CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

March 29 2018

Outline

- ElGamal encryption
 - Based on Diffie-Hellman key exchange
 - CPA secure
- Digital signatures
 - Integrity in public-key world
 - Equivalent of MACs
 - Public verifiability
- Distribution of public keys

The ElGamal system (a modern view)

G: finite cyclic group of order q

We construct a pub-key enc. system (Gen, Enc, Dec):

- Key generation Gen:
 - choose random generator g in G and random x in Z_{q}

- output
$$sk = x$$
, $pk = (g, h=g^x)$

Enc(pk=(g,h), m):Dec(sk=x, (u,c)): $y \leftarrow Z_q, u \leftarrow g^y, k \leftarrow h^y$ $k \leftarrow u^X$ $c \leftarrow k \cdot m$ $m \leftarrow k^{-1} \cdot c$ output (u, c)output m

Decisional Diffie-Hellman

Let **G** be a finite cyclic group and **g** generator of G

$$G = \{ 1, g, g^2, g^3, \dots, g^{q-1} \}$$

q is the order of G

Definition: We say that **DDH is hard in G** if for all PPT adversaries D:

 $|\Pr[D(g^x,g^y,g^{xy}) = 1] - \Pr[D(g^x,g^y,g^z) = 1]| < negligible$

G, q and g are public and known to D

x, y, z are chosen uniformly at random in {1,...q-1}

Security

Theorem: Let G be a cyclic group of order q. Assuming that the DDH problem is hard, then El-Gamal encryption is CPA secure.

In particular, for every PPT adversary A attacking the CPA security of El-Gamal:

 $\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] = 1/2 + negligible(n)$

Proof of security - Intuition

Enc(<u>pk=(g,h), m</u>)

$$y \leftarrow Z_q, u \leftarrow g^y$$

 $c \leftarrow h^y \cdot m (= g^{xy} \cdot m)$
output (u, c)

1. Success of adversary to break **I** and **I**' in CPA game is similar

Under the assumption that DDH is hard !

Enc'(<u>pk=(g,h), m</u>)

$$y \leftarrow Z_q, u \leftarrow g^y, z \leftarrow Z_q$$

 $c \leftarrow g^z \cdot m$
output (u, c)

2. Success of adversary to break **I**' in CPA game is negligible

Malleability of El-Gamal

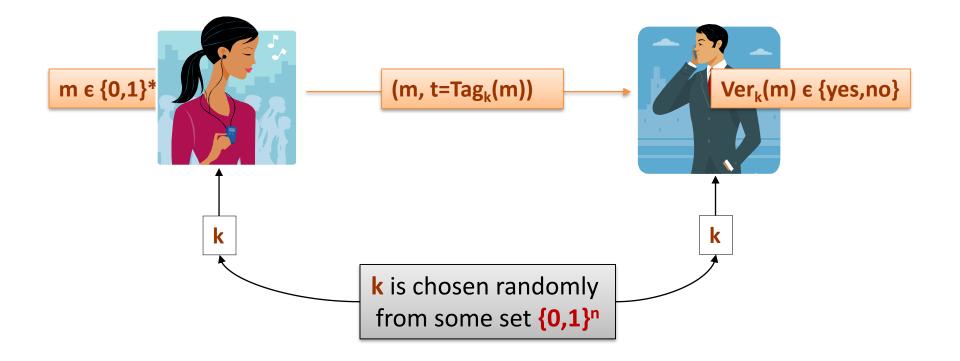
To encrypt message m:

• $c = (g^{y}, h^{y} \cdot m)$, for y random

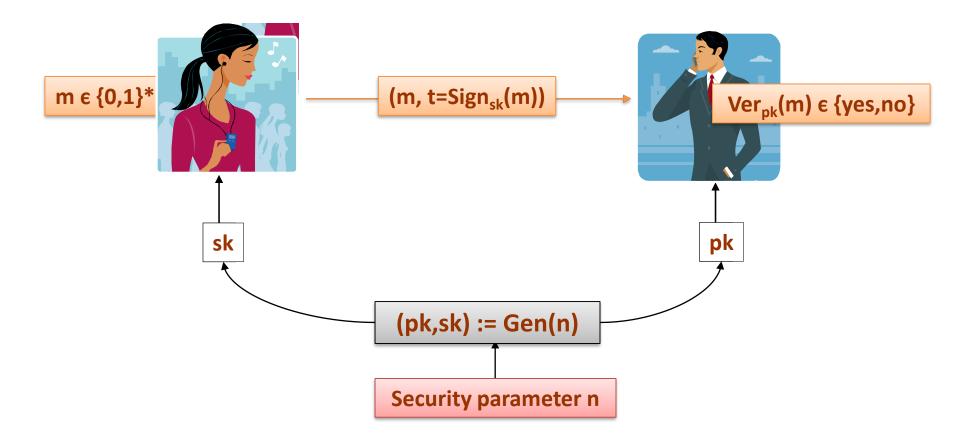
Multiply second part of ciphertext by $\boldsymbol{\alpha}$

