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CS 4770, CS 6750: Syllabus
• Symmetric-key primitives

– Block ciphers, symmetric-key encryption
– Pseudorandom functions and pseudorandom generators
– MACs and authenticated encryption

• Hash functions
– Integrity schemes

• Public-key cryptography
– Public-key encryption and signatures
– Key exchange

• Applications
– Secure network communication, secure computation, 

crypto currencies

Textbook: Introduction to Modern Cryptography. 
J. Katz and Y. Lindell
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Policies
• Instructors

– Alina Oprea
– TA: Sourabh Marathe

• Schedule
– Mon, Thu 11:45am – 1:25pm, Robinson 107
– Office hours: 

• Alina: Thu 4:00 – 6:00 pm (ISEC 625)
• Sourabh: Tue 2-3pm (ISEC 532)

• Your responsibilities
– Please be on time and attend classes
– Participate in interactive discussion
– Submit assignments/ programming projects on time

• Late days for assignments
– 5 total late days, after that loose 20%  for every late day
– Assignments are due at 11:59pm on the specified date

• Respect university code of conduct
– No collaboration on homework / programming projects
– http://www.northeastern.edu/osccr/academic-integrity-policy/
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Grading
• Written problem assignments – 25%

– 3-4 theoretical problem assignments based on 
studied material in class

• Programming projects – 20%
– 3 programming projects
– Language of your choice (Java, C/C++, Python)
– In-person grading with instructor/TA

• Exams – 50%
–Midterm – 25%
– Final exam – 25%

• Class participation – 5%
–Participate in class discussion and on Piazza
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Review

• Historically cryptography used by military

– All historical ciphers (shift, substitution, Vigenere) 
have been broken

– If key space is small (shift cipher), can mount 
brute-force attack

– Large key space doesn’t mean cipher is secure!

• Modern cryptography

– Rooted in formal definitions and rigorous proofs 
based on computational assumptions

– Enables a number of emerging applications
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Outline

• Probability review
– Events, union bound

– Conditional probability, Bayes theorem

• Defining security for encryption
– Several wrong approaches

• Perfect secrecy
– Rigorous definition of security for encryption 

(Shannon 1949)

• One-time pad
– Construction, proof and limitations
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Probability review
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Probability space and events

• Probability space:  
– Universe𝒰
– Probability function: for all u ∈ 𝒰, assign 0 ≤ Pr 𝑢 ≤ 1

such that σ𝑢∈𝒰 Pr[𝑢] = 1.

• Event is a set   A ⊆𝒰:  Pr[A] = Σ Pr(x) ∈ [0,1]

Example
• 𝒰 = {0,1}8

• A = {  all x in 𝒰 such that  lsb2(x)=11  }   ⊆𝒰

for the uniform distribution on {0,1}8 :    

Pr[A] =   1/4

note:   Pr[𝒰]=1
x∈A
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The union bound

• For  events  A1 and  A2

Pr[ A1 ∪ A2 ]  ≤  Pr[A1] + Pr[A2]

If A1 ∩ A2  = Φ, then Pr[ A1 ∪ A2 ]  = Pr[A1] + Pr[A2]

In general Pr[ A1 ∪ A2 ]  = Pr[A1] + Pr[A2] – Pr[A1 ∩ A2]

Example:
A1 = { all x in {0,1}n  s.t  lsb2(x)=11  }    ;    A2 = { all x in {0,1}n  s.t. msb2(x)=11  }

Pr[ lsb2(x)=11 or msb2(x)=11 ] = Pr[A1∪A2]  ≤  ¼+¼  =  ½ 

A1
A2
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Random Variables

Def:  a random variable  X  is a function     X:U⟶V

Example:    X: {0,1}n ⟶ {0,1}    ;      X(y) =  lsb(y) ∈{0,1} 

For the uniform distribution on U:

Pr[ X=0 ] =  1/2     ,      Pr[ X=1 ] =  1/2

More generally:  
Rand. var.  X takes values in V and induces a distribution on V

lsb=1

0

1

lsb=0

U V
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The uniform random variable

Let   U   be some set,   e.g.   U = {0,1}n

We write    r ⟵ U   to denote a uniform random 
variable over U 

for all   u∈U:     Pr[ r = u ]  =  1/|U|

R
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Randomized algorithms

• Deterministic algorithm:     y ⟵ A(m)

• Randomized algorithm     

y ⟵ A( m ; r )  where   r ⟵ {0,1}n

output is a random variable

Example:   A(m ; r) = m+r

A(m)
m

inputs outputs

A(m;r)
m

R
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Independence

Def:   Events A and B are independent if and only if  
Pr[ A and B ] = Pr[A] ∙ Pr[B]

