CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

March 19 2018

Announcements

- Office hours this week
 - Wed 2:30-4:30pm
- Distinguished speaker on Thu 03/22
 - Location 97 Cargill, 3-4:30pm
 - Prof Mike Reiter, UNC Chapel Hill
 - Title: "Side channels in multi-tenant environments"
 - Extra credit for next homework: submit a paragraph about his talk
- If anyone is interested in meeting him 4:30-5pm (ISEC 632), please email me

Outline

- Generating large primes
 - Miller-Rabin primality testing
- How to distribute cryptographic keys
- Key distribution centers
 - Needham-Shroeder
- Public-key cryptography
 Diffie-Hellman key exchange

How to generate large primes?

- Input: length n; parameter t
- Output: a uniform n-bit prime p
- For i = 1 to t:

$$-p' \leftarrow \{0,1\}^{n-1}$$
$$-p = 1||p'$$
$$- \text{ If p is prime, return p}$$

Primality test

• Return fail

The fraction of prime n-bit numbers is > 1/3nSet t to get a negligible prob of fail (e.g., for t= $3n^2$, probability of failure < e^{-n})

Miller-Rabin primality test

- Input: Integer N; parameter t
- Output: A decision whether N is prime/composite
- If N even, return "composite"
- If N perfect power, return "composite"
- Decompose $N 1 = 2^r u$, u odd
- For j = 1 to t:
 - $-a \leftarrow \{1, \dots, N-1\} // \text{ choose at random}$
 - If $a^u \neq \pm 1 \mod N$ and $a^{2^i u} \neq -1 \mod N$, $\forall i \in \{1, ..., r-1\}$, return "composite"
- Return "prime"

If N composite, prob $\frac{1}{2}$ to find strong witness in each iteration If N composite, the probability that it outputs prime is $1/2^t$

Test perfect powers

- Input: Integer N of n bits
- Output: Is N perfect power (exists m,e st N=m^e)
- For all e < n
 - Set a = 1, b = N
 - While $a \leq b$

•
$$m = \left\lfloor \frac{a+b}{2} \right\rfloor$$

- If $m^e = N$, return "perfect power"
- If $m^e > N$, set b = m 1
- If $m^e < N$, set a = m + 1

– Return "not perfect power"

How to distribute the cryptographic keys?

 If the users can meet in person beforehand – it's simple.

• But what to do if they cannot meet?

(a typical example: on-line shopping)

Private-key cryptography relies on secure distribution of secret keys

Key Distribution Centers

Some *server* (a **Key Distribution Center, KDC**) "gives the keys" to the users

- feasible if the users are working in one company
- Users share keys with KDC only
- KDC generates new fresh keys (called session keys) when users initiate communication

Disadvantages

- infeasible on the internet
- relies on the honesty of KDC
- Who can implement a trusted KDC?
- **KDC** needs to be permanently available
- **KDC** is single point of failure

How to establish a key with a trusted server?

key shared by Alice and the server: **K**_{AS}

want to establish a **fresh session key**

key shared by Bob and the server: K_{BS}

Notation

{M}_K - a message M encrypted and authenticated with K

- Any authenticated encryption scheme can be used
- K = (K₀,K₁): one key for encryption, one for authentication
- Encrypt-then-MAC the preferred method

An idea (1)

Generating keys: a toy protocol

Goal: Alice wants a shared key with Bob Adversarial model: Eavesdropping security only

Eavesdropper sees {K} _{KAS}; ticket = {K} _{KBS} Encryption is CPA-secure ⇒ Eavesdropper learns nothing about k

How about active attacks?

An attack

Man-in-the-middle

An idea (2)

A replay attack

values that the server sent in the previous session and

So, the key is not fresh...

How to protect against the replay attacks?

Nonce – "number used once".

Nonce is a random number generated by one party and returned to that party to show that a message is newly generated.

An idea (3): Needham Schreoder 1972

An attack on Needham Schroeder

- Assume that an old session key K_{old} is compromised by the adversary
- **B** can not tell if the key is fresh

Solution

Kerberos uses timestamps to guarantee key freshness

Key Distribution Centers

Some *server* (a **Key Distribution Center, KDC**) "gives the keys" to the users

- **feasible** if the users are e.g. working in one company
- Users share keys with KDC only
- KDC generates new fresh keys (called session keys) when users initiate communication

Disadvantages

- infeasible on the internet
- relies on the honesty of KDC
- Who can implement a trusted KDC?
- **KDC** needs to be permanently available
- **KDC** is single point of failure

Key question

Can we generate shared keys without an **online** trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

- Merkle (1974), Diffie-Hellman (1976), RSA (1977)
- More recently
 - Identity-based encryption [BF 2001)
 - Functional encryption [BSW 2011]

The solution without KDC

Public-Key Cryptography

A little bit of history

• **Diffie and Hellman** were the first to publish a paper containing the idea of the public-key cryptography:

W.Diffie and M.E.Hellman, **New directions in cryptography** IEEE Trans. Inform. Theory, IT-22, 6, **1976**, pp.644-654.

- A similar idea was described by **Ralph Merkle**:
 - in **1974** he described it in a project proposal for a Computer Security course at UC Berkeley (it was rejected)

in **1975** he submitted it to the CACM journal (it was rejected)
 (see http://www.merkle.com/1974/)

- 1977: R. Rivest, A. Shamir and L. Adelman published the first construction of public-key encryption (RSA)
- It 1997 the GCHQ (the British equivalent of the NSA) revealed that they knew it already in **1973**.