• $c' = (g^{y}, h^{y} \cdot m \cdot \alpha)$ is a valid encryption of $m \cdot \alpha$

El-Gamal is malleable and not CCA-secure


Signature schemes

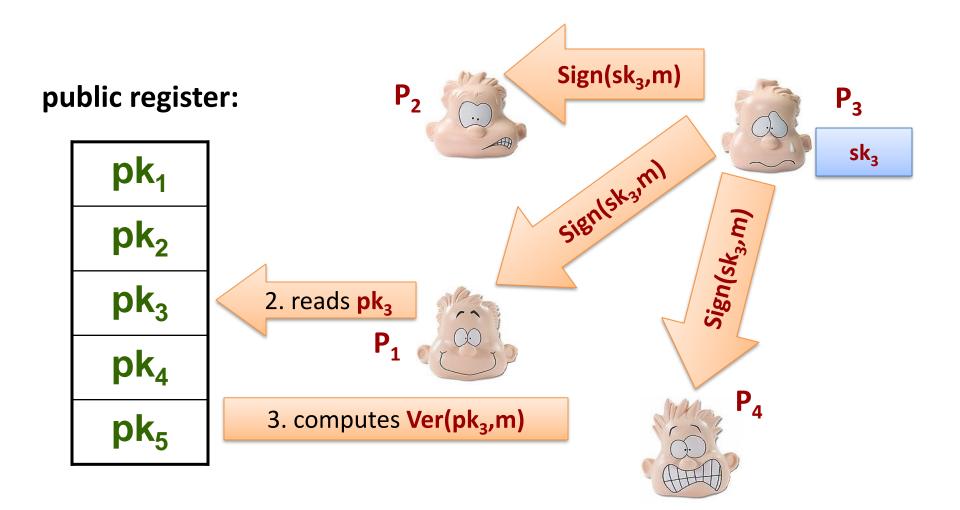
digital signature schemes


SS

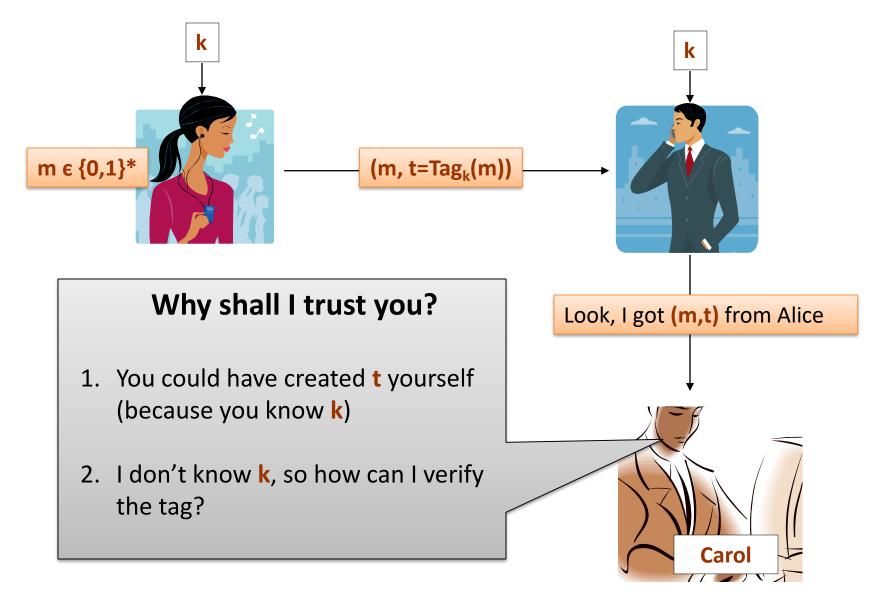
MACs in the public-key setting

Message Authentication Codes

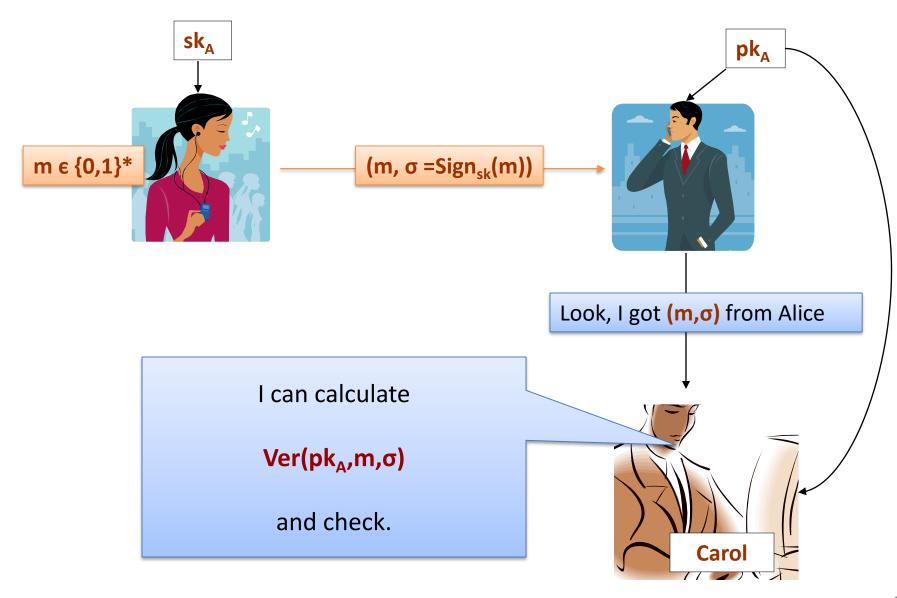
Signature Schemes

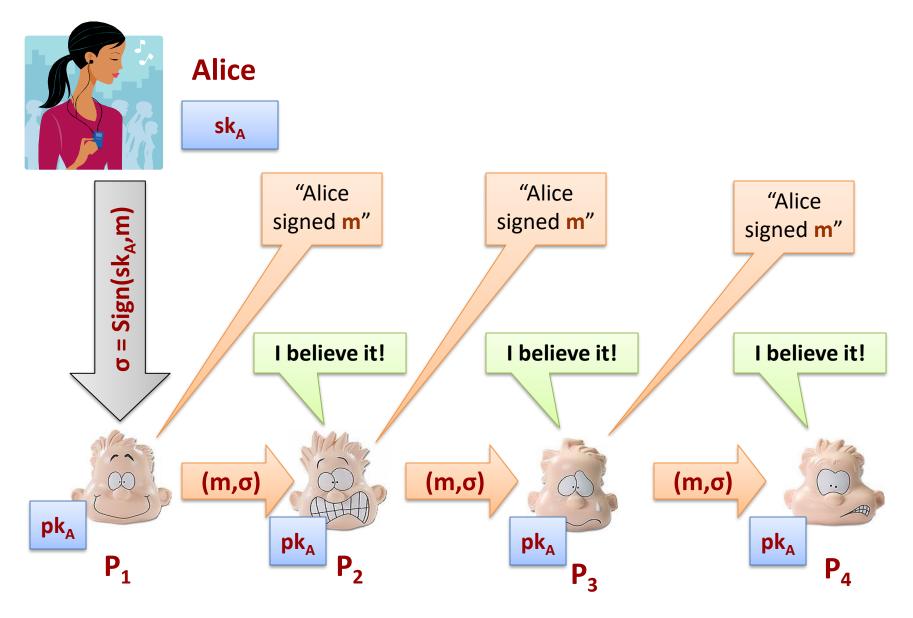


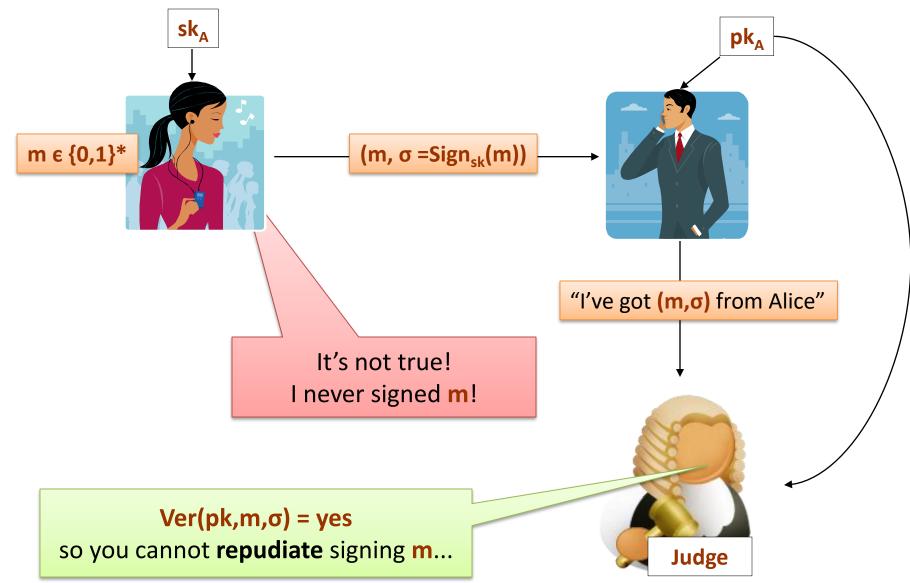
Advantages of signature schemes


Digital signatures are:

- 1. publicly verifiable
- 2. transferable
- 3. provide non-repudiation


Anyone can verify the signatures