Random variables  X,Y  taking values in  V  are 
independent if and only if

∀a,b∈V:    Pr[ X=a  and  Y=b] = Pr[X=a] ∙ Pr[Y=b]

Example:     U = {0,1}
2

= {00, 01, 10, 11}        and     r ⟵ U

Define r.v.  X and Y  as:      X = lsb(r)    ,     Y = msb(r)   

Pr[ X=0   and  Y=0 ] = Pr[ r=00 ] = ¼ = Pr[X=0] ∙ Pr[Y=0]

R
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Review:   XOR

XOR of two strings in {0,1}n is their bit-wise 
addition mod 2

0  1  1  0  1  1  1

1  0  1  1  0  1  0

1  1   0  1  1  0  1

⊕
X Y X ⊕Y

0 0 0

0 1 1

1 0 1

1 1 0
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Independence

• Uniform distribution over 𝒰 = 0,1 2

• 𝒰 = {0,1}2 = {00, 01, 10, 11}        and     r ⟵ U

– 𝑋 = lsb(r),  Y = msb(r), Z ≔ 𝑋 + 𝑌, 𝑊 ≔ 𝑋⊕ 𝑌

• 𝑋, 𝑌 independent

• Are 𝑋, 𝑍 independent? 

• Are 𝑋,𝑊 independent? 

R
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An important property of XOR

Thm: If Y is a random variable over {0,1}n ,  X is an 
independent uniform variable on {0,1}n

Then    Z := Y⨁X   is uniform var. on {0,1}n

Proof:    (for n=1)

Pr[ Z=0 ] = 
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Conditional probability

• For two events A and B, conditional probability is:

Pr[𝐴|𝐵] =
Pr 𝐴 ∩ 𝐵

Pr[𝐵]

• For two random variables 𝑋, 𝑌 and outcomes 𝑥, 𝑦
we define the conditional probability:

Pr[𝑋 = 𝑥|𝑌 = 𝑦] =
Pr 𝑋=𝑥,𝑌=𝑦

Pr[𝑌=𝑦]

• If 𝐴 and 𝐵 are independent

Pr[𝐴|𝐵] =
Pr 𝐴 ∩ 𝐵

Pr[𝐵]
=
Pr 𝐴]Pr[𝐵

Pr[𝐵]
= Pr[A]

18



Bayes Theorem

• For two events A and B:

Pr[𝐴|𝐵] =
Pr 𝐵|𝐴 Pr[𝐴]

Pr[𝐵]

• For two random variables 𝑋, 𝑌 and outcomes 𝑥, 𝑦

Pr[𝑋 = 𝑥|𝑌 = 𝑦] =
Pr 𝑌 = 𝑦|𝑋 = 𝑥 Pr[𝑋 = 𝑥]

Pr[𝑌 = 𝑦]

• Easy to infer from definition

Pr[𝐴|𝐵] =
Pr[𝐴 ∩ 𝐵]

Pr[𝐵]
=
Pr 𝐵|𝐴 Pr[𝐴]

Pr[𝐵]
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Conditional probability example

• Shift cipher: K = {0,…,25}, Pr[K = k]=1/26

• Assume that distribution of message is

• What is the probability that ciphertext is b?

• Solution: 𝑀 = 𝑎,𝐾 = 1 or 𝑀 = 𝑧, 𝐾 = 2

Pr[𝑀 = 𝑎,𝐾 = 1] = Pr 𝑀 = 𝑎 Pr 𝑘 = 1 = 0.7 ∗
1

26

Pr[𝑀 = 𝑧, 𝐾 = 2] = Pr 𝑀 = 𝑧 Pr 𝑘 = 2 = 0.3 ∗
1

26

Pr[𝐶 = 𝑏] = 0.3 ∗
1

26
+ 0.7 ∗

1

26
=

1

26

Pr[𝑀 = 𝑎] = 0.7; Pr 𝑀 = 𝑧 = 0.3
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Conditional probability example

• Shift cipher: K = {0,…,25}, Pr[K = k]=1/26
• Assume that distribution of message is

• What is the probability that message is “a” given 
that ciphertext is “b”?

