CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

March 12 2018

Announcements

- Homework 3 will be out today
 Due date Fri 03/23
- Distinguished speaker on Thu 03/22
 - Location 97 Cargill, 3-4:30pm
 - Prof Mike Reiter, UNC Chappel Hill
 - Title: "Side channels in multi-tenant environments"
 - Extra credit for next homework: submit a paragraph about his talk
- If anyone is interested in meeting him 4:30-5pm, please email me

Recap

- Collision-resistant hash functions are useful for many tasks
- Constructing hash functions using Merkle-Daamgard paradigm

– Traditional designs: MD5, SHA-1, SHA-2

- SHA-3 is the new standard
 - Explicit collision found in MD5
 - Structural waeknesses in SHA-1
- Birthday paradox implies n/2 level of security for n-bit hash function in best case

Outline

- Birthday attack
 - Prove lower bound
 - Generic attack on hash functions
- Construction of HMAC
 More efficient than CBC-MAC
- Applications of hash functions
 - Merkle trees
- Introduction to number theory

Hash functions – the security definition

H is a collision-resistant hash function if

Pr[A outputs m, m' such that H(m)=H(m')] polynomial-time adversary A

Birthday paradox

If we choose q elements y₁, ... y_q at random from {1,...,N}, what is the probability that there exists i and j such that y_i = y_j?

365 possible days

What is the probability that two people have the same birthday?

Upper bound

 If we choose y₁, ... y_q uniformly at random from {1,...,N}, the probability of collision is upper bounded by:

$$\operatorname{Coll}(q, N) \leq \frac{q(q-1)}{2N}$$

• Proof: (Union bound) $\Pr[\operatorname{Coll}(q, N)] = \Pr[\exists i, j \ st \ y_i = y_j]$ $\leq \sum_{i,j} \Pr[y_i = y_j] = {\binom{q}{2}} \frac{1}{N} = \frac{q(q-1)}{2N}$

Lower bound

• If we choose $y_1, ..., y_q$ uniformly at random from $\{1,...,N\}$ and $q \leq \sqrt{2N}$, the probability of collision is lower bounded by:

$$Coll(q, N) \ge 1 - e^{-\frac{q(q-1)}{2N}} \ge \frac{q(q-1)}{4N}$$

• Proof: $NoColl_i = Event no collision in y_1, ... y_i$ $Pr[NoColl_q] = Pr[NoColl_1] Pr[NoColl_2|NoColl_1] ...$ $Pr[NoColl_q|NoColl_{q-1}]$ $Pr[NoColl_1] = 1$ $Pr[NoColl_i|NoColl_{i-1}] = 1 - (i-1)/N$

Lower bound

• If we choose $y_1, ..., y_q$ uniformly at random from $\{1,...,N\}$ and $q \le \sqrt{2N}$, the probability of collision is lower bounded by:

$$Coll(q, N) \ge 1 - e^{-\frac{q(q-1)}{2N}} \ge \frac{q(q-1)}{4N}$$

• Proof: NoColl_i = Event no collision in $y_1, ..., y_i$ Pr[NoColl_q] = $\prod (1 - i/N)$ Pr[NoColl_q] $\leq \prod_i e^{-i/N} \leq e^{-\sum i/N} = e^{-q(q-1)/2N}$ 1- Pr[NoColl_q] $\geq 1 - e^{-q(q-1)/2N}$ $\geq q(q-1)/4N$

Lower bound

• If we choose $y_1, ..., y_q$ uniformly at random from $\{1,...,N\}$ and $q \leq \sqrt{2N}$, the probability of collision is lower bounded by:

$$\frac{q(q-1)}{4N} \le \operatorname{Coll}(q, N) \le \frac{q(q-1)}{2N}$$

If $q = \Theta(\sqrt{N})$, then $\operatorname{Coll}(q, N)$ is approx. ½ Birthday paradox: N = 365, q = 23 Hash functions: $N = 2^n$, $q = 2^{n/2}$

Collision probability

Generic attack on collision resistant hash functions

Let $H: M \rightarrow \{0,1\}^n$ be a hash function ($|M| >> 2^n$)

Generic alg. to find a collision in time $O(2^{n/2})$ hashes

Algorithm:

- 1. Choose $2^{n/2}$ random messages in M: $m_1, ..., m_{2^{n/2}}$ (distinct w.h.p.)
- 2. For i = 1, ..., $2^{n/2}$ compute $t_i = H(m_i)$
- 3. Look for a collision $(t_i = t_i)$
- 4. If not found, got back to step 1

Running time: $O(2^{n/2})$ (space $O(2^{n/2})$)

Sample C.R. hash functions: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

		digest		generic
	<u>function</u>	<u>size (bits)</u>	Speed (MB/sec)	<u>attack time</u>
NIST standards	SHA-1	160	153	2 ⁸⁰
	SHA-256	256	111	2 ¹²⁸
	LSHA-512	512	99	2 ²⁵⁶

Best known collision finder for SHA-1 requires 2⁵¹ hash evaluations

Security experiment for MAC

- Experiment $\text{Exp}_{\Pi,A}^{\text{MAC}}(n)$:
 - 1. Choose $k \leftarrow Gen(n)$
 - 2. $m,t \leftarrow A^{Tag()}(n)$
 - Output 1 if Ver(*m*,*t*) = 1 and *m* was not queried to the Tag() oracle
 - 4. Output 0 otherwise

We say that (Gen, Tag, Ver) is a secure MAC if:

For every **PPT** adversary $A = (A_1, A_2)$: **Pr**[Exp^{MAC}_{Π, A} (*n*) = **1**] is negligible in n

MACs from Collision Resistance

Let (Tag,Ver) be a MAC for short messages over (K,M)

Let $H: M' \rightarrow M$ be a collision resistant hash function

Def: (Tag['], Ver[']) over (K, M[']) as:

Tag'(k,m) = Tag(k,H(m)) Ver'(k,m,t) = Ver(k,H(m),t)

<u>**Thm</u></u>: If (Tag,Ver) is a secure MAC and H is collision resistant then (Tag['], Ver[']) is a secure MAC.</u>**

Example: (k,m) = CBC-MAC(k, SHA-256(m)) is a secure MAC.

