CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

March 22 2017

Outline

- Public-key encryption
 - Definition
 - Security notions: CPA, CCA
- Trapdoor functions
 - Construct public-key encryption from trapdoor functions
- Constructions of trapdoor functions
 - RSA trapdoor and encryption scheme
- RSA encryption in practice
 - PKCS, OAEP standards
 - Attacks on RSA

The Diffie-Hellman protocol

Fix a large prime p (e.g. 600 digits) Fix an integer g in {1, ..., p}

<u>Alice</u>

choose random **a** in {1,...,p-1}

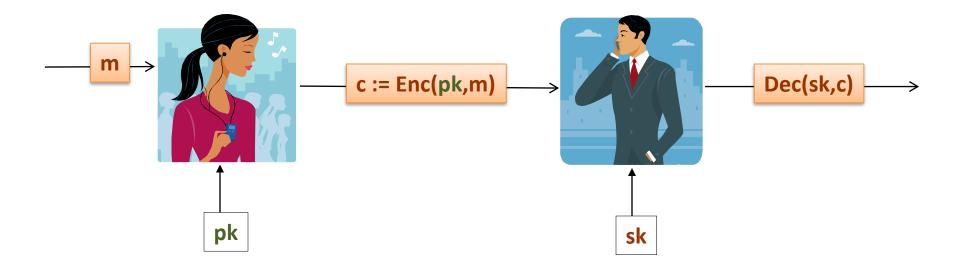
choose random **b** in {1,...,p-1}

Bob

 $p, g, A \leftarrow g^{a} \mod p$ $B \leftarrow g^{b} \mod p$ $B^{a} \pmod{p} = (g^{b})^{a} = \mathbf{k}_{AB} = g^{ab} \pmod{p} = (g^{a})^{b} = \mathbf{A}^{b} \pmod{p}$

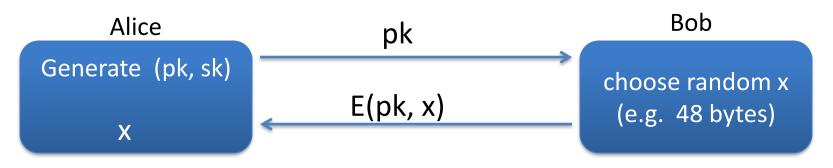
Public-key encryption

Instead of using one key k, use 2 keys (pk,sk), where pk - public key used for encryption, sk – secret key used for decryption.



Applications

Key exchange (for now, only eavesdropping security)



Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using pk_{alice}
- Note: Bob needs pk_{alice} (public key management)

Public key encryption

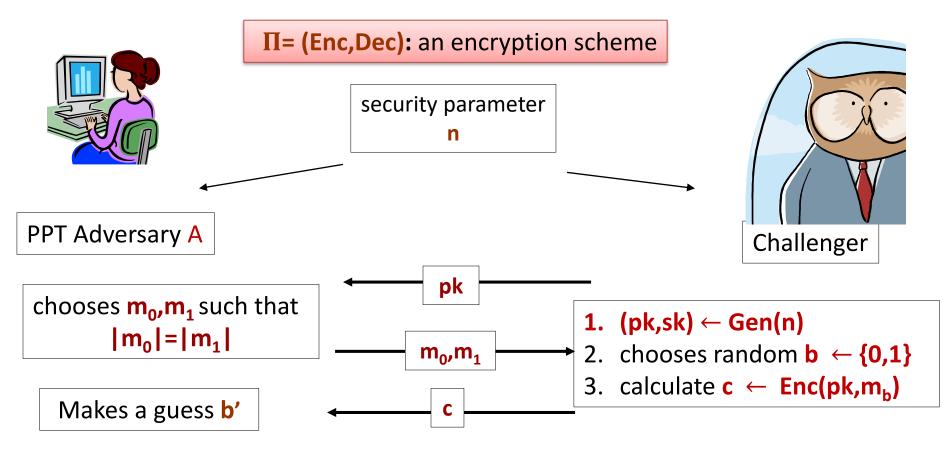
Definition: a public-key encryption system is a triple of algs. (Gen, Enc, Dec)

- Gen(): randomized alg. outputs a key pair (pk, sk)
- Enc(pk, m): randomized alg. that takes m∈M and outputs c ∈C
- Dec(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Correctness: \forall (pk, sk) output by G :

 $\forall m \in M$: Dec(sk, Enc(pk, m)) = m

CPA Security Game – Public key



Security definition:

We say that **(Enc,Dec)** is **CPA-secure** if any **polynomial time** adversary, **Pr[b'=b] -** $\frac{1}{2}$ **i**s negligible in n.

