CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea
Associate Professor, CCIS
Northeastern University

Outline

- RSA encryption in practice
- Transform RSA trapdoor into CCA secure encryption
- PKCS standard and attacks
- OAEP standard
- ElGamal encryption
- Based on Diffie-Hellman key exchange
- Proof of security based on DDH assumption
- Digital signatures
- Integrity in public-key world
- Equivalent of MACs
- Public verifiability

Trapdoor functions

Def: a trapdoor function $X \longrightarrow Y$ is a triple of efficient algorithms (Gen, F, F^{-1})

- Gen(): randomized alg. outputs a key pair (pk, sk)
- $F(p k, \cdot)$: deterministic alg. that defines a function $X \rightarrow Y$
- $\mathrm{F}^{-1}(\mathrm{sk}, \cdot \cdot)$: defines a function $\mathrm{Y} \rightarrow \mathrm{X}$ that inverts $\mathrm{F}(\mathrm{pk}, \cdot)$

Correctness: $\forall(\mathrm{pk}, \mathrm{sk})$ output by G

$$
\forall x \in X: \quad F^{-1}(s k, F(p k, x))=x
$$

Trapdoor permutation $\mathrm{F}: \mathrm{X} \longrightarrow \mathrm{X}, \mathrm{F}^{-1}: \mathrm{X} \longrightarrow \mathrm{X}$

The RSA trapdoor permutation

Gen(): Choose random primes $p, q \approx 1024$ bits.
Set $\mathbf{N}=$ pq. \quad RSA modulus
Choose integers \mathbf{e}, \mathbf{d} s.t. $\mathbf{e} \cdot \mathbf{d}=1(\bmod \varphi(N))$
Output $\mathrm{pk}=(\mathrm{N}, \mathrm{e}), \quad \mathrm{sk}=(\mathrm{d})$
$\mathrm{F}(\mathrm{pk}, \mathrm{x}): \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*} \quad ; \quad \mathrm{F}(\mathrm{pk}, \mathrm{x})=\mathrm{x}^{\mathrm{e}} \bmod \mathbf{N}$
$F^{-1}(s k, y)=y^{d} \bmod N$
$y^{d}=\operatorname{RSA}(x)^{d}=x^{e d}=x^{k \varphi(N)+1}=\left(x^{\varphi(N)}\right)^{k} \cdot x=x$

The RSA assumption

RSA assumption: RSA is trapdoor permutation

For all PPT algorithms A:

$$
\operatorname{Pr}\left[A(N, e, y)=y^{1 / e}\right]<\text { negligible }
$$

where $\quad \mathrm{p}, \mathrm{q} \leftarrow^{\mathrm{R}} \mathrm{n}$-bit primes, $\quad \mathrm{N} \leftarrow \mathrm{pq}, \quad \mathrm{y} \leftarrow^{\mathrm{R}} \mathrm{Z}_{N}{ }^{*}$

RSA public-key encryption

(E, D): authenticated encryption scheme $H: Z_{N} \rightarrow K$ where K is key space of $\left(E_{s}, D_{s}\right)$

- Gen(): generate RSA parameters:

$$
\mathrm{pk}=(\mathrm{N}, \mathrm{e}), \quad \mathrm{sk}=(\mathrm{d})
$$

- Enc(pk, m): (1) choose random x in Z_{N}

$$
\begin{aligned}
& \text { (2) } y \leftarrow \operatorname{RSA}(x)=x^{e}, \quad k \leftarrow H(x) \\
& \text { (3) output } \quad(y, E(k, m)) \longrightarrow \text { Randomized }
\end{aligned}
$$

- Dec(sk, $(y, c))$: output $D\left(H\left(\operatorname{RSA}^{-1}(y)\right), ~ c\right)$

> CCA secure ISO Standard

RSA encryption in practice

Never use textbook RSA.
RSA in practice (since ISO standard is not often used) :

Main questions:

- How should the preprocessing be done?
- Can we argue about security of resulting system?

