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Outline

• RSA encryption in practice
– Transform RSA trapdoor into CCA secure encryption

– PKCS standard and attacks

– OAEP standard

• ElGamal encryption
– Based on Diffie-Hellman key exchange

– Proof of security based on DDH assumption

• Digital signatures
– Integrity in public-key world

– Equivalent of MACs

– Public verifiability
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Trapdoor functions 

Def:   a trapdoor function X⟶Y  is a triple of efficient algorithms   
(Gen, F, F-1)

• Gen():   randomized alg. outputs a key pair    (pk,  sk)

• F(pk,⋅):   deterministic alg. that defines a function    X ⟶ Y

• F-1(sk,⋅):    defines a function    Y ⟶ X    that inverts   F(pk,⋅)

Correctness:    ∀(pk,  sk) output by G     

∀x∈X:     F-1(sk,  F(pk, x) ) = x

Trapdoor permutation F: X⟶X, F-1 : X⟶X
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The RSA trapdoor permutation

Gen(): Choose random primes   p,q 1024 bits.      

Set  N=pq. RSA modulus

Choose integers   e , d   s.t. e⋅d = 1   (mod (N) )

Output    pk = (N, e)    ,     sk = (d)

F-1( sk, y) = yd mod N 

yd =  RSA(x)d = xed = x
k(N)+1

=  (x
(N))

k 
 x = x

F( pk, x ):  ;    F(pk, x) = xe mod N
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The RSA assumption

RSA assumption:    RSA is trapdoor permutation

For all PPT algorithms  A:

Pr[ A(N,e,y) = y1/e ] < negligible

where      p,q n-bit primes,     Npq,     yZN
*R R
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RSA public-key encryption

(E, D):   authenticated encryption scheme
H:  ZN  K   where  K is key space of (Es,Ds)

• Gen():  generate RSA parameters:                          
pk = (N,e),    sk = (d)

• Enc(pk, m): (1) choose random x in ZN

(2)  y  RSA(x) = xe ,   k  H(x)

(3) output    (y ,  E(k,m) )

• Dec(sk,  (y, c) ):    output  D( H(RSA-1 (y)) ,  c)
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CCA secure
ISO Standard

Randomized



RSA encryption in practice

Never use textbook RSA.

RSA in practice   (since ISO standard is not often used) :

Main questions:
– How should the preprocessing be done?
– Can we argue about security of resulting system?

msg
key

Preprocessing

cip
h

ertext

RSA
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PKCS1 v1.5

PKCS1 mode 2: (encryption)

• Resulting value is RSA encrypted

• Widely deployed, e.g.  in HTTPS

02 random pad FF msg

RSA modulus size  (e.g. 2048 bits)

16 bits
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Attack on PKCS1 v1.5    (Bleichenbacher 1998)

PKCS1 used in HTTPS:

 attacker can test if 16 MSBs of plaintext = ’02’

Chosen-ciphertext attack:  to decrypt a given ciphertext c do:
– Choose  r  ZN.     Compute  c’ ⟵ rec = (r  PKCS1(m))

e

– Send  c’  to web server and use response

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

Is this
PKCS1?

02
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Simple example - Bleichenbacher

Suppose N is   N = 2n (an invalid RSA modulus).    Then:

• Sending    c    reveals    msb( x )
• Sending   2e⋅c = (2x)e  in ZN reveals   msb(2x mod N) = msb2(x)
• Sending   4e⋅c = (4x)e in ZN reveals   msb(4x mod N) = msb3(x)
• … and so on to reveal all of x

AttackerWeb
Server

d

ciphertextc=

c

yes: continue
no: error

is msb=1?

1

compute  x⟵cd in ZN
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HTTPS Defense   (RFC 5246)

Attacks discovered by Bleichenbacher resulted in 
the following change:

1.  Decrypt the message to recover plaintext m

2. If the PKCS#1 padding is not correct

3.  Generate a string R of 46 random bytes

4. pre_master_secret =  R
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Still no proof of security



PKCS1 v2.0:   OAEP

New preprocessing function:  OAEP   [BR94]

Theorem [FOPS’01] : RSA is a trapdoor permutation  
RSA-OAEP is CCA secure when  H,G  are random functions

in practice:  use SHA-256 for H and G

H+

G +

plaintext to encrypt with RSA

rand.msg 01 00..0

check pad
on decryption.
reject CT if invalid.

{0,1}n-1
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Review:  the Diffie-Hellman protocol   (1977)

Fix a finite cyclic group  G    (e.g G = (Zp)*  )   of order  q

Fix a generator g  in  G      (i.e.   G = {1, g, g2, g3, … , gq-1 }  )

Alice Bob

choose random x in {1,…,q} choose random y in {1,…,q}

kAB = gxy =   (gx)
y

= AyBx =       (gy)
x

=

A = gx

B = gy
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ElGamal:   converting to pub-key enc.  (1984)

Fix a finite cyclic group  G    (e.g G = (Zp)*  )   of order  q

Fix a generator g  in  G      (i.e.   G = {1, g, g2, g3, … , gq-1}  )

Alice Bob

choose random x in {1,…,q} choose random y in {1,…,q}

h = gx

Enc(m) = [  u=gy , c=k∙m ]

compute  k=gxy = hy
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ElGamal:   converting to pub-key enc.  (1984)

Fix a finite cyclic group  G    (e.g G = (Zp)*  )   of order  q

Fix a generator g  in  G      (i.e.   G = {1, g, g2, g3, … , gq-1}  )

