
CS 4770: Cryptography

CS 6750: Cryptography and
Communication Security

Alina Oprea

Associate Professor, CCIS

Northeastern University

March 19 2018

Announcements

2

• Office hours this week
– Wed 2:30-4:30pm

• Distinguished speaker on Thu 03/22
– Location 97 Cargill, 3-4:30pm

– Prof Mike Reiter, UNC Chapel Hill

– Title: “Side channels in multi-tenant environments”

– Extra credit for next homework: submit a paragraph
about his talk

• If anyone is interested in meeting him 4:30-5pm
(ISEC 632), please email me

Outline

3

• Generating large primes

– Miller-Rabin primality testing

• How to distribute cryptographic keys

• Key distribution centers

– Needham-Shroeder

• Public-key cryptography

– Diffie-Hellman key exchange

How to generate large primes?

• Input: length n; parameter t
• Output: a uniform n-bit prime p
• For i = 1 to t:

– 𝑝′ ← 0,1 𝑛−1

– 𝑝 = 1||𝑝′

– If p is prime, return p Primality test

• Return fail

The fraction of prime n-bit numbers is > 1/3n
Set t to get a negligible prob of fail (e.g., for t=3n2,
probability of failure < e-n)

4

Miller-Rabin primality test
• Input: Integer N; parameter t

• Output: A decision whether N is prime/composite

• If N even, return “composite”

• If N perfect power, return “composite”

• Decompose 𝑁 − 1 = 2𝑟𝑢, u odd

• For j = 1 to t:
– 𝑎 ← {1,…,N-1} // choose at random

– If 𝑎𝑢 ≠ ± 1𝑚𝑜𝑑 𝑁 and 𝑎2
𝑖𝑢 ≠ −1𝑚𝑜𝑑 𝑁 , ∀𝑖 ∈

{1,… , 𝑟 − 1}, return “composite”

• Return “prime”

5

If N composite, prob ½ to find strong witness in each iteration
If N composite, the probability that it outputs prime is 1/2t

Test perfect powers

• Input: Integer N of n bits

• Output: Is N perfect power (exists m,e st N=me)

• For all e < n
– Set a = 1, b = N

– While 𝑎 ≤ 𝑏

• 𝑚 =
𝑎+𝑏

2

• If 𝑚𝑒 = 𝑁, return “perfect power”

• If 𝑚𝑒 > 𝑁, 𝑠𝑒𝑡 𝑏 = 𝑚 − 1

• If 𝑚𝑒 < 𝑁, 𝑠𝑒𝑡 𝑎 = 𝑚 + 1

– Return “not perfect power”

6

How to distribute the cryptographic keys?

• If the users can meet in person beforehand –
it’s simple.

• But what to do if they cannot meet?

(a typical example: on-line shopping)

Private-key cryptography relies on
secure distribution of secret keys

7

Key Distribution Centers

Some server (a Key Distribution Center, KDC) “gives the
keys” to the users

– feasible if the users are working in one company
– Users share keys with KDC only
– KDC generates new fresh keys (called session keys) when

users initiate communication

Disadvantages
– infeasible on the internet
– relies on the honesty of KDC
– Who can implement a trusted KDC?
– KDC needs to be permanently available
– KDC is single point of failure

8

How to establish a key with a trusted
server?

B

key shared by Alice and
the server: KAS

key shared by Bob and
the server: KBS

server S

want to establish a
fresh session key

9

A

Notation

{M}K – a message M encrypted and
authenticated with K

• Any authenticated encryption scheme can be
used

• K = (K0,K1): one key for encryption, one for
authentication

• Encrypt-then-MAC the preferred method

10

An idea (1)

A B

server S

key shared by Alice and
the server: KAS

key shared by Bob and
the server: KBS

(A,B)

{K} KAS
{K} KBS

{K} KBS
, A

selects a random K

Ticket

Ticket

11

Generating keys: a toy protocol

Goal: Alice wants a shared key with Bob

Adversarial model: Eavesdropping security only

Eavesdropper sees {K} KAS
; ticket = {K} KBS

Encryption is CPA-secure ⇒
Eavesdropper learns nothing about k

How about active attacks?

12

An attack

A B

server S

key shared by Alice and
the server: KAS

key shared by Bob and
the server: KBS

(A,B)

{K} KAS
{K} KBS

{K} KBS
, A

selects a random K

{K} KBS
, Eve

I’m
talking
to Eve

Man-in-the-middle
13

An idea (2)

A B

server S

key shared by Alice and
the server: KAS

key shared by Bob and
the server: KBS

(A,B)

{K , B} KAS
{K , A} KBS

{K , A} KBS

selects a random K

Ticket

14

A replay attack

A B

(A,B)

{K , B} KAS
{K, A} KBS

{K , A} KBS

the adversary stores the
values that the server sent in
the previous session and
replays them.

So, the key is not fresh...

Ticket

15

How to protect against the replay attacks?

Nonce – “number used once”.

Nonce is a random number generated by one
party and returned to that party to show that
a message is newly generated.