PKCS1 v1.5

PKCS1 mode 2: (encryption)

- Resulting value is RSA encrypted
- Widely deployed, e.g. in HTTPS

Attack on PKCS1 v1.5

PKCS1 used in HTTPS:

\Rightarrow attacker can test if 16 MSBs of plaintext = '02'

Chosen-ciphertext attack: to decrypt a given ciphertext c do:

- Choose $r \in Z_{N}$. Compute $c^{\prime} \leftarrow r^{e} . c=(r \cdot \operatorname{PKCS1}(\mathrm{~m}))^{e}$
- Send c^{\prime} to web server and use response

Simple example - Bleichenbacher

compute $\mathrm{x} \longleftarrow \mathrm{c}^{\mathrm{d}}$ in Z_{N}

Suppose N is $N=2^{n}$ (an invalid RSA modulus). Then:

- Sending c reveals $m s b(x)$
- Sending $\mathbf{2}^{\mathbf{e}} \cdot \mathbf{c}=(\mathbf{2 x})^{\mathrm{e}}$ in Z_{N} reveals $\operatorname{msb}(2 x \bmod N)=\operatorname{msb}_{\mathbf{2}}(\mathbf{x})$
- Sending $4^{e} \cdot \mathbf{c}=(4 x)^{e}$ in Z_{N} reveals $\operatorname{msb}(4 x \bmod N)=\operatorname{msb}_{\mathbf{3}}(x)$
- ... and so on to reveal all of x

HTTPS Defense

Attacks discovered by Bleichenbacher resulted in the following change:

1. Decrypt the message to recover plaintext m
2. If the PKCS\#1 padding is not correct
3. Generate a string R of 46 random bytes
4. pre_master_secret $=R$

Still no proof of security

PKCS1 v2.0: OAEP

New preprocessing function: OAEP [B894]
check pad on decryption. reject CT if invalid.

Theorem ${ }_{\left[\text {Fops } S_{01]}\right.}$: RSA is a trapdoor permutation \Rightarrow RSA-OAEP is CCA secure when H, G are random functions
in practice: use SHA-256 for H and G

Review: the Diffie-Hellman protocol

Fix a finite cyclic group G (e.g $\left.G=\left(Z_{p}\right)^{*}\right)$ of order q
Fix a generator g in G (i.e. $G=\left\{1, g, g^{2}, g^{3}, \ldots, g^{q-1}\right\}$)

Alice
choose random \mathbf{X} in $\{1, \ldots, q\}$

Bob
choose random \mathbf{y} in $\{1, \ldots, q\}$

$$
\mathrm{A}=\mathrm{g}^{\mathrm{x}}
$$

$$
\mathrm{B}=\mathrm{g}^{\mathrm{y}}
$$

$$
B^{x}=\left(g^{y}\right)^{x}=\quad k_{A B}=g^{x y} \quad=\left(g^{x}\right)^{y}=A^{y}
$$

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $\left.G=\left(Z_{p}\right)^{*}\right)$ of order q Fix a generator g in G (i.e. $G=\left\{1, g, g^{2}, g^{3}, \ldots, g^{q-1}\right\}$)

Alice
choose random \mathbf{X} in $\{1, \ldots, \mathrm{q}\}$

$$
\mathrm{h}=\mathrm{g}^{\mathrm{x}}
$$

Bob

choose random \mathbf{y} in $\{1, \ldots, \mathrm{q}\}$
compute $\mathrm{k}=\mathrm{g}^{\mathrm{xy}}=\mathrm{h}^{\mathrm{y}}$
$\operatorname{Enc}(m)=\left[u=g^{y}, c=k \cdot m\right]$

ElGamal: converting to pub-key enc.

Fix a finite cyclic group G (e.g $G=\left(Z_{p}\right)^{*}$) of order q Fix a generator g in G (i.e. $G=\left\{1, g, g^{2}, g^{3}, \ldots, g^{q-1}\right\}$)

Alice

choose random \mathbf{X} in $\{1, \ldots, q\}$

$$
h=g^{x}
$$

To decrypt (u,c):
compute $\mathrm{k}=\mathrm{u}^{\mathrm{x}}$ and decrypt $\mathrm{m}=\mathrm{k}^{-1} \cdot \mathrm{c}$
$\operatorname{Enc}(\mathrm{m})=\left[\mathrm{u}=\mathrm{g}^{\mathrm{y}}, \mathrm{c}=\mathrm{k} \cdot \mathrm{m}\right]$
compute $\mathrm{k}=\mathrm{g}^{\mathrm{xy}}=\mathrm{h}^{\mathrm{y}}$

The ElGamal system (a modern view)

G: finite cyclic group of order q
We construct a pub-key enc. system (Gen, Enc, Dec):