• Solution:

Pr[𝑀 = 𝑎|𝐶 = 𝑏] =
Pr 𝐶 = 𝑏|𝑀 = 𝑎 Pr[𝑀 = 𝑎]

Pr[𝐶 = 𝑏]

=
Pr 𝐾 = 1 Pr[𝑀 = 𝑎]

Pr[𝐶 = 𝑏]
=

1
26

∗ 0.7

1
26

= 0.7

Pr[𝑀 = 𝑎] = 0.7; Pr 𝑀 = 𝑧 = 0.3
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Defining security of 
encryption
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Encryption setting

plaintext m encryption ciphertext c decryption m

key k key k

doesn’t know k
should not learn m

Alice Bob

Eve
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Adversarial capability

• Ciphertext-only attack
– Adversary observes ciphertext(s) 
– Infer information about plaintext

• Known-plaintext attack
– Adversary knows one pair of plaintext/ciphertext
– Learn plaintext information on other ciphertext

• Chosen-plaintext attack
– Adversary can obtain plaintext/ciphertext pairs of his 

choice

• Chosen-ciphertext attack
– Adversary can decrypt ciphertexts of its choice
– Learn plaintext information on other ciphertext
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Defining “security of an encryption scheme” is not 
trivial.

(m – a message)

1. the key K is chosen uniformly at random

2. C := EncK(m) is given to the adversary

consider the following experiment

how to define 
security

?
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Idea 1

“The adversary should not be able to learn K.”

the encryption scheme that “doesn’t encrypt”: 

EncK(m) = m
satisfies this definition!

A problem

An idea

(m – a message)

1. the key K is chosen uniformly at random 

2. C := EncK(m) is given to the adversary
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Idea 2

“The adversary should not be able to learn m.”

What if the adversary can compute, e.g., the first half of m?

A problem

An idea

m1 ... m|m|/2 ? ... ?

(m – a message)

1. the key K is chosen uniformly at random 

2. C := EncK(m) is given to the adversary
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Idea 3

“The adversary should not learn any information about m.”

Sounds great! But what does it actually mean?
How to formalize it?

(m – a message)

1. the key K is chosen uniformly at randomly

2. C := EncK(m) is given to the adversary

An idea
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Eve knows that 

Example

m := 

“I love you”              with prob. 0.1

“I don’t love you”    with prob. 0.7

“I hate you”              with prob. 0.2

m

Eve still knows that 

m := 

“I love you”              with prob. 0.1

“I don’t love you”    with prob. 0.7

“I hate you”              with prob. 0.2

m

k c := EncK(m)

29



Intuitively

Consider random variables:

M some distribution variable over M  
K uniformly random variable over K 
C = Enc(K, M)   random variable over C 

“The adversary should not learn any information about m.”
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An encryption scheme is perfectly secret if 

for every distribution of M

and every m Є M and c Є C

Pr[ M = m ] = Pr[ M = m | C = c ]

“The adversary should not learn any information about m.”

such that 
P[C = c] > 0

Ciphertext-only attack

31



Equivalently:

For every m , m’ , c  we have:
Pr[ Enc(K, m) = c]    =    Pr[ Enc(K, m’) = c] 

For all m, c:  Pr[ M = m ] = Pr[ M = m | C = c]

M and C=Enc(K,M) are independent
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One-time pad
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A perfectly secret scheme: one-time pad

Gilbert 
Vernam
(1890 –1960) 

ℓ – a parameter
K = M = {0,1}ℓ

Enck(m) = k ⊕m
Deck(c) = k ⊕ c

Vernam’s cipher:

component-wise xor

Correctness:

Deck(Enck(m)) = k ⊕ (k ⊕ m)

m
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Perfect secrecy of the one-time pad

• Theorem: The one-time pad satisfies perfect 
secrecy.

• Proof:
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This is because:

Why the one-time pad is not practical?

1. The key is as long as the message.

2. The key cannot be reused.

3. Alice and Bob must share a new key every time they communicate

All three are necessary for perfect secrecy! 

Enck(m0) xor Enck(m1) = (k xor m0) xor (k xor m1) 

= m0 xor m1
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Key takeaways

• Defining security for encryption is difficult

• Perfect secrecy is one of the first rigorous notion 
of security

• One-time pad is optimal

– But many practical drawbacks

– Still has been used in critical military applications

• Modern cryptography relies on computational 
assumptions

– E.g., it is computationally hard to factor large numbers

37



Acknowledgement

Some of the slides and slide contents are taken from 
http://www.crypto.edu.pl/Dziembowski/teaching
and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this 
material is currently granted without fee provided that copies are made only for personal or 
classroom use, are not distributed for profit or commercial advantage, and that new copies 
bear this notice and the full citation.

We have also used materials from Prof. Dan Boneh online cryptography course at 

Stanford University:
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