16

An idea (3): Needham Schreoder 1972

A B

server S

key shared by Alice and
the server: KAS

key shared by Bob and
the server: KBS

A,B,NA

{K, B, NA }KAS
{K , A}KBS

{K , A} KBS

selects a random K

Ticket

Alice believes
the key is fresh

17

An attack on Needham Schroeder

Bob

{Kold , A} KBS
Ticket

• Assume that an old session key Kold is compromised by
the adversary

• B can not tell if the key is fresh

18

Solution

A B

server S

key shared by Alice and
the server: KAS

key shared by Bob and
the server: KBS

(A,B,NA,NB)

{K, B, NA} KAS
{K, A, NB} KBS

selects a random K

{K, A, NB} KBS

(B,NB)

Kerberos uses timestamps to guarantee key freshness
19

Key Distribution Centers

Some server (a Key Distribution Center, KDC) “gives the
keys” to the users

– feasible if the users are e.g. working in one company
– Users share keys with KDC only
– KDC generates new fresh keys (called session keys) when

users initiate communication

Disadvantages
– infeasible on the internet
– relies on the honesty of KDC
– Who can implement a trusted KDC?
– KDC needs to be permanently available
– KDC is single point of failure

20

Key question

Can we generate shared keys without an online
trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

• Merkle (1974), Diffie-Hellman (1976), RSA (1977)

• More recently
– Identity-based encryption [BF 2001)

– Functional encryption [BSW 2011]

21

The solution without KDC

Public-Key Cryptography

Whitfield Diffie and Martin Hellman (1976)Ralph Merkle (1974)

22

A little bit of history

• Diffie and Hellman were the first to publish a paper
containing the idea of the public-key cryptography:

W.Diffie and M.E.Hellman,
New directions in cryptography
IEEE Trans. Inform. Theory, IT-22, 6, 1976, pp.644-654.

• A similar idea was described by Ralph Merkle:
– in 1974 he described it in a project proposal for a Computer Security

course at UC Berkeley
(it was rejected)

– in 1975 he submitted it to the CACM journal (it was rejected)
(see http://www.merkle.com/1974/)

• 1977: R. Rivest, A. Shamir and L. Adelman published the first
construction of public-key encryption (RSA)

• It 1997 the GCHQ (the British equivalent of the NSA) revealed
that they knew it already in 1973.

23

http://www.merkle.com/1974/

Key exchange without an online TTP?

BobAlice

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

Key K Key K

24

The Diffie-Hellman protocol

Fix a large prime p (e.g. 600 digits)

Fix an integer g in {1, …, p}

Alice Bob

choose random a in {1,…,p-1} choose random b in {1,…,p-1}

kAB = gab (mod p) = (ga)b
= Ab

(mod p)Ba
(mod p) = (gb)a

=

𝑝, 𝑔, 𝐴 ← 𝑔𝑎 𝑚𝑜𝑑 𝑝

B ← 𝑔𝑏 𝑚𝑜𝑑 𝑝

25

Security (informally)

Eavesdropper sees: p, g, A=ga (mod p), and
B=gb (mod p)

Can she compute gab (mod p) ??

More generally: define DHg(g
a, gb) = gab (mod p)

How hard is the DH function mod p?

26

Intractable problems with primes

Fix a prime p>2 and g in (Zp)* of order q.

Consider the function: x ⟼ gx in Zp

Now, consider the inverse function:

Dlogg (gx) = x where x in {0, …, q-2}

Example:

in : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Dlog2(⋅) : 0, 1, 8, 2, 4, 9, 7, 3, 6, 5

27

DLOG: more generally

Let G be a finite cyclic group and g a generator of G

G = { 1 , g , g2 , g3 , … , gq-1 } (q is called the order of G)

Def: We say that DLOG is hard in G if for all efficient alg. A:

Pr g⟵G, x ⟵Zq
[A(G, q, g, gx) = x] < negligible

Example candidates:

(1) (Zp)* for large p, (2) Elliptic curve groups
mod p

28

How hard is the DH function mod p?

Suppose prime p is n bits long.
Best known algorithm (GNFS): run time exp()

Level of security modulus size
80 bits 1024 bits
128 bits 3072 bits
256 bits (AES) 15360 bits

As a result: slow transition away from (mod p) to elliptic
curves

Elliptic Curve
size

160 bits

256 bits

512 bits

29

Decisional Diffie-Hellman

30

Let G be a finite cyclic group and g generator of G

G = { 1 , g , g2 , g3 , … , gq-1 }

q is called the order of G

Definition: We say that DDH is hard in G if for all
PPT adversaries A:

|Pr[A(G, q, g, gx ,gy ,gxy) = 1] - Pr[A(G, q, g,
gx ,gy ,gz) = 1] | < negligible

x, y, z are chosen uniformly at random in {1,…q-1}

Security of Diffie-Hellman

• If DDH is hard, then Diffie-Hellman key
exchange is secure in presence of
eavesdropping adversary.