Look at the MACs...


Signatures are publicly-verifiable!

So, the signatures are transferable

Non-repudiation

Digital Signature Schemes

A **digital signature scheme** is a tuple **(Gen,Sign,Ver)** of poly-time algorithms, such that:

- the **key-generation** algorithm **Gen** takes as input a security parameter **n** and outputs a pair **(pk,sk)**,
- the signing algorithm Sign takes as input a key sk and a message mε{0,1}* and outputs a signature σ,
- the verification algorithm Ver takes as input a key pk, a message m and a signature σ, and outputs a bit b ε {yes, no}.

If Ver_{pk}(m,σ) = yes then we say that σ is a valid signature on the message m.

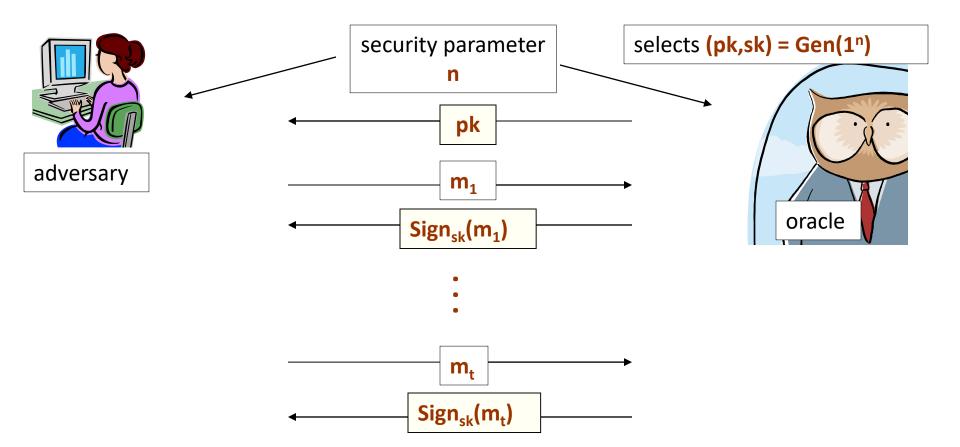
Correctness

We require that it always holds that:

Ver_{pk}(m,Sign_{sk}(m)) = Yes with high probability

What remains is to define **security**.

How to define security?


We have to assume that the adversary can see some pairs $(m_1, \sigma_1), \dots, (m_t, \sigma_t)$

As in the case of MACs, we need to specify:

- 1. how the messages **m**₁,...,**m**_t are chosen,
- 2. what is the goal of the adversary.

We assume that

- 1. The adversary is allowed to chose m_1, \dots, m_t .
- The goal of the adversary is to produce a valid signature on some m' such that m' ≠ m₁,...,m_t.

