CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea
Associate Professor, CCIS
Northeastern University

March 122018

Announcements

- Homework 3 will be out today
- Due date Fri 03/23
- Distinguished speaker on Thu 03