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Announcements
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• Office hours this week
– Wed 2:30-4:30pm 

• Distinguished speaker on Thu 03/22 
– Location 97 Cargill, 3-4:30pm

– Prof Mike Reiter, UNC Chapel Hill

– Title: “Side channels in multi-tenant environments”

– Extra credit for next homework: submit a paragraph 
about his talk

• If anyone is interested in meeting him 4:30-5pm 
(ISEC 632), please email me 



Outline
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• Generating large primes

– Miller-Rabin primality testing

• How to distribute cryptographic keys

• Key distribution centers

– Needham-Shroeder

• Public-key cryptography

– Diffie-Hellman key exchange



How to generate large primes?

• Input: length n; parameter t
• Output: a uniform n-bit prime p
• For i = 1 to t:

– 𝑝′ ← 0,1 𝑛−1

– 𝑝 = 1||𝑝′

– If p is prime, return p                   Primality test

• Return fail

The fraction of prime n-bit numbers is > 1/3n
Set t to get a negligible prob of fail (e.g., for t=3n2, 
probability of failure < e-n)
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Miller-Rabin primality test
• Input: Integer N; parameter t

• Output: A decision whether N is prime/composite

• If N even, return “composite”

• If N perfect power, return “composite”

• Decompose 𝑁 − 1 = 2𝑟𝑢, u odd

• For j = 1 to t:
– 𝑎 ← {1,…,N-1} // choose at random

– If 𝑎𝑢 ≠ ± 1𝑚𝑜𝑑 𝑁 and 𝑎2
𝑖𝑢 ≠ −1𝑚𝑜𝑑 𝑁 , ∀𝑖 ∈

{1,… , 𝑟 − 1}, return “composite”

• Return “prime”
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If N composite, prob ½ to find strong witness in each iteration
If N composite, the probability that it outputs prime is 1/2t



Test perfect powers

• Input: Integer N of n bits

• Output: Is N perfect power (exists m,e st N=me)

• For all e < n
– Set a = 1, b = N

– While 𝑎 ≤ 𝑏

• 𝑚 =
𝑎+𝑏
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• If 𝑚𝑒 = 𝑁, return “perfect power”

• If 𝑚𝑒 > 𝑁, 𝑠𝑒𝑡 𝑏 = 𝑚 − 1

• If 𝑚𝑒 < 𝑁, 𝑠𝑒𝑡 𝑎 = 𝑚 + 1

– Return “not perfect power”
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How to distribute the cryptographic keys?

• If the users can meet in person beforehand –
it’s simple.

• But what to do if they cannot meet?

(a typical example: on-line shopping)

Private-key cryptography relies on 
secure distribution of secret keys
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Key Distribution Centers

Some server (a Key Distribution Center, KDC) “gives the 
keys” to the users

– feasible if the users are working in one company
– Users share keys with KDC only
– KDC generates new fresh keys (called session keys) when 

users initiate communication

Disadvantages
– infeasible on the internet
– relies on the honesty of KDC
– Who can implement a trusted KDC?
– KDC needs to be permanently available
– KDC is single point of failure
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How to establish a key with a trusted 
server?

B

key shared by Alice and 
the server: KAS

key shared by Bob and 
the server: KBS

server S

want to establish a 
fresh session key
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Notation

{M}K – a message M encrypted and 
authenticated with K

• Any authenticated encryption scheme can be 
used

• K = (K0,K1): one key for encryption, one for 
authentication

• Encrypt-then-MAC the preferred method
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An idea (1)

A B

server S

key shared by Alice and 
the server: KAS

key shared by Bob and 
the server: KBS

(A,B)

{K} KAS
{K} KBS

{K} KBS  
, A

selects a random K 

Ticket

Ticket
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Generating keys: a toy protocol

Goal: Alice wants a shared key with Bob

Adversarial model: Eavesdropping security only

Eavesdropper sees {K} KAS
;     ticket = {K} KBS

Encryption is CPA-secure  ⇒
Eavesdropper learns nothing about k

How about active attacks?
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An attack