MACs from Collision Resistance

Tag'(k, m) = Tag(k, H(m)) ; Ver'(k, m, t) = Ver(k, H(m), t)

Collision resistance is necessary for security:

Suppose adversary can find $m_0 \neq m_1$ s.t. $H(m_0) = H(m_1)$

Then: (Tag',Ver') is insecure under chosen msg attack

step 1: adversary asks for $t \leftarrow Tag(k, m_0)$ step 2: output (m_1, t) as forgery

The Merkle-Damgard iterated construction

Thm: h collision resistant \Rightarrow H collision resistant

Can we use H(.) to directly build a MAC?

MAC from a Merkle-Damgard Hash Function

H: $X^{\leq L} \rightarrow T$ a C.R. Merkle-Damgard Hash Function

<u>Attempt #1</u>: Tag(k, m) = H(k || m)

This MAC is insecure because:

Given H(k∥m) can compute H(w ll k∥m ll t) for any w.
Given H(k∥m) can compute H(k∥m ll w) for any w.
→ Given H(k∥m) can compute H(k∥m ll t ll w) for any w.

Anyone can compute $H(k \parallel m)$ for any m.

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function. example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

HMAC: Tag(k,M) = H(k \oplus opad, H(k \oplus ipad || m))

HMAC in pictures

Applications of hash functions: Merkle trees

Authenticate a file using its hash

How to authenticate multiple files?

Client			Server
M ₁	$M_1 = H(F_1)$	Write file	F ₁
M ₂	$M_2 = H(F_2)$	Read file	F ₂
M _n	$M_n = H(F_n)$	Check integrity	F _n

Compute and store a hash per file
 + Fast to check integrity and update file
 - Linear storage on client

2. Compute and store a hash for all files

- + Small storage on client
- Linear time to check integrity and update file

Merkle trees

- Introduced by Ralph Merkle, 1979
 - "Classic" cryptographic construction
 - Involves combining hash functions on binary tree structure
- An efficient data structure with many practical applications
- Constant amount of storage on client
- Logarithmic update and verification cost

Merkle tree data structure

- Binary tree, nodes are assigned fixed-size values
- Files associated to each leaf

How to authenticate multiple files?

Read/authenticate file

Write/authenticate file

Number theory review

Prime Numbers

- An integer p > 1 is a *prime number* iff its only positive divisors are 1 and p
 - E.g., 3,5,7,11,13
- Otherwise, an integer that has other divisors is called composite
 - E.g., 4,6,8,10,25,39
- Theorem [Fundamental theorem of arithmetic] Any integer a > 1 *can be factored* in a unique way as

$$a = p_1^{a_1} p_2^{a_2} \dots p_t^{a_t}$$

where $p_1 < p_2 < ... < p_t$ are primes and a_i are positive integers

Theorem [Infinite prime numbers]
 The number of prime numbers is infinite

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation: $Z_N = \{0, 1, \dots N - 1\}$ group of size N

Can do addition and multiplication modulo N

Modular arithmetic

Examples: let N = 12

9 + 8 = 5 in \mathbb{Z}_{12} $5 \times 7 = 11$ in \mathbb{Z}_{12} 5 - 7 = 10 in \mathbb{Z}_{12}

Arithmetic in \mathbb{Z}_N works as you expect, e.g $x \cdot (y+z) = x \cdot y + x \cdot z$ in \mathbb{Z}_N

Greatest common divisor

<u>**Def</u></u>: For integers x, y: gcd(x, y)** is the *greatest common divisor* d such that d|x and d|y</u>

Example: gcd(12, 18) = 6

<u>Fact</u>: for all integers x, y there exist a, b such that $a \cdot x + b \cdot y = gcd(x,y)$

Coefficients a,b can be found efficiently using the *extended Euclidean algorithm*

If gcd(x,y)=1 we say that x and y are <u>relatively prime</u> Example: gcd(14,25) = 1

Facts on gcd

Proposition: If c|ab and gcd(a,c) = 1, then c|b Proof: If c|ab, there exists a value u such that: cu = ab

Since gcd(a,c) = 1, there exists some constants v and w such that: av + cw = 1

Multiply by b: $avb + cwb = b \Rightarrow cuv + cwb = b$

 \Rightarrow c(uv+wb) = b \Rightarrow c|b

Corolary: If p is prime and p|ab, then p|a or p|b Proof: If p prime, then p|a or gcd(p,a) = 1. Then p|a or p|b

Modular inversion

Over rationals, inverse of 2 is $\frac{1}{2}$. What about Z_N ?

Definition: The **multiplicative inverse** of x in Z_N is an element y in Z_N such that $x \cdot y = 1$ in Z_N y is denoted x⁻¹

Example: Let N be an odd integer. What is the inverse of 2 in Z_N ?

$$2 \cdot \frac{N+1}{2} = N+1 = 1 \mod N$$

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/