CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

January 11 2018

CS 4770, CS 6750: Syllabus

- Symmetric-key primitives
 - Block ciphers, symmetric-key encryption
 - Pseudorandom functions and pseudorandom generators
 - MACs and authenticated encryption
- Hash functions
 - Integrity schemes
- Public-key cryptography
 - Public-key encryption and signatures
 - Key exchange
- Applications
 - Secure network communication, secure computation, crypto currencies

Textbook: Introduction to Modern Cryptography. J. Katz and Y. Lindell

Policies

- Instructors
 - Alina Oprea
 - TA: Sourabh Marathe
- Schedule
 - Mon, Thu 11:45am 1:25pm, Robinson 107
 - Office hours:
 - Alina: Thu 4:00 6:00 pm (ISEC 625)
 - Sourabh: Tue 2-3pm (ISEC 532)
- Your responsibilities
 - Please be on time and attend classes
 - Participate in interactive discussion
 - Submit assignments/ programming projects on time
- Late days for assignments
 - 5 total late days, after that loose 20% for every late day
 - Assignments are due at 11:59pm on the specified date
- Respect university code of conduct
 - No collaboration on homework / programming projects
 - <u>http://www.northeastern.edu/osccr/academic-integrity-policy/</u>

Grading

- Written problem assignments 25%
 - 3-4 theoretical problem assignments based on studied material in class
- Programming projects 20%
 - 3 programming projects
 - Language of your choice (Java, C/C++, Python)
 - In-person grading with instructor/TA
- Exams 50%
 - Midterm 25%
 - Final exam 25%
- Class participation 5%
 - -Participate in class discussion and on Piazza

Review

- Historically cryptography used by military
 - All historical ciphers (shift, substitution, Vigenere) have been broken
 - If key space is small (shift cipher), can mount brute-force attack
 - Large key space doesn't mean cipher is secure!
- Modern cryptography
 - Rooted in formal definitions and rigorous proofs based on computational assumptions
 - Enables a number of emerging applications

Outline

- Probability review
 - Events, union bound
 - Conditional probability, Bayes theorem
- Defining security for encryption
 - Several wrong approaches
- Perfect secrecy
 - Rigorous definition of security for encryption (Shannon 1949)
- One-time pad
 - Construction, proof and limitations

Probability review

Probability space and events

- Probability space:
 - Universe *U*
 - Probability function: for all $u \in \mathcal{U}$, assign $0 \leq \Pr[u] \leq 1$ such that $\sum_{u \in \mathcal{U}} \Pr[u] = 1$.
- Event is a set $A \subseteq \mathcal{U}$: $\Pr[A] = \sum_{x \in A} \Pr(x) \in [0,1]$ note: $\Pr[\mathcal{U}]=1$

Example

- $\mathcal{U} = \{0,1\}^8$
- A = { all x in \mathcal{U} such that $|sb_2(x)=11$ } $\subseteq \mathcal{U}$ for the uniform distribution on $\{0,1\}^8$: Pr[A] = 1/4

The union bound

• For events A_1 and A_2 $Pr[A_1 \cup A_2] \leq Pr[A_1] + Pr[A_2]$

If $A_1 \cap A_2 = \Phi$, then $\Pr[A_1 \cup A_2] = \Pr[A_1] + \Pr[A_2]$

In general Pr[A₁ \cup A₂] = Pr[A₁] + Pr[A₂] - Pr[A₁ \cap A₂]

Example:

 $A_1 = \{ all x in \{0,1\}^n s.t \ lsb_2(x)=11 \} ; A_2 = \{ all x in \{0,1\}^n s.t. \ msb_2(x)=11 \}$

 $\Pr[Isb_2(x)=11 \text{ or } msb_2(x)=11] = \Pr[A_1 \cup A_2] \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$

Random Variables

Def: a random variable X is a function $X:U \rightarrow V$

Example: X: $\{0,1\}^n \longrightarrow \{0,1\}$; X(y) = lsb(y) $\in \{0,1\}$

For the uniform distribution on U:

Pr[X=0] = 1/2 , Pr[X=1] = 1/2

More generally:

Rand. var. X takes values in V and induces a distribution on V

The uniform random variable

Let U be some set, e.g. $U = \{0,1\}^n$

We write $r \stackrel{R}{\leftarrow} U$ to denote a <u>uniform random</u> <u>variable</u> over U

for all $u \in U$: Pr[r = u] = 1/|U|

Randomized algorithms

• Deterministic algorithm: y ← A(m)

• Randomized algorithm $y \leftarrow A(m; r)$ where $r \leftarrow {0,1}^n$

output is a random variable

Independence

<u>**Def</u>**: Events A and B are **independent** if and only if $Pr[A and B] = Pr[A] \cdot Pr[B]$ </u>

Random variables X,Y taking values in V are independent if and only if ∀a,b∈V: Pr[X=a and Y=b] = Pr[X=a] · Pr[Y=b]

<u>Example</u>: $U = \{0,1\}^2 = \{00, 01, 10, 11\}$ and $r \leftarrow^{\mathbb{R}} U$

Define r.v. X and Y as: X = Isb(r), Y = msb(r)

 $Pr[X=0 \text{ and } Y=0] = Pr[r=00] = \frac{1}{4} = Pr[X=0] \cdot Pr[Y=0]$

Review: XOR

XOR of two strings in $\{0,1\}^n$ is their bit-wise addition mod 2

X	Y	X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0

0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1

Independence

- Uniform distribution over $\mathcal{U} = \{0,1\}^2$
- $\mathcal{U} = \{0,1\}^2 = \{00, 01, 10, 11\}$ and $r \leftarrow U$

 $-X = lsb(r), Y = msb(r), Z \coloneqq X + Y, W \coloneqq X \bigoplus Y$

- *X*, *Y* independent
- Are *X*, *Z* independent?