A B

server S

key shared by Alice and 
the server: KAS

key shared by Bob and 
the server: KBS

(A,B)

{K} KAS
{K} KBS

{K} KBS  
, A

selects a random K 

{K} KBS 
, Eve

I’m 
talking 
to Eve

Man-in-the-middle
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An idea (2)

A B

server S

key shared by Alice and 
the server: KAS

key shared by Bob and 
the server: KBS

(A,B)

{K , B} KAS
{K , A} KBS

{K , A} KBS 

selects a random K 

Ticket
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A replay attack

A B

(A,B)

{K , B} KAS
{K, A} KBS

{K , A} KBS

the adversary stores the 
values that the server sent in 
the previous session and 
replays them.

So, the key is not fresh...

Ticket
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How to protect against the replay attacks?

Nonce – “number used once”.

Nonce is a random number generated by one 
party and returned to that party to show that 
a message is newly generated.
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An idea (3): Needham Schreoder 1972

A B

server S

key shared by Alice and 
the server: KAS

key shared by Bob and 
the server: KBS

A,B,NA

{K, B, NA }KAS
{K , A}KBS

{K , A} KBS

selects a random K 

Ticket

Alice believes 
the key is fresh
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An attack on Needham Schroeder

Bob

{Kold , A} KBS  
Ticket

• Assume that an old session key Kold is compromised by 
the adversary

• B can not tell if the key is fresh
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Solution

A B

server S

key shared by Alice and 
the server: KAS

key shared by Bob and 
the server: KBS

(A,B,NA,NB)

{K, B, NA} KAS
{K, A, NB} KBS

selects a random K 

{K, A, NB} KBS

(B,NB)

Kerberos uses timestamps to guarantee key freshness
19



Key Distribution Centers

Some server (a Key Distribution Center, KDC) “gives the 
keys” to the users

– feasible if the users are e.g. working in one company
– Users share keys with KDC only
– KDC generates new fresh keys (called session keys) when 

users initiate communication

Disadvantages
– infeasible on the internet
– relies on the honesty of KDC
– Who can implement a trusted KDC?
– KDC needs to be permanently available
– KDC is single point of failure
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Key question

Can we generate shared keys without an online
trusted 3rd party?

Answer:   yes!

Starting point of public-key cryptography:

• Merkle (1974), Diffie-Hellman (1976),  RSA (1977)

• More recently
– Identity-based encryption [BF 2001)

– Functional encryption [BSW 2011]
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The solution without KDC

Public-Key Cryptography

Whitfield Diffie and Martin Hellman (1976)Ralph Merkle (1974)
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A little bit of history

• Diffie and Hellman were the first to publish a paper 
containing the idea of the public-key cryptography:

W.Diffie and M.E.Hellman, 
New directions in cryptography
IEEE Trans. Inform. Theory, IT-22, 6, 1976, pp.644-654.

• A similar idea was described by Ralph Merkle:
– in 1974 he described it in a project proposal for a Computer Security 

course at UC Berkeley 
(it was rejected)

– in 1975 he submitted it to the CACM journal (it was rejected)
(see http://www.merkle.com/1974/ )

• 1977: R. Rivest, A. Shamir and L. Adelman published the first 
construction of public-key encryption (RSA)

• It 1997 the GCHQ (the British equivalent of the NSA) revealed 
that they knew it already in 1973.
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http://www.merkle.com/1974/


Key exchange without an online TTP?