We say that the adversary **breaks the signature scheme** if at the end she outputs **(m', σ')** such that

- 1. Ver(m', σ') = yes
- 2. m' ≠ m₁,...,m_t

The security definition

sometimes we just say: **unforgeable** (if the context is clear)

We say that (Gen,Sign,Ver) is existentially unforgeable under an adaptive chosenmessage attack if

P(A breaks it) is negligible (in n)

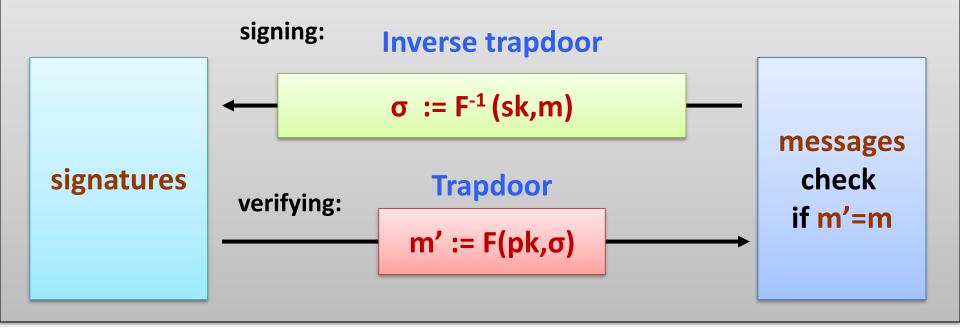
polynomial-time adversary A

Security experiment for Signatures

- Experiment $\text{Exp}_{\Pi,A}^{\text{Sign}}(n)$:
 - 1. Choose $(pk,sk) \leftarrow Gen(n)$

2.
$$m, \sigma \leftarrow A^{Sign_{sk}()}(pk)$$

- 3. Output 1 if $Ver_{pk}(m, \sigma) = 1$ and m was not queried to the Sign() oracle
- 4. Output 0 otherwise


(Gen,Tag,Ver) is a secure (existential unforgeable) signature if:

For every **PPT** adversary *A*: **Pr**[Exp $_{\Pi,A}^{\text{Sign}}(n)$ = 1] is negligible in n

How to design secure signature schemes?

Remember this idea?

 $\{F, F^{-1}: X \rightarrow X\}_{(pk,sk) \in keys}$ -- a trapdoor permutation

In general it's not that simple.

The "handbook RSA signatures"

N = pq - RSA modulus

e is such that $gcd(e, \phi(N)) = 1$, **d** is such that $ed = 1 \pmod{\phi(N)}$

> Sign_(d,N) (m) = m^d mod N = m and Ver_(e,N) (m, σ) = yes iff σ^{e} = m mod N

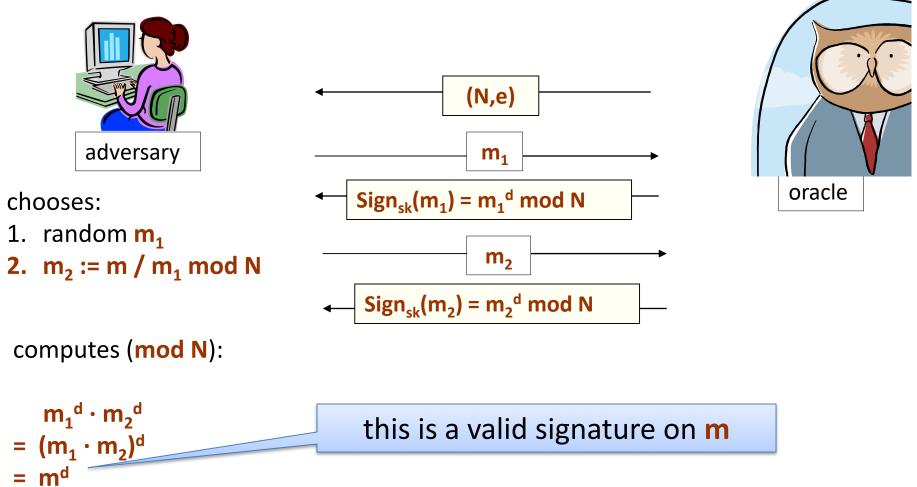
Correctness:

 $\sigma^{e} = (m^{d})^{e}$

= m^{de}

= m¹

Problems with the "handbook RSA" [1/2]


A "no-message attack":

The adversary can forge a signature on a "random" message **m**.

Given the public key (N,e): he just selects a random σ and computes $m = \sigma^e \mod N$.

Trivially, **σ** is a valid signature on **m**.

Problems with the "handbook RSA" (2/2) How to forge a signature on an arbitrary message m? Use the homomorphic properties of RSA.