- Key generation Gen:
- choose random generator g in G and random x in Z_{q}
- output $\mathrm{sk}=\mathrm{x}, \mathrm{pk}=(\mathrm{g}, \mathrm{h}=\mathrm{g} \mathrm{x})$

$$
\begin{aligned}
& \text { Enc }(\mathrm{pk}=(\mathrm{g}, \mathrm{~h}), \mathrm{m}): \\
& \mathrm{y} \longleftarrow \mathrm{Z}_{\mathrm{q}}, \mathrm{u} \leftarrow \mathrm{~g}^{\mathrm{y}}, \mathrm{k} \leftarrow \mathrm{~h}^{\mathrm{y}} \\
& \mathrm{c} \leftarrow \mathrm{k} \cdot \mathrm{~m} \\
& \quad \text { output }(\mathrm{u}, \mathrm{c})
\end{aligned}
$$

$\operatorname{Dec}(\mathbf{s k}=\mathbf{x},(\mathbf{u}, \mathrm{c})):$
$\mathrm{k} \leftarrow \mathrm{u}^{\mathrm{x}}$
$\mathrm{m} \longleftarrow \mathrm{k}^{-1} \cdot \mathrm{c}$
output m

ElGamal performance

Enc($\mathrm{pk}=(\mathrm{g}, \mathrm{h}), \mathrm{m})$:
$\mathrm{y} \leftarrow \mathrm{z}_{\mathrm{q}}, \mathrm{u} \leftarrow \mathrm{g}^{\mathrm{y}}, \mathrm{v} \leftarrow \mathrm{h}^{\mathrm{y}}$

Dec(sk=x, $(u, c))$: $\mathrm{k} \leftarrow \mathrm{u}^{\mathrm{x}}$

Encryption: $2 \exp . \quad$ (fixed basis)

- Can pre-compute $\quad\left[g^{\left(2^{\wedge} i\right)}, h^{\left(2^{\wedge}\right)}\right.$ for $\left.i=1, \ldots, \log _{2} n\right]$
- $3 x$ speed-up (or more)

Decryption: 1 exp. (variable basis)

Decisional Diffie-Hellman

Let \mathbf{G} be a finite cyclic group and \mathbf{g} generator of \mathbf{G}

$$
\mathrm{G}=\left\{1, \mathrm{~g}, \mathrm{~g}^{2}, \mathrm{~g}^{3}, \ldots, \mathrm{~g}^{\mathrm{q}-1}\right\}
$$

q is the order of G
Definition: We say that DDH is hard in G if for all PPT adversaries D:

$$
\left|\operatorname{Pr}\left[D\left(g^{x}, g^{y}, g^{x y}\right)=1\right]-\operatorname{Pr}\left[D\left(g^{x}, g^{y}, g^{z}\right)=1\right]\right|
$$

< negligible
G, q and g are public and known to D
x, y, z are chosen uniformly at random in $\{1, \ldots q-1\}$

Security

Theorem: Let G be a cyclic group of order q. Assuming that the DDH problem is hard, then El-Gamal encryption is CPA secure.

In particular, for every PPT adversary A attacking the CPA security of El-Gamal:

$$
\left.\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{CPA}}(n)=1\right]=1 / 2+\text { negligible(} \mathrm{n}\right)
$$

Proof of security - Intuition

$\Pi \quad \operatorname{Enc}(\mathrm{pk}=(\mathrm{g}, \mathrm{h}), \mathrm{m})$

$$
\begin{aligned}
& \mathrm{y} \leftarrow \mathrm{Z}_{\mathrm{q}}, \mathrm{u} \leftarrow \mathrm{~g}^{\mathrm{y}} \\
& \mathrm{c} \leftarrow \mathrm{~h}^{\mathrm{y}} \mathrm{~m}\left(=\mathrm{g}^{\mathrm{y}} \cdot \mathrm{~m}\right) \\
& \text { output }(\mathrm{u}, \mathrm{c})
\end{aligned}
$$

1. Success of adversary to break Π and Π^{\prime} in CPA game is similar

Under the assumption that DDH is hard !