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

The Diffie-Hellman protocol

Fix a large prime p (e.g. 600 digits) Fix an integer g in {1, ..., p}

<u>Alice</u>

choose random **a** in {1,...,p-1}

choose random **b** in {1,...,p-1}

Bob

 $p, g, A \leftarrow g^{a} \mod p$ $B \leftarrow g^{b} \mod p$ $\mathbf{B}^{a} \pmod{p} = (g^{b})^{a} = \mathbf{k}_{AB} = \mathbf{g}^{ab} \pmod{p} = (g^{a})^{b} = \mathbf{A}^{b} \pmod{p}$

Security (informally)

Eavesdropper sees: p, g, A=g^a (mod p), and B=g^b (mod p)

Can she compute $g^{ab} \pmod{p}$??

More generally: define $DH_g(g^a, g^b) = g^{ab} \pmod{p}$

How hard is the DH function mod p?

Intractable problems with primes

Fix a prime p>2 and g in $(Z_p)^*$ of order q.

Consider the function: $\mathbf{x} \mapsto \mathbf{g}^{\mathbf{x}}$ in $\mathbf{Z}_{\mathbf{p}}$

Now, consider the inverse function:

 $Dlog_g(g^x) = x$ wherex in $\{0, ..., q-2\}$ in \mathbb{Z}_{11} :1, 2, 3, 4, 5, 6, 7, 8, 9, 10Example: $Dlog_2(\cdot)$:0, 1, 8, 2, 4, 9, 7, 3, 6, 5

DLOG: more generally

Let **G** be a finite cyclic group and **g** a generator of G

 $G = \{1, g, g^2, g^3, \dots, g^{q-1}\}$ (q is called the order of G)

<u>Def</u>: We say that **DLOG is hard in G** if for all efficient alg. A:

$$Pr_{g \leftarrow G, x \leftarrow Z_q} [A(G, q, g, g^x) = x] < negligible$$

Example candidates:

(1) $(Z_p)^*$ for large p, (2) Elliptic curve groups mod p

How hard is the DH function mod p?

Suppose prime p is n bits long. Best known algorithm (GNFS): run time exp($\tilde{O}(\sqrt[3]{n})$)

Level of security	<u>modulus size</u>	Elliptic Curve size
80 bits	1024 bits	160 bits
128 bits	3072 bits	256 bits
256 DITS (AES)	15360 DITS	512 bits

As a result: slow transition away from (mod p) to elliptic curves

Decisional Diffie-Hellman

Let **G** be a finite cyclic group and **g** generator of G

$$G = \{ 1, g, g^2, g^3, \dots, g^{q-1} \}$$

q is called the order of G

Definition: We say that **DDH is hard in G** if for all PPT adversaries A:

 $|\Pr[A(G, q, g, g^x, g^y, g^{xy}) = 1] - \Pr[A(G, q, g, g^x, g^y, g^z) = 1] - \Pr[A(G, q, g, g^x, g^y, g^z) = 1] | < negligible$

x, y, z are chosen uniformly at random in {1,...q-1}

Security of Diffie-Hellman

- If DDH is hard, then Diffie-Hellman key exchange is secure in presence of eavesdropping adversary.
 - Diffie-Hellman secure against eavesdroppers in large groups (Z_p)^{*}, p prime

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Attacker relays traffic from Alice to Bob and reads it in clear

Another solution

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

The idea

Instead of using one key k, use 2 keys (pk,sk), where pk is used for encryption, sk is used for decryption. pk can be public, and
only sk has to be kept
secret!

That's why it's called: **public-key cryptography**

Analogy

Examples padlocks:

Public key encryption

Definition: a public-key encryption system is a triple of algs. (Gen, Enc, Dec)

- Gen(): randomized alg. outputs a key pair (pk, sk)
- Enc(pk, m): randomized alg. that takes m∈M and outputs c ∈C
- Dec(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Correctness: \forall (pk, sk) output by G :

 $\forall m \in M$: Dec(sk, Enc(pk, m)) = m

Establishing a shared secret

CPA Security Game – Secret key

Security definition:

We say that **(Enc,Dec)** is **CPA-secure** if any **polynomial time** adversary, **Pr[b'=b] -** $\frac{1}{2}$ is negligible in n.

CPA Security Game – Public key

Security definition:

We say that **(Enc,Dec)** is **CPA-secure** if any **polynomial time** adversary, **Pr[b'=b] -** ¹/₂ **|** is negligible in n.

CPA security definition

- Experiment $\text{Exp}_{\Pi,A}^{\text{CPA}}(n)$:
 - 1. Choose $(pk, sk) \leftarrow^R Gen(1^n)$
 - 2. $m_0, m_1 \leftarrow A_1 (pk)$
 - 3. $b \leftarrow^{R} \{0,1\}; c \leftarrow Enc_{pk}(m_b)$
 - 4. $b' \leftarrow A_2 (pk, m_0, m_1, c)$
 - 5. Output 1 if b = b' and 0 otherwise

We say that (Enc,Dec) is chosen-plaintext attack (CPA) secure if

For every **PPT** adversary $A = (A_1, A_2)$: |**Pr**[Exp^{CPA}_{Π,A}(n) = **1**]- ½ | negligible in n

Security (eavesdropping)

Adversary sees pk, E(pk, x) and wants $x \in M$

CPA security ⇒
Adversary cannot distinguish
{ pk, E(pk, x) } from { pk, E(pk, r)}, r is random ∈ M

How about man-in-the-middle attacks?

Insecure against man in the middle

As described, the protocol is insecure against **active** attacks

Decrypt and re-encrypt

Key insights

- Efficient algorithms to generate long primes

 Miller-Rabin primality test
- Key distribution
 - Using key distribution centers (KDC) to establish fresh session keys
 - Based on authenticated encryption
- Key distribution without trusted servers
 - Diffie-Hellman (based on difficulty of computing discrete logs in cyclic groups)
 - Public-key encryption

Acknowledgement

Some of the slides and slide contents are taken from

http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/