Solution

Before computing the RSA function – apply hash function **H**.

N = **pq**, such that **p** and **q** are large random primes **e** is such that $gcd(e, \phi(N)) = 1$ **d** is such that **ed** = 1 (mod $\phi(N)$)

Sign_d:
$$Z_N^* \rightarrow Z_N^*$$
 is defined as:
Sign(m) = H(m)^d mod N.

Ver_eis defined as: Ver_e(m,σ) = yes iff σ^e = H(m) (mod N)

Hash-and-sign paradigm

Fact (security of the Full Domain Hash)

- Let H : {0,1}* → Z_N* be a hash function modeled as a random function.
- Suppose the RSA assumption holds

Then the "**hashed RSA**" is existentially unforgeable signature

hashed RSA

N = pq, such that p and q are large random primes e is such that $gcd(e, \phi(N)) = 1$ d is such that $ed = 1 \pmod{\phi(N)}$

Sign_d: $Z_N^* \rightarrow Z_N^*$ is defined as: Sign(m) = H(m)^d mod N.

Ver_eis defined as: Ver_e(m,σ) = yes iff σ^e = H(m) (mod N)

Other popular signature schemes

• Rabin signatures (based on squaring mod N=pq)

Based on discrete log:

- ElGamal signatures
- Digital Signature Standard (DSS)
- Schnorr signatures

(also based on other groups – elliptic curves)

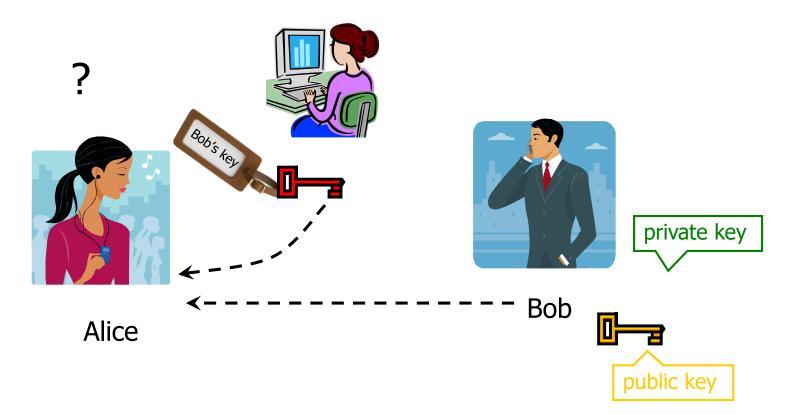
Secure communication on the Internet

• Generate public key, secret key pair

– Using Miller-Rabin primality testing

Distribute the Public Key

– Using digital signatures and PKI


Generate and share secret key

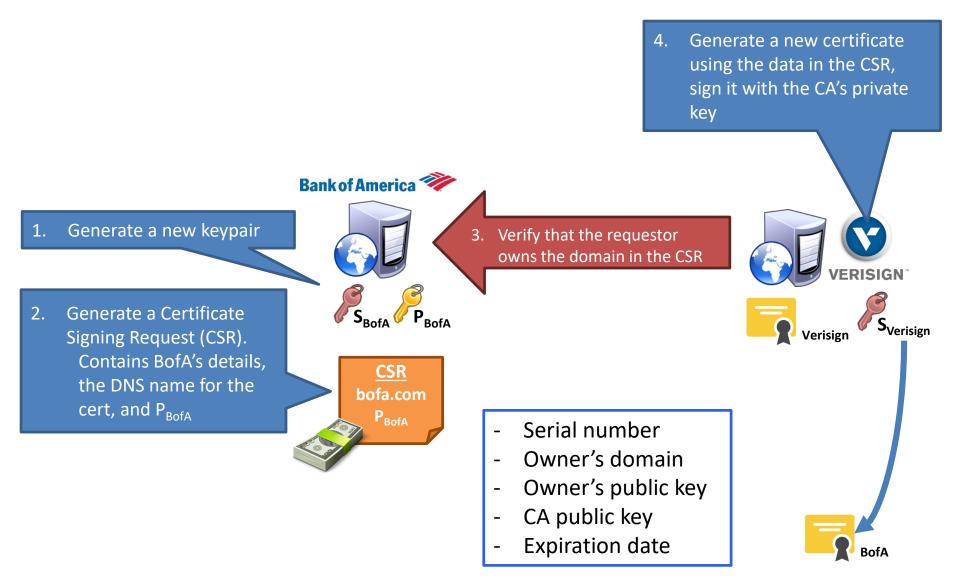
– Using Public Key CCA secure encryption

• Communicate securely

Using symmetric-key authenticated encryption

Authenticity of Public Keys

<u>Problem</u>: How does Alice know that the public key she received is really Bob's public key?