– Diffie-Hellman secure against eavesdroppers in
large groups (Zp)*, p prime

31

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Alice BobMiTM

𝐴 ← 𝑔𝑎 𝑚𝑜𝑑 𝑝 𝐴′ ← 𝑔𝑎
′

𝑚𝑜𝑑 𝑝

B ← 𝑔𝑏 𝑚𝑜𝑑 𝑝

a’

b’
B′ ← 𝑔𝑏

′

𝑚𝑜𝑑 𝑝

𝑔𝑎𝑏
′

𝑔𝑎𝑏
′

𝑔𝑎
′𝑏 𝑔𝑎

′𝑏

Attacker relays traffic from Alice to Bob and reads it in clear

32

Another solution

BobAlice

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

33

The idea

Alice Bob

k k

m c := Enc(k,m) Dec(k,c)

c := Enc(pk,m) Dec(sk,c)

pk sk

Instead of using one key k,
use 2 keys (pk,sk), where

pk is used for encryption,
sk is used for decryption.

pk can be public, and
only sk has to be kept

secret!

That’s why it’s called:
public-key

cryptography

34

anyone can lock it

Analogy

Examples padlocks:

the key is needed to unlock

35

Public key encryption

Definition: a public-key encryption system is a triple of algs.
(Gen, Enc, Dec)

• Gen(): randomized alg. outputs a key pair (pk, sk)

• Enc(pk, m): randomized alg. that takes m∈M and outputs c
∈C

• Dec(sk,c): det. alg. that takes c∈C and outputs m∈M or ⊥

Correctness: ∀(pk, sk) output by G :

∀m∈M: Dec(sk, Enc(pk, m)) = m

36

Establishing a shared secret

Alice Bob

(pk, sk) ⟵ G()

“Alice”, pk

choose random
x ∈ {0,1}128

“Bob”, c = Enc(pk,x)

x = Dec(sk,c)

x: shared secret

37

CPA Security Game – Secret key

PPT Adversary A Challenger

chooses m0,m1 such that
|m0|=|m1|

m0,m1

1. Choose random k ← {0,1}n

2. chooses random b ← {0,1}
3. calculate c ← Enc(k,mb)

𝚷= (Enc,Dec): an encryption scheme

cMakes a guess b’

Security definition:
We say that (Enc,Dec) is CPA-secure if any polynomial time adversary,
| Pr[b’=b] - ½ | is negligible in n.

security parameter
n

38

Queries to Enc()

CPA Security Game – Public key

PPT Adversary A Challenger

chooses m0,m1 such that
|m0|=|m1|

m0,m1

1. (pk,sk) ← Gen(n)
2. chooses random b ← {0,1}
3. calculate c ← Enc(pk,mb)

𝚷= (Enc,Dec): an encryption scheme

cMakes a guess b’

Security definition:
We say that (Enc,Dec) is CPA-secure if any polynomial time adversary,
| Pr[b’=b] - ½ | is negligible in n.

security parameter
n

39

pk

CPA security definition

• Experiment ExpΠ,𝐴
CPA 𝑛 :

1. Choose (𝑝𝑘, 𝑠𝑘) ←𝑅 𝐺𝑒𝑛(1𝑛)

2. 𝑚0, 𝑚1 ← 𝐴1 𝑝𝑘

3. 𝑏 ←𝑅 0,1 ; 𝑐 ← 𝐸𝑛𝑐𝑝𝑘 𝑚𝑏

4. 𝑏′ ← 𝐴2 𝑝𝑘,𝑚0, 𝑚1, 𝑐

5. Output 1 if 𝑏 = 𝑏′ and 0 otherwise

40

We say that (Enc,Dec) is chosen-plaintext attack (CPA) secure if

For every PPT adversary 𝐴 = (𝐴1, 𝐴2):

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1]- ½ | negligible in n

40

Security (eavesdropping)

Adversary sees pk, E(pk, x) and wants x ∈M

CPA security ⇒

Adversary cannot distinguish

{ pk, E(pk, x) } from { pk, E(pk, r)}, r is random ∈ M

How about man-in-the-middle attacks?

41

Insecure against man in the middle

As described, the protocol is insecure against active attacks

Alice BobMiTM

(pk, sk) ⟵ G()

“Alice”, pk

(pk’, sk’) ⟵ G()

choose random
x ∈ {0,1}128

“Bob”, E(pk’, x)“Bob”, E(pk, x)

“Alice”, pk’

Decrypt and re-encrypt

42

Key insights

• Efficient algorithms to generate long primes
– Miller-Rabin primality test

• Key distribution
– Using key distribution centers (KDC) to establish

fresh session keys

– Based on authenticated encryption

• Key distribution without trusted servers
– Diffie-Hellman (based on difficulty of computing

discrete logs in cyclic groups)

– Public-key encryption

43

Acknowledgement

Some of the slides and slide contents are taken from
http://www.crypto.edu.pl/Dziembowski/teaching
and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this
material is currently granted without fee provided that copies are made only for personal or
classroom use, are not distributed for profit or commercial advantage, and that new copies
bear this notice and the full citation.

We have also used slides from Prof. Dan Boneh online cryptography course at

Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

44

http://www.crypto.edu.pl/Dziembowski/teaching
http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