CPA security definition

- Experiment $Exp_{\Pi,A}^{CPA}(n)$:
 - 1. Choose $(pk, sk) \leftarrow^R Gen(1^n)$
 - 2. $m_0, m_1 \leftarrow A_1 (pk)$
 - 3. $b \leftarrow^R \{0,1\}; c \leftarrow Enc_{pk}(m_b)$
 - 4. $b' \leftarrow A_2 (pk, m_0, m_1, c)$
 - 5. Output 1 if b = b' and 0 otherwise

We say that (Enc,Dec) is chosen-plaintext attack (CPA) secure if

For every **PPT** adversary $A = (A_1, A_2)$: $|\Pr[Exp_{\Pi,A}^{CPA}(n) = 1]$ - ½ | negligible in n

Relation to symmetric cipher security

Recall: for symmetric ciphers we had two security notions:

- EAV security and CPA security
- We showed that CPA security is strictly stronger than EAV security

For public key encryption:

• EAV security \Rightarrow CPA security

follows from the fact that attacker can encrypt by himself

• Public key encryption **must** be randomized

CCA security definition

• Experiment $\operatorname{Exp}_{\Pi,A}^{\operatorname{CCA}}(n)$: 1. Choose $(pk, sk) \leftarrow^{R} \operatorname{Gen}(1^{n})$ 2. $m_{0}, m_{1} \leftarrow A_{1}^{\operatorname{Dec}_{sk}(\cdot)}(pk)$ 3. $b \leftarrow^{R} \{0,1\}; c \leftarrow \operatorname{Enc}_{pk}(m_{b})$ 4. $b' \leftarrow A_{2}^{\operatorname{Dec}_{sk}(\cdot)}(m_{0}, m_{1}, c)$

Adversary can not submit c to decryption oracle

5. Output 1 if b = b' and 0 otherwise

We say that (Enc,Dec) is chosen-ciphertext attack (CCA) secure if

For every **PPT** adversary $A = (A_1, A_2)$: |**Pr**[Exp^{CCA}_{I.A}(n) = **1**]- ½ | negligible in n

Construct public-key encryption from trapdoor functions

Trapdoor functions (TDF)

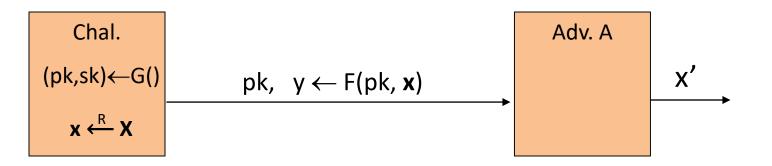
- <u>**Def</u></u>: a trapdoor func. X \rightarrow Y is a triple of efficient algorithms (Gen, F, F⁻¹)</u>**
- Gen(): randomized alg. outputs a key pair (pk, sk)
- $F(pk, \cdot)$: deterministic alg. that defines a function $X \longrightarrow Y$
- $F^{-1}(sk, \cdot)$: defines a function $Y \longrightarrow X$ that inverts $F(pk, \cdot)$

More precisely: \forall (pk, sk) output by G

 $\forall x \in X$: $F^{-1}(sk, F(pk, x)) = x$

Secure Trapdoor Functions (TDFs)

(Gen, F, F⁻¹) is secure if $F(pk, \cdot)$ is a "one-way" function: can be evaluated, but cannot be inverted without sk



<u>Def</u>: (Gen, F, F^{-1}) is a secure TDF if for all PPT A:

 $\Pr[x \leftarrow X, y = F(pk,x), x' \leftarrow A(pk,y), x = x']$

is negligible

Construct trapdoor functions RSA trapdoor

Review: arithmetic mod composites

Let $N = p \cdot q$ where p,q are prime

 $Z_{N} = \{0, 1, 2, ..., N-1\};$ $(Z_{N})^{*} = \{\text{invertible elements in } Z_{N}\}$

 $\begin{array}{lll} \hline Facts: & x \in \mathsf{Z}_{\mathsf{N}} \mbox{ is invertible } \Leftrightarrow & gcd(x,\mathsf{N}) = 1 \\ & - \mbox{ Number of elements in } (\mathsf{Z}_{\mathsf{N}})^* \mbox{ is } \phi(\mathsf{N}) = (p-1)(q-1) = \mathsf{N}\text{-}p\text{-}q\text{+}1 \end{array}$

Euler's theorem:

$$\forall x \in (Z_N)^* : x^{\phi(N)} = 1 \mod N$$

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977 R. Rivest, A. Shamir, and L. Adelman

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems

... many others

The RSA trapdoor permutation

Gen(): Choose random primes $p,q \approx 1024$ bits.

Set N=pq. RSA modulus

Choose integers e, d s.t. $e \cdot d = 1 \pmod{\phi(N)}$

Output pk = (N, e), sk = (d)

F(pk, x):
$$\mathbb{Z}_N^* o \mathbb{Z}_N^*$$
 ; F(pk, x) = x^e mod N

 $F^{-1}(sk, y) = y^d \mod N$

$$y^{d} = RSA(x)^{d} = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^{k} \cdot x = x$$

The RSA assumption

RSA assumption: RSA is trapdoor permutation

For all PPT algorithms A: $Pr[A(N,e,y) = y^{1/e}] < negligible$ where $p,q \leftarrow R$ n-bit primes, $N \leftarrow pq$, $y \leftarrow R^{-}Z_{N}^{*}$

Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e)
- secret key: (N,d)

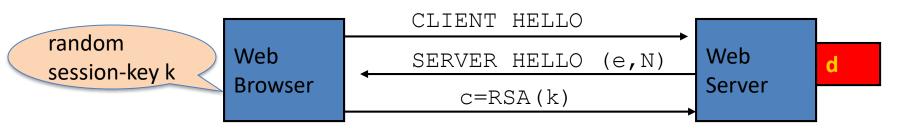
Encrypt: $\mathbf{c} \leftarrow \mathbf{m}^{e} \mod \mathbf{N}$ Decrypt: $\mathbf{c}^{d} \rightarrow \mathbf{m} \mod \mathbf{N}$

Insecure cryptosystem !!

- Is not semantically secure and many attacks exist
- Deterministic encryption

 \Rightarrow The RSA trapdoor permutation is not an encryption scheme !

Attack 1: Meet in the middle



Suppose k is 64 bits: $k \in \{0, ..., 2^{64}-1\}$. Eve sees: $c = k^e$ in Z_N If $\mathbf{k} = \mathbf{k_1} \cdot \mathbf{k_2}$ where $k_1, k_2 < 2^{34}$ (prob. $\approx 20\%$) then $c/k_1^e = k_2^e$

Step 1: build table: $c/1^{e}$, $c/2^{e}$, $c/3^{e}$, ..., $c/2^{34e}$. time: 2^{34}

Step 2: for $k_2 = 0, ..., 2^{34} - 1$ test if k_2^{e} is in table. time: 2^{34}

Output matching (k_1, k_2) . Total attack time: $\approx 2^{40} \ll 2^{64}$

Attack 2: Small messages

- Encrypt: $\mathbf{c} \leftarrow \mathbf{m}^{e} \operatorname{mod} \mathbf{N}$
- Use small exponents (e.g., e = 3)
- Assume that m is small
 - m is 300 bits, N is 1024 bits
 - m^e < N => c = m^e over integers

- Then can compute $m = c^{1/e}$ over integers

 Finding e-th roots is easy over integers, but hard mod N, for N=pq

Attack 3: Small decryption exponent

To speed up RSA decryption use small private key d ($d\approx 2^{128}$)

c^d = m (mod N)

Wiener'87: If $d < N^{0.25}$ then RSA is insecure.