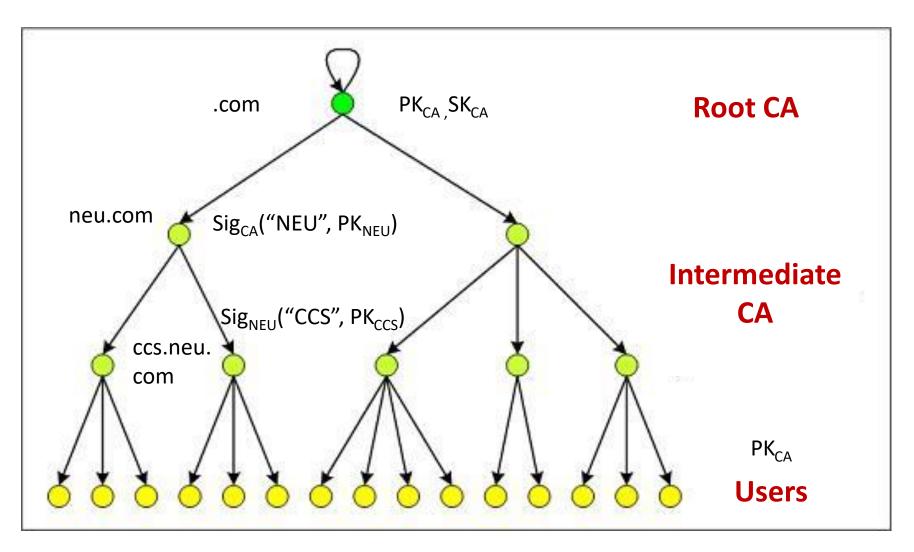

Distribution of Public Keys

- Public announcement or public directory
 - Risks: forgery and tampering
- Public-key certificate
 - Signed statement specifying the key and identity
 - Sig_{Alice}("Bob", PK_{Bob})
 - Could Bob sign his own certificate?
- Common approach: certificate authority (CA)
 - An agency responsible for certifying public keys
 - It generates certificates for domain names (example.com) on the web

Trusted Certificate Authorities

 TDC TDC Internet Thawte Thawte Consulting Thawte Consulting cc thawte, Inc. The Go Daddy Group, Inc. The Go Daddy Group, Inc. The USERTRUST Network TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş Unizeto Sp. z o.o. ValiCert, Inc. VeriSign, Inc. VISA Wells Fargo Wells Fargo 	Certificate Name		
 TDC Internet Thawte Thawte Consulting Thawte Consulting cc thawte, Inc. The Go Daddy Group, Inc. The USERTRUST Network TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş Unizeto Sp. z o.o. ValiCert, Inc. VeriSign, Inc. VISA Wells Fargo Wells Fargo WellsSecure 	Certificate Name	Security Device	E.
 > Thawte > Thawte Consulting > Thawte Consulting cc > thawte, Inc. > The Go Daddy Group, Inc. > The USERTRUST Network > TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş > Unizeto Sp. z o.o. > ValiCert, Inc. > VeriSign, Inc. > Wells Fargo > Wells Fargo WellsSecure 	▷ TDC		*
 Thawte Consulting Thawte Consulting cc thawte, Inc. The Go Daddy Group, Inc. The USERTRUST Network TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş Unizeto Sp. z o.o. ValiCert, Inc. VeriSign, Inc. VISA Wells Fargo Wells Fargo WellsSecure 	TDC Internet		
 Thawte Consulting cc thawte, Inc. The Go Daddy Group, Inc. The USERTRUST Network TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş Unizeto Sp. z o.o. ValiCert, Inc. VeriSign, Inc. VISA Wells Fargo Wells Fargo WellsSecure 	▷ Thawte		
 b thawte, Inc. b The Go Daddy Group, Inc. b The USERTRUST Network b TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş b Unizeto Sp. z o.o. b ValiCert, Inc. b VeriSign, Inc. b VISA b Wells Fargo b Wells Fargo WellsSecure 	Thawte Consulting		
 The Go Daddy Group, Inc. The USERTRUST Network TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş Unizeto Sp. z o.o. ValiCert, Inc. VeriSign, Inc. VISA Wells Fargo Wells Fargo WellsSecure 	Thawte Consulting cc		
 The USERTRUST Network TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş Unizeto Sp. z o.o. ValiCert, Inc. VeriSign, Inc. VISA Wells Fargo Wells Fargo WellsSecure 	▷ thawte, Inc.		
 > TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş > Unizeto Sp. z o.o. > ValiCert, Inc. > VeriSign, Inc. > VISA > Wells Fargo > Wells Fargo WellsSecure 	The Go Daddy Group, Inc.		
 > Unizeto Sp. z o.o. > ValiCert, Inc. > VeriSign, Inc. > VISA > Wells Fargo > Wells Fargo WellsSecure 			
 ValiCert, Inc. VeriSign, Inc. VISA Wells Fargo Wells Fargo WellsSecure 		etleri A.Ş	
 VeriSign, Inc. VISA Wells Fargo Wells Fargo WellsSecure 	Municato Sp. z o o		
▷ VISA ▷ Wells Fargo ▷ Wells Fargo WellsSecure			
 > Wells Fargo > Wells Fargo WellsSecure 	▷ ValiCert, Inc.		
▷ Wells Fargo WellsSecure	▶ ValiCert, Inc. ▶ VeriSign, Inc.		
	 ValiCert, Inc. VeriSign, Inc. VISA 		
D XRamp Security Services Inc	 ValiCert, Inc. VeriSign, Inc. VISA Wells Fargo 		
· Manip Second Services inc	 ValiCert, Inc. VeriSign, Inc. VISA Wells Fargo Wells Fargo WellsSecure 		=