• Are *X*, *W* independent?

An important property of XOR

<u>**Thm</u>**: If Y is a random variable over $\{0,1\}^n$, X is an independent uniform variable on $\{0,1\}^n$ </u>

Then $Z := Y \bigoplus X$ is uniform var. on $\{0,1\}^n$

Proof: (for n=1) Pr[Z=0] =

Conditional probability

- For two events A and B, conditional probability is: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$
- For two random variables *X*, *Y* and outcomes *x*, *y* we define the conditional probability:

$$\Pr[X = x | Y = y] = \frac{\Pr[X = x, Y = y]}{\Pr[Y = y]}$$

• If A and B are independent $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{Pr[A]Pr[B]}{Pr[B]} = Pr[A]$

Bayes Theorem

• For two events A and B:

$$\Pr[A|B] = \frac{\Pr[B|A]\Pr[A]}{\Pr[B]}$$

• For two random variables *X*, *Y* and outcomes *x*, *y*

$$\Pr[X = x | Y = y] = \frac{\Pr[Y = y | X = x] \Pr[X = x]}{\Pr[Y = y]}$$

• Easy to infer from definition

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{\Pr[B|A]\Pr[A]}{\Pr[B]}$$

Conditional probability example

- Shift cipher: *K* = {0,...,25}, Pr[K = k]=1/26
- Assume that distribution of message is

$$Pr[M = a] = 0.7; Pr[M = z] = 0.3$$

- What is the probability that ciphertext is b?
- Solution: M = a, K = 1 or M = z, K = 2

$$\Pr[M = a, K = 1] = \Pr[M = a] \Pr[k = 1] = 0.7 * \frac{1}{26}$$
$$\Pr[M = z, K = 2] = \Pr[M = z] \Pr[k = 2] = 0.3 * \frac{1}{26}$$
$$\Pr[C = b] = 0.3 * \frac{1}{26} + 0.7 * \frac{1}{26} = \frac{1}{26}$$

1

Conditional probability example

- Shift cipher: $\mathcal{K} = \{0, ..., 25\}, \Pr[K = k] = 1/26$
- Assume that distribution of message is

$$Pr[M = a] = 0.7; Pr[M = z] = 0.3$$

- What is the probability that message is "a" given that ciphertext is "b"?
- Solution:

$$\Pr[M = a | C = b] = \frac{\Pr[C = b | M = a] \Pr[M = a]}{\Pr[C = b]}$$
$$= \frac{\Pr[K = 1] \Pr[M = a]}{\Pr[C = b]} = \frac{\frac{1}{26} * 0.7}{\frac{1}{26}} = 0.7$$

Defining security of encryption

Encryption setting

Adversarial capability

- Ciphertext-only attack
 - Adversary observes ciphertext(s)
 - Infer information about plaintext
- Known-plaintext attack
 - Adversary knows one pair of plaintext/ciphertext
 - Learn plaintext information on other ciphertext
- Chosen-plaintext attack
 - Adversary can obtain plaintext/ciphertext pairs of his choice
- Chosen-ciphertext attack
 - Adversary can decrypt ciphertexts of its choice
 - Learn plaintext information on other ciphertext

Defining "security of an encryption scheme" is not trivial.

security

Sounds great! But what does it actually mean? How to formalize it?

Example

Intuitively

"The adversary should not learn any information about m."

Consider random variables:

- M some distribution variable over \mathcal{M}
- K uniformly random variable over ${\cal K}$
- **C** = **Enc(K, M)** random variable over *C*

"The adversary should not learn any information about m."

Ciphertext-only attack

Equivalently:

For all m, c: Pr[M = m] = Pr[M = m | C = c]

M and C=Enc(K,M) are independent

For every m, m', c we have: Pr[Enc(K, m) = c] = Pr[Enc(K, m') = c]

One-time pad

A perfectly secret scheme: one-time pad

Perfect secrecy of the one-time pad

- <u>Theorem</u>: The one-time pad satisfies perfect secrecy.
- Proof:

Why the one-time pad is not practical?

- 1. The key is as long as the message.
- 2. The key cannot be reused.
- 3. Alice and Bob must share a new key every time they communicate

All three are necessary for perfect secrecy!

This is because: $Enc_{k}(m_{0}) \text{ xor } Enc_{k}(m_{1}) = (k \text{ xor } m_{0}) \text{ xor } (k \text{ xor } m_{1})$ $= m_{0} \text{ xor } m_{1}$

Key takeaways

- Defining security for encryption is difficult
- Perfect secrecy is one of the first rigorous notion of security
- One-time pad is optimal
 - But many practical drawbacks
 - Still has been used in critical military applications
- Modern cryptography relies on computational assumptions
 - E.g., it is computationally hard to factor large numbers

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used materials from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/