Alice Bob

choose random x in {1,…,q} choose random y in {1,…,q}

h = gx

Enc(m) = [  u=gy ,c= k∙m ]

compute  k=gxy = hy

To decrypt (u,c):

compute  k = ux

and decrypt m = k-1∙c
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The ElGamal system  (a modern view)

G:   finite cyclic group of order q

We construct a pub-key enc. system (Gen, Enc, Dec):

• Key generation Gen:    

– choose random generator  g in G and random  x in Zq

– output    sk = x ,     pk = (g, h=gx )
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Enc( pk=(g,h),  m) :

y ⟵ Zq ,  u ⟵ gy ,  k ⟵ hy

c ⟵ k∙m

output   (u, c)

Dec( sk=x, (u,c) ) :

k ⟵ ux

m ⟵ k-1∙c

output   m



ElGamal performance

Encryption:     2 exp.       (fixed basis)       

– Can pre-compute     [ g(2^i)  ,  h(2^i)     for   i=1,…,log2 n ]
– 3x speed-up   (or more)

Decryption:     1 exp.       (variable basis)

Enc( pk=(g,h),  m) :

y ⟵ Zq ,  u ⟵ gy ,  v ⟵ hy
Dec( sk=x, (u,c) ) :

k ⟵ ux
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Decisional Diffie-Hellman

18

Let  G be a finite cyclic group  and  g generator of G 

G =  { 1 , g , g2 , g3 ,   …  ,  gq-1 }      

q is the order of G 

Definition:  We say that DDH is hard in G if for all 
PPT  adversaries D:

|Pr[  D( gx ,gy ,gxy ) = 1 ] - Pr[  D(  gx ,gy ,gz ) = 1 ] |  
<  negligible

G, q and g are public and known to D

x, y, z are chosen uniformly at random in {1,…q-1}



Security

Theorem: Let G be a cyclic group of order q. Assuming that the 

DDH problem is hard, then El-Gamal encryption is CPA secure.

In particular,  for every PPT adversary A attacking the CPA security 

of El-Gamal:

Pr[ExpΠ,𝐴
CPA 𝑛 = 1] = 1/2 + negligible(n)
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Proof of security - Intuition

Enc(pk=(g,h),  m)Π

Π’ Enc’(pk=(g,h),  m)

1. Success of adversary to break Π and Π’ in CPA game is similar 

2. Success of adversary to break Π’ in CPA game is negligible

Under the assumption that DDH is hard !
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y ⟵ Zq ,  u ⟵ gy

c ⟵ hy∙m (= gxy∙m)

output   (u, c)

y ⟵ Zq ,  u ⟵ gy ,  z ⟵ Zq

c ⟵ gz∙m

output   (u, c)



Proof of security – step 1

1. Success of adversary to break Π and Π’ in CPA game is similar 

• Let A be a PPT adversary in CPA game 

• We build D a distinguisher for DDH

• D knows (G, q,  g) and is given  input  (gx ,gy, w)

• World 1: w = gxy

• World 0: w = gz

Assume that DDH is hard.
For any PPT adversary A:

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| ≤ negl(n)
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Proof of security – step 1

1. Success of adversary to break Π and Π’ in CPA game is similar 

• D runs A. A chooses two messages m0 and m1

• D picks a bit b at random and send c = w∙mb

• World 1: c = gxy∙m ; D simulates exactly scheme Π

• World 0: c = gz∙m ; D simulates exactly scheme Π’

• D outputs what A outputs

Assume that DDH is hard.
Then for any PPT adversary A:

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| ≤ negl(n)
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Proof of security – step 1

1. Success of adversary to break Π and Π’ in CPA game is similar 

• D runs A. 

• D outputs what A outputs

• |Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| =

| Pr[  D( gx ,gy ,gxy ) = 1 ] - Pr[  D( gx ,gy ,gz ) = 1 ] |, which is 
negligible(n) 

Assume that DDH is hard.
Then for any PPT adversary A:

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1] − Pr[ExpΠ′,𝐴

CPA 𝑛 = 1]| ≤ negl(n)
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Proof of security – step 2

2. Success of adversary to break Π’ in CPA game is negligible

• Let A be an adversary in CPA game for Π′

• A chooses two messages m0 and m1

• A receives (gy , gz∙mb)

• First part is independent on message

• If z is random, then gz is random in G 
– For any v in G, Pr[gz∙mb = v] = Pr[gz = (mb)-1∙v] = 1/q

– gz∙mb does not reveal any information about mb 

For any PPT adversary A: 

Compute Pr[ExpΠ′,𝐴
CPA 𝑛 = 1]
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Conclusion

• For any PPT adversary A:

Pr[ExpΠ,𝐴
CPA 𝑛 = 1] ≤ |Pr[ExpΠ,𝐴

CPA 𝑛 = 1]

−Pr[ExpΠ,′𝐴
CPA 𝑛 = 1]|+Pr[ExpΠ,′𝐴

CPA 𝑛 = 1]

= ½ + negligible(n)

• El-Gamal encryption is CPA secure under DDH 
assumption

25



Key insights

• Trapdoor permutations (e.g., RSA) are not a 
secure encryption method
– They are deterministic

• Secure public-key encryption can be constructed 
from trapdoor permutations
– ISO standard – CCA secure

– PKCS1 v1.5 (susceptible to padding oracles)

– OAEP – CCA secure 

• Discrete log based schemes
– El Gamal encryption constructed from Diffie-Hellman

– CPA security based on hardness of DDH
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