BD'98: If $d < N^{0.292}$ then RSA is insecure (open: $d < N^{0.5}$)

<u>Insecure:</u> private key d can be found from (N,e)

Attack 4: RSA with related public keys

Assume 2 users share the same module N

- Public keys (N, e_1) and (N, e_2) with gcd(e_1 , e_2) = 1

- Same message m encrypted under both keys
 Adversary sees c₁ = m^{e₁} mod N; c₂ = m^{e₂} mod N
- Attacker can recover m
 - e₁ and e₂ are public => there exists X and Y such that e₁X + e₂Y = 1 (X and Y can be found with extended Euclidian algorithm)
 - $-c_1^X c_2^Y = m^{e_1 X} m^{e_2 Y} = m \mod N$
- Morale: do not reuse the same RSA modulus for multiple keys

RSA public-key encryption

(E, D): authenticated encryption scheme H: $Z_N \rightarrow K$ where K is key space of (E_s, D_s)

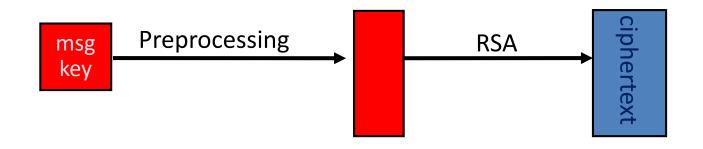
- Gen(): generate RSA parameters: pk = (N,e), sk = (d)
- Enc(pk, m): (1) choose random x in Z_N
 (2) y ← RSA(x) = x^e , k ← H(x)
 (3) output (y , E(k,m))
- **Dec**(sk, (y, c)): output D(H(RSA⁻¹(y)), c)

CCA secure ISO Standard

RSA encryption in practice

Never use textbook RSA.

RSA in practice (since ISO standard is not often used) :

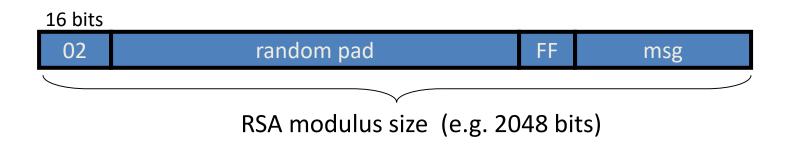


Main questions:

- How should the preprocessing be done?
- Can we argue about security of resulting system?

PKCS1 v1.5

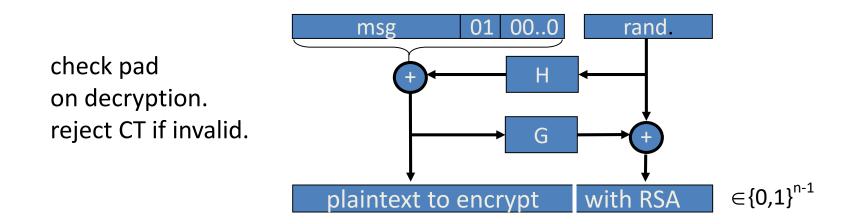
PKCS1 mode 2: (encryption)



- Resulting value is RSA encrypted
- Widely deployed, e.g. in HTTPS

PKCS1 v2.0: OAEP

New preprocessing function: OAEP [BR94]



Theorem [FOPS'01]: RSA is a trapdoor permutation \Rightarrow RSA-OAEP is CCA secure when H,G are random functions

in practice: use SHA-256 for H and G

Further reading

• Why chosen ciphertext security matters, V. Shoup, 1998

• Twenty years of attacks on the RSA cryptosystem, D. Boneh, Notices of the AMS, 1999

• OAEP reconsidered, V. Shoup, Crypto 2001

• Key lengths, A. Lenstra, 2004

Key insights

- CCA security is the desired notion of security for public-key encryption to handle active attackers

 CPA security is equivalent to EAV security
- RSA trapdoor
 - Relies on hardness of computing e-th roots mod N
- CCA secure public-key encryption can be constructed from trapdoor permutations
 - Trapdoor permutations (e.g., RSA) are not by themselves secure encryption schemes
 - Need to use a method to transform them to CCAsecure encryption (ISO standard, OAEP)

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/