Acquiring a Certificate


CA Hierarchy or PKI

Browsers, operating systems, etc. have trusted root certificate authorities

– Firefox 3 includes certificates of 135 trusted root CAs

- A Root CA signs certificates for intermediate CAs, they sign certificates for lower-level CAs, etc.
 - Certificate "chain of trust"
 - Sig_{Verisign}("NEU", PK_{NEU}), Sig_{NEU}("CCS", PK_{CCS})
- CA is responsible for verifying the identities of certificate requestors, domain ownership

Certificate Hierarchy - PKI

Comodo

Independent Iranian hacker claims responsibility for Comodo hack

Posts claiming to be from an Iranian hacker responsible for the Comodo hack ...

by Peter Bright - Mar 28 2011, 11:15am EDT

```
    Hello
    I'm writing this to the world, so you'll know more about me..
    I'm writing this to the world, so you'll know more about me..
    At first I want to give some points, so you'll be sure I'm the hacker:
    At first I want to give some points, so you'll be sure I'm the hacker:
    I hacked Comodo from InstantSSL.it, their CEO's e-mail address mfpenco@mfpenco.com
    Their Comodo username/password was: user: gtadmin password: [trimmed]
    Their DB name was: globaltrust and instantsslcms
```

The alleged hacker's claim of responsibility on pastebin.com

The hack that resulted in Comodo creating certificates for popular e-mail providers including Google Gmail, Yahoo Mail, and Microsoft Hotmail has been claimed as the work of an independent Iranian patriot. A post made to data sharing site pastebin.com by a person going by the handle "comodohacker" claimed responsibility for the hack and described details of the attack. A second post provided source code apparently reverse-engineered as one of the parts of the attack.

What if CA secret key is compromised?

65

Recover from secret key compromise

- Revocation is <u>very</u> important
- Many valid reasons to revoke a certificate
 - Private key corresponding to the certified public key has been compromised
 - User stopped paying his certification fee to the CA and the CA no longer wishes to certify him
 - CA's certificate has been compromised!
- Methods
 - Certificate expiration
 - Certificate revocation
 - Certificate Revocation Lists (CRL)
 - Online Certificate Status Protocol (OCSP)

Key insights

- Digital signature schemes
 - Analogs of MACs in public-key setting
 - Public verifiability
 - Transferability
 - Non-repudiation
- Constructions
 - Hash-and-sign: Full-Domain Hash RSA
- PKI infrastructure
 - Distribute public keys
 - Hierarchical CA model
 - Single CA compromise can result in breaches
 - Revocation has a number of issues in practice

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/