BobAlice

Goal:    Alice and Bob want shared secret, unknown to eavesdropper

• For now:    security against eavesdropping only   (no tampering)

Key K Key K
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The Diffie-Hellman protocol

Fix a large prime  p        (e.g.   600 digits)

Fix an integer    g   in   {1, …, p}

Alice Bob

choose random a in {1,…,p-1} choose random b in {1,…,p-1}

kAB = gab (mod p) =      (ga)b
= Ab

(mod p)Ba
(mod p)   =    (gb)a

=

𝑝, 𝑔, 𝐴 ← 𝑔𝑎 𝑚𝑜𝑑 𝑝

B ← 𝑔𝑏 𝑚𝑜𝑑 𝑝
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Security   (informally)

Eavesdropper sees:      p, g,   A=ga (mod p),    and   
B=gb (mod p) 

Can she compute       gab (mod p)     ??

More generally:    define  DHg(g
a, gb) = gab   (mod p)

How hard is the DH function mod p?
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Intractable problems with primes

Fix a prime p>2  and  g in (Zp)* of order  q.         

Consider the function:      x  ⟼ gx     in  Zp

Now, consider the inverse function:

Dlogg (gx)  =  x      where   x in  {0, …, q-2}

Example:    

in           :        1,    2,    3,    4,    5,    6,    7,    8,    9,    10

Dlog2(⋅) :       0,    1,    8,    2,    4,    9,    7,    3,    6,     5
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DLOG:   more generally

Let  G be a finite cyclic group  and  g a generator of G 

G =  { 1 , g , g2 , g3 ,   …  ,  gq-1 }         ( q is called the order of G )

Def:  We say that DLOG is hard in G if for all efficient alg. A:

Pr g⟵G, x ⟵Zq
[  A( G, q,  g, gx ) = x ]  <  negligible

Example candidates:

(1)    (Zp)* for large p,         (2)  Elliptic curve groups 
mod p
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How hard is the DH function mod p?

Suppose prime  p  is  n  bits long. 
Best known algorithm (GNFS):        run time     exp(              )

Level of security modulus size
80 bits 1024 bits
128 bits 3072 bits
256 bits (AES) 15360 bits 

As a result:    slow transition away from (mod p) to elliptic 
curves

Elliptic Curve
size

160 bits

256 bits

512 bits
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Decisional Diffie-Hellman
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Let  G be a finite cyclic group  and  g generator of G 

G =  { 1 , g , g2 , g3 ,   …  ,  gq-1 }      

q is called the order of G 

Definition:  We say that DDH is hard in G if for all 
PPT  adversaries A:

|Pr[  A( G, q,  g, gx ,gy ,gxy ) = 1 ] - Pr[  A( G, q,  g, 
gx ,gy ,gz ) = 1 ] |  <  negligible

x, y, z are chosen uniformly at random in {1,…q-1}



Security of Diffie-Hellman

• If DDH is hard, then Diffie-Hellman key 
exchange is secure in presence of 
eavesdropping adversary.

– Diffie-Hellman secure against eavesdroppers in 
large groups  (Zp)*, p prime
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Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Alice BobMiTM

𝐴 ← 𝑔𝑎 𝑚𝑜𝑑 𝑝 𝐴′ ← 𝑔𝑎
′

𝑚𝑜𝑑 𝑝

B ← 𝑔𝑏 𝑚𝑜𝑑 𝑝

a’

b’
B′ ← 𝑔𝑏

′

𝑚𝑜𝑑 𝑝

𝑔𝑎𝑏
′

𝑔𝑎𝑏
′

𝑔𝑎
′𝑏 𝑔𝑎

′𝑏

Attacker relays traffic from Alice to Bob and reads it in clear
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Another solution

BobAlice

Goal:    Alice and Bob want shared secret, unknown to eavesdropper

• For now:    security against eavesdropping only   (no tampering)
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The idea

Alice Bob

k k

m c := Enc(k,m) Dec(k,c)

c := Enc(pk,m) Dec(sk,c)

pk sk

Instead of using one key k, 
use 2 keys (pk,sk), where

pk is used for encryption,
sk is used for decryption. 

pk can be public, and 
only sk has to be kept 

secret!

That’s why it’s called: 
public-key 

cryptography
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anyone can lock it

Analogy

Examples padlocks:

the key is needed to unlock
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Public key encryption

Definition:   a public-key encryption system is a triple of algs.   
(Gen, Enc, Dec)

• Gen():   randomized alg. outputs a key pair    (pk,  sk)

• Enc(pk, m):  randomized alg. that takes  m∈M and outputs c 
∈C

• Dec(sk,c):   det.  alg. that takes  c∈C and outputs m∈M or ⊥

Correctness:    ∀(pk,  sk) output by G :    

∀m∈M:     Dec(sk,  Enc(pk, m) ) = m
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Establishing a shared secret

Alice Bob

(pk, sk) ⟵ G()

“Alice”,   pk

choose random 
x ∈ {0,1}128

“Bob”,   c = Enc(pk,x)

x = Dec(sk,c)

x: shared secret
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CPA Security Game – Secret key

PPT Adversary A Challenger

chooses m0,m1 such that
|m0|=|m1|

m0,m1

1. Choose random k ← {0,1}n

2. chooses random b ← {0,1}
3. calculate c ← Enc(k,mb)

𝚷= (Enc,Dec): an encryption scheme

cMakes a guess b’

Security definition:
We say that (Enc,Dec) is CPA-secure if any polynomial time adversary,                 
| Pr[ b’=b ] - ½ |  is  negligible in n.

security parameter
n
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Queries to Enc()



CPA Security Game – Public key

PPT Adversary A Challenger

chooses m0,m1 such that
|m0|=|m1|

m0,m1

1. (pk,sk) ← Gen(n)
2. chooses random b ← {0,1}
3. calculate c ← Enc(pk,mb)

𝚷= (Enc,Dec): an encryption scheme

cMakes a guess b’

Security definition:
We say that (Enc,Dec) is CPA-secure if any polynomial time adversary,                 
| Pr[ b’=b ] - ½ |  is  negligible in n.

security parameter
n

39

pk



CPA security definition

• Experiment ExpΠ,𝐴
CPA 𝑛 :

1. Choose (𝑝𝑘, 𝑠𝑘) ←𝑅 𝐺𝑒𝑛(1𝑛)

2. 𝑚0, 𝑚1 ← 𝐴1 𝑝𝑘

3. 𝑏 ←𝑅 0,1 ; 𝑐 ← 𝐸𝑛𝑐𝑝𝑘 𝑚𝑏

4. 𝑏′ ← 𝐴2 𝑝𝑘,𝑚0, 𝑚1, 𝑐

5. Output 1 if 𝑏 = 𝑏′ and 0 otherwise
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We say that (Enc,Dec) is chosen-plaintext attack (CPA) secure if 

For every PPT adversary 𝐴 = (𝐴1, 𝐴2):

|Pr[ExpΠ,𝐴
CPA 𝑛 = 1]- ½ | negligible in n
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Security  (eavesdropping)

Adversary sees     pk,    E(pk, x) and wants    x ∈M

CPA security    ⇒

Adversary cannot distinguish

{ pk,  E(pk, x) } from    { pk,  E(pk, r)},  r is random ∈ M

How about man-in-the-middle attacks?
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Insecure against man in the middle

As described, the protocol is insecure against active attacks

Alice BobMiTM

(pk, sk) ⟵ G()

“Alice”,  pk

(pk’, sk’) ⟵ G()

choose random 
x ∈ {0,1}128

“Bob”,  E(pk’, x)“Bob”,  E(pk, x)

“Alice”,  pk’

Decrypt and re-encrypt
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Key insights

• Efficient algorithms to generate long primes 
– Miller-Rabin primality test

• Key distribution
– Using key distribution centers (KDC) to establish 

fresh session keys

– Based on authenticated encryption

• Key distribution without trusted servers
– Diffie-Hellman (based on difficulty of computing 

discrete logs in cyclic groups)

– Public-key encryption
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and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this 
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We have also used slides from Prof. Dan Boneh online cryptography course at 

Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/
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