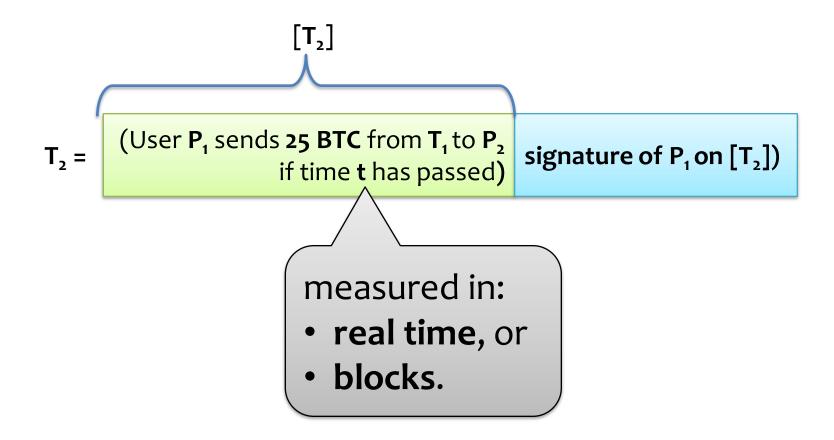
One obvious problem: lack of anonymity



Can sometimes be de-anonymized: [Meiklejohn et al., A fistful of bitcoins: characterizing payments among men with no names, 2013]


Transaction syntax – simplified view

How to "divide money"?


Multiple inputs

all signatures need to be valid!

Time-locks

It is also possible to specify time **t** when a transaction becomes valid.

Generalizations

- 1. All these features can be combined.
- The total value of in-coming transactions can be larger that the value of the out-going transactions.

(the difference is called a "transaction fee" and goes to the miner)

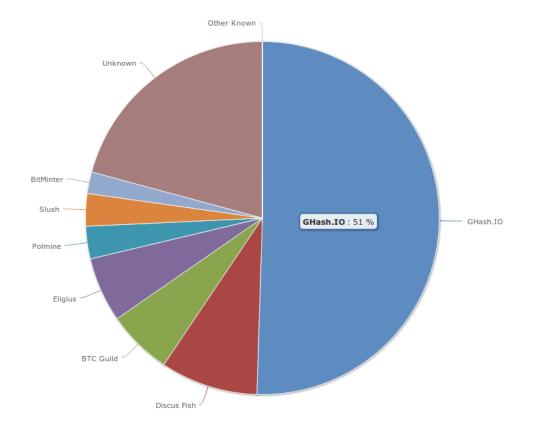
3. Second mechanism to incentivize nodes to be honest

Popular mining pools

Miners create cartels called mining pools

This allows them to reduce the variance of their income

The general picture

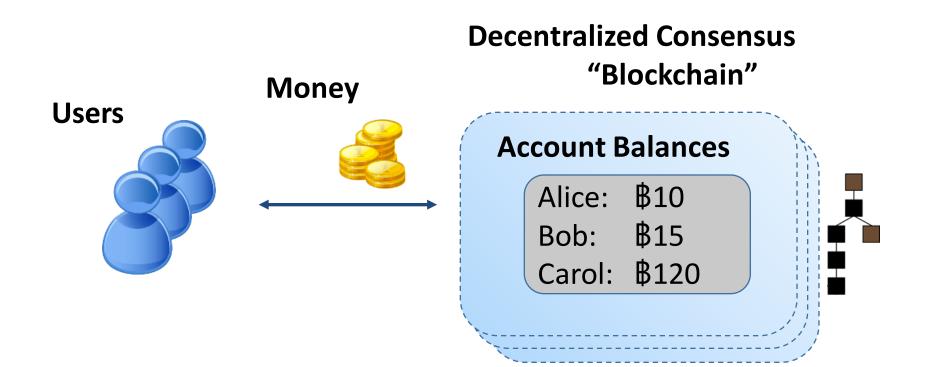

The mining pool is **operated centrally**.

Some of the mining pools charge fees for their services.

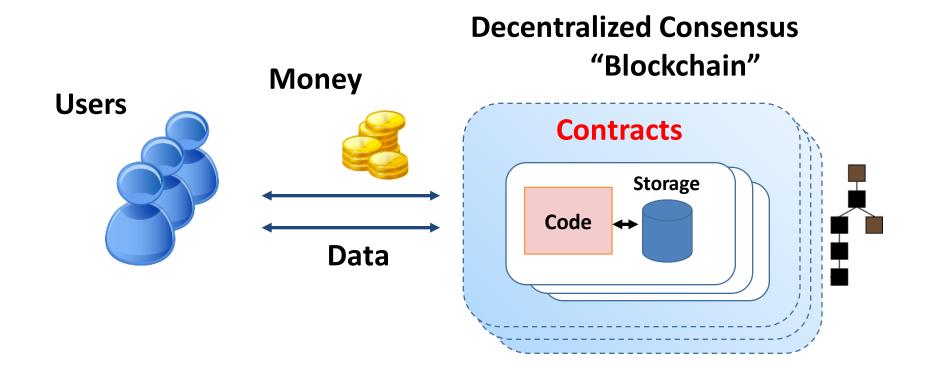
Tricky part: how to prevent cheating by miners? How to reward the miners?

June 2014

Ghash.io got > 50% of the total hashpower.


Then this percentage went down...

Alternative cryptocurrencies


- a) Litecoin a currency where hardware mining is (supposedly) harder
- b) **Spacecoin** a currency based on the Proofs of Space
- c) Currencies based on the **Proofs of Stake**
- d) Currencies doing **some useful work** (Primecoin, Permacoin)
- e) **Zerocash** a currency with true anonymity
- f) **Ethereum** a currency with Turing-complete scripts
- g) Other uses of the Blockchain technology

Disclaimers: (a) some of them are just **academic proposals**, (b) this order is **not chronologic**.

Digital currency is just one application on top of a blockchain

Smart Contracts: user-defined programs running on top of a blockchain

Smart Contract Example (very high level)

If GOOG rises to \$1,000 by 30 June 2015, assign 10 shares from Alice to Bob and pay Alice \$10,000

Other examples abound:

Auctions, elections, lotteries, escrow, ...

Zerocash

[Ben-Sasson, Chiesa, Garman, Green, Miers, Tromer, Virza, Zerocash: Decentralized Anonymous Payments from Bitcoin, 2014]

Main idea:

instead of showing

"I spend some unspent transaction Tx from the past"

show:

"<u>There exists</u> an unspent transaction Tx from the past

This is done using zero-knowledge proofs (ZKP)

Technical challenge: how to do it without executing ZKPs on the entire blockchain?

Acknowledgement

Some of the slides and slide contents are taken from

http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/