CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

March 26 2017

Outline

- RSA encryption in practice
 - Transform RSA trapdoor into CCA secure encryption
 - PKCS standard and attacks
 - OAEP standard
- ElGamal encryption
 - Based on Diffie-Hellman key exchange
 - Proof of security based on DDH assumption
- Digital signatures
 - Integrity in public-key world
 - Equivalent of MACs
 - Public verifiability

Trapdoor functions

- <u>**Def</u>**: a trapdoor function $X \rightarrow Y$ is a triple of efficient algorithms (Gen, F, F⁻¹)</u>
- Gen(): randomized alg. outputs a key pair (pk, sk)
- $F(pk, \cdot)$: deterministic alg. that defines a function $X \rightarrow Y$
- $F^{-1}(sk, \cdot)$: defines a function $Y \longrightarrow X$ that inverts $F(pk, \cdot)$

Correctness: \forall (pk, sk) output by G

 $\forall x \in X$: $F^{-1}(sk, F(pk, x)) = x$

Trapdoor permutation F: $X \rightarrow X$, $F^{-1}: X \rightarrow X$

The RSA trapdoor permutation

Gen(): Choose random primes $p,q \approx 1024$ bits.

Set N=pq. RSA modulus

Choose integers e, d s.t. $e \cdot d = 1 \pmod{\phi(N)}$

Output pk = (N, e), sk = (d)

F(pk, x):
$$\mathbb{Z}_N^* o \mathbb{Z}_N^*$$
 ; F(pk, x) = x^e mod N

 $F^{-1}(sk, y) = y^d \mod N$

$$y^{d} = RSA(x)^{d} = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^{k} \cdot x = x$$

The RSA assumption

RSA assumption: RSA is trapdoor permutation

For all PPT algorithms A: $Pr[A(N,e,y) = y^{1/e}] < negligible$ where $p,q \leftarrow R$ n-bit primes, $N \leftarrow pq$, $y \leftarrow R^{-}Z_{N}^{*}$

RSA public-key encryption

- (E, D): authenticated encryption scheme
- H: $Z_N \rightarrow K$ where K is key space of (E_s, D_s)
- Gen(): generate RSA parameters: pk = (N,e), sk = (d)
- Enc(pk, m): (1) choose random x in Z_N
 (2) y ← RSA(x) = x^e , k ← H(x)
 (3) output (y, E(k,m)) → Randomized
- Dec(sk, (y, c)): output D(H(RSA⁻¹(y)), c)

CCA secure ISO Standard

RSA encryption in practice

Never use textbook RSA.

RSA in practice (since ISO standard is not often used) :

Main questions:

- How should the preprocessing be done?
- Can we argue about security of resulting system?

PKCS1 v1.5

PKCS1 mode 2: (encryption)

- Resulting value is RSA encrypted
- Widely deployed, e.g. in HTTPS

Attack on PKCS1 v1.5 (Bleichenbacher 1998)

PKCS1 used in HTTPS:

 \Rightarrow attacker can test if 16 MSBs of plaintext = '02'

Chosen-ciphertext attack: to decrypt a given ciphertext c do:

- Choose $r \in Z_N$. Compute $c' \leftarrow r^e \cdot c = (r \cdot PKCS1(m))^e$
- Send c' to web server and use response

Simple example - Bleichenbacher

Suppose N is $N = 2^n$ (an invalid RSA modulus). Then:

- Sending c reveals msb(x)
- Sending $2^{e} \cdot c = (2x)^{e}$ in Z_{N} reveals msb(2x mod N) = msb₂(x)
- Sending $4^{e} \cdot c = (4x)^{e}$ in Z_{N} reveals msb(4x mod N) = msb₃(x)
- ... and so on to reveal all of x

HTTPS Defense (RFC 5246)

Attacks discovered by Bleichenbacher resulted in the following change:

1. Decrypt the message to recover plaintext m

2. If the PKCS#1 padding is not correct

3. Generate a string **R** of 46 random bytes

4. pre_master_secret = R

Still no proof of security

PKCS1 v2.0: OAEP

New preprocessing function: OAEP [BR94]

Theorem [FOPS'01]: RSA is a trapdoor permutation \Rightarrow RSA-OAEP is CCA secure when H,G are random functions

in practice: use SHA-256 for H and G

Review: the Diffie-Hellman protocol (1977)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order q Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{q-1}\}$)

<u>Alice</u>

<u>Bob</u>

choose random **x** in {1,...,q} $A = g^{x}$ $B = g^{y}$ $B^{x} = (g^{y})^{x} = k_{AB} = g^{xy} = (g^{x})^{y} = A^{y}$

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order q Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{q-1}\}$)

<u>Alice</u>

choose random **X** in {1,...,q}

choose random **y** in {1,...,q}

Bob

 $h = g^{X}$

compute $k=g^{xy}=h^{y}$

Enc(m) = [$u=g^{\gamma}$, $c=k \cdot m$]

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order q Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{q-1}\}$)

Bob choose random **X** in {1,...,q} choose random **y** in {1,...,q} $h = g^{X}$ compute $k=g^{xy}=h^y$ $Enc(m) = [u=g^{\gamma}, c=k \cdot m]$

compute $k = u^{x}$ and decrypt $m = k^{-1} \cdot c$

To decrypt (u,c):

Alice

The ElGamal system (a modern view)

G: finite cyclic group of order q

We construct a pub-key enc. system (Gen, Enc, Dec):