П' Enc' $^{\prime}(\mathrm{pk}=(\mathrm{g}, \mathrm{h}), \mathrm{m})$

$$
\begin{aligned}
& \mathrm{y} \leftarrow \mathrm{z}_{\mathrm{q}}, \mathrm{u} \leftarrow \mathrm{~g}^{\mathrm{y}}, \mathrm{z} \leftarrow \mathrm{z}_{\mathrm{q}} \\
& \mathrm{c} \leftarrow \mathrm{~g}^{2} \cdot \mathrm{~m} \\
& \text { output }(\mathrm{u}, \mathrm{c})
\end{aligned}
$$

2. Success of adversary to break Π^{\prime} in CPA game is negligible

Proof of security - step 1

1. Success of adversary to break Π and Π^{\prime} in CPA game is similar

Assume that DDH is hard.
For any PPT adversary A:

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{CPA}}(n)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\Pi \prime, A}^{\mathrm{CPA}}(n)=1\right]\right| \leq \operatorname{negl}(\mathrm{n})
$$

- Let A be a PPT adversary in CPA game
- We build D a distinguisher for DDH
- D knows ($\mathrm{G}, \mathrm{q}, \mathrm{g}$) and is given input ($\mathrm{g}^{\mathrm{x}}, \mathrm{g}^{\mathrm{y}}, \mathrm{w}$)
- World 1: w = gxy
- World 0: w = g ${ }^{2}$

Proof of security - step 1

1. Success of adversary to break Π and Π^{\prime} in CPA game is similar

Assume that DDH is hard.
Then for any PPT adversary A:

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{CPA}}(n)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right]\right| \leq \operatorname{negl}(\mathrm{n})
$$

- D runs A. A chooses two messages m_{0} and m_{1}
- D picks a bit b at random and send $c=w \cdot m_{b}$
- World 1: $\mathrm{c}=\mathrm{g}^{x y} \cdot \mathrm{~m}$; D simulates exactly scheme Π
- World 0: c = g².m ; D simulates exactly scheme Π^{\prime}
- D outputs what A outputs

Proof of security - step 1

1. Success of adversary to break Π and Π^{\prime} in CPA game is similar

Assume that DDH is hard.
Then for any PPT adversary A:

$$
\left|\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{CPA}}(n)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right]\right| \leq \operatorname{negl}(\mathrm{n})
$$

- D runs A.
- D outputs what A outputs
- $\left|\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{CPA}}(n)=1\right]-\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right]\right|=$ $\operatorname{Pr}\left[D\left(g^{x}, g^{y}, g^{x y}\right)=1\right]-\operatorname{Pr}\left[D\left(g^{x}, g^{y}, g^{z}\right)=1\right] \mid$, which is negligible(n)

Proof of security - step 2

2. Success of adversary to break Π^{\prime} in CPA game is negligible

For any PPT adversary A:
Compute $\operatorname{Pr}\left[\operatorname{Exp}_{\Pi^{\prime}, A}^{\mathrm{CPA}}(n)=1\right]$

- Let A be an adversary in CPA game for Π^{\prime}
- A chooses two messages m_{0} and m_{1}
- A receives ($\mathrm{g}^{\mathrm{y}}, \mathrm{g}^{2} \cdot \mathrm{~m}_{\mathrm{b}}$)
- First part is independent on message
- If z is random, then g^{2} is random in G - For any v in $G, \operatorname{Pr}\left[g^{z} \cdot m_{b}=v\right]=\operatorname{Pr}\left[g^{z}=\left(m_{b}\right)^{-1} \cdot v\right]=1 / q$
$-g^{2} \cdot m_{b}$ does not reveal any information about m_{b}

Conclusion

- For any PPT adversary A:
$\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{CPA}}(n)=1\right] \leq \mid \operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{CPA}}(n)=1\right]$
$-\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, \prime A}^{\mathrm{CPA}}(n)=1\right] \mid+\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, \prime A}^{\mathrm{CPA}}(n)=1\right]$
$=1 / 2+$ negligible(n)
- El-Gamal encryption is CPA secure under DDH assumption

Key insights

- Trapdoor permutations (e.g., RSA) are not a secure encryption method
- They are deterministic
- Secure public-key encryption can be constructed from trapdoor permutations
- ISO standard - CCA secure
- PKCS1 v1.5 (susceptible to padding oracles)
- OAEP - CCA secure
- Discrete log based schemes
- El Gamal encryption constructed from Diffie-Hellman
- CPA security based on hardness of DDH

Acknowledgement

Some of the slides and slide contents are taken from
http://www.crypto.edu.pl/Dziembowski/teaching and fall under the following:
©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:
http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