- Key generation Gen:
 - choose random generator g in G and random x in Z_{q}

- output
$$sk = x$$
, $pk = (g, h=g^x)$

Enc(pk=(g,h), m):Dec(sk=x, (u,c)): $y \leftarrow Z_q, u \leftarrow g^Y, k \leftarrow h^Y$ $k \leftarrow u^X$ $c \leftarrow k \cdot m$ $m \leftarrow k^{-1} \cdot c$ output (u, c)output m

ElGamal performance

 $\begin{array}{c|c} \underline{\text{Enc(pk=(g,h), m)}:} & & \underline{\text{Dec(}} \\ y \leftarrow Z_q, \ u \leftarrow g^{y}, \ v \leftarrow h^{y} & k \end{array}$

 $\frac{\text{Dec(sk=x, (u,c))}}{k \leftarrow u^x}$

Encryption: 2 exp. (fixed basis) - Can pre-compute [g^(2^i), h^(2^i) for i=1,...,log₂ n] - 3x speed-up (or more)

Decryption: 1 exp. (variable basis)

Decisional Diffie-Hellman

Let **G** be a finite cyclic group and **g** generator of G

$$G = \{ 1, g, g^2, g^3, \dots, g^{q-1} \}$$

q is the order of G

Definition: We say that **DDH is hard in G** if for all PPT adversaries D:

 $|\Pr[D(g^x,g^y,g^{xy}) = 1] - \Pr[D(g^x,g^y,g^z) = 1]| < negligible$

G, q and g are public and known to D

x, y, z are chosen uniformly at random in {1,...q-1}

Security

Theorem: Let G be a cyclic group of order q. Assuming that the DDH problem is hard, then El-Gamal encryption is CPA secure.

In particular, for every PPT adversary A attacking the CPA security of El-Gamal:

 $\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] = 1/2 + negligible(n)$

Proof of security - Intuition

Enc(<u>pk=(g,h), m</u>)

$$y \leftarrow Z_q, u \leftarrow g^y$$

 $c \leftarrow h^y \cdot m (= g^{xy} \cdot m)$
output (u, c)

1. Success of adversary to break **I** and **I**' in CPA game is similar

Under the assumption that DDH is hard !

Enc'(<u>pk=(g,h), m</u>)

$$y \leftarrow Z_q, u \leftarrow g^y, z \leftarrow Z_q$$

 $c \leftarrow g^z \cdot m$
output (u, c)

2. Success of adversary to break **I**' in CPA game is negligible

1. Success of adversary to break **I** and **I**' in CPA game is similar

Assume that DDH is hard. For any PPT adversary A: $|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] - \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]| \le \operatorname{negl}(n)$

- Let A be a PPT adversary in CPA game
- We build D a distinguisher for DDH
- D knows (G, q, g) and is given input (g^x,g^y, w)
- World 1: w = g^{xy}
- World 0: w = g^z

1. Success of adversary to break **I** and **I**' in CPA game is similar

Assume that DDH is hard. Then for any PPT adversary A: $|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] - \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]| \le \operatorname{negl}(n)$

- D runs A. A chooses two messages m₀ and m₁
- D picks a bit b at random and send $c = w \cdot m_b$
- World 1: c = g^{xy}⋅m ; D simulates exactly scheme Π
- World 0: $c = g^{z} \cdot m$; D simulates exactly scheme Π'
- D outputs what A outputs

1. Success of adversary to break **I** and **I**' in CPA game is similar

Assume that DDH is hard. Then for any PPT adversary A: $|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] - \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]| \le \operatorname{negl}(n)$

- D runs A.
- D outputs what A outputs
- $|\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] \Pr[\exp_{\Pi',A}^{CPA}(n) = 1]| =$ $|\Pr[D(g^x, g^y, g^{xy}) = 1] - \Pr[D(g^x, g^y, g^z) = 1]|$, which is negligible(n)

2. Success of adversary to break **I**' in CPA game is negligible

For any PPT adversary A: **Compute** $\Pr[Exp_{\Pi',A}^{CPA}(n) = 1]$

- Let A be an adversary in CPA game for Π'
- A chooses two messages m₀ and m₁
- A receives (g^y, g^z·m_b)
- First part is independent on message
- If z is random, then g^z is random in G
 - For any v in G, $Pr[g^{Z} \cdot m_{b} = v] = Pr[g^{Z} = (m_{b})^{-1} \cdot v] = 1/q$
 - $-g^{z} \cdot m_{b}$ does not reveal any information about m_{b}

Conclusion

- For any PPT adversary A:
- $\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] \le |\Pr[\exp_{\Pi,A}^{CPA}(n) = 1] \Pr[\exp_{\Pi,A}^{CPA}(n) = 1]| + \Pr[\exp_{\Pi,A}^{CPA}(n) = 1] = \frac{1}{2} + \operatorname{negligible}(n)$
- El-Gamal encryption is CPA secure under DDH assumption

Key insights

- Trapdoor permutations (e.g., RSA) are not a secure encryption method
 - They are deterministic
- Secure public-key encryption can be constructed from trapdoor permutations
 - ISO standard CCA secure
 - PKCS1 v1.5 (susceptible to padding oracles)
 - OAEP CCA secure
- Discrete log based schemes
 - El Gamal encryption constructed from Diffie-Hellman
 - CPA security based on hardness of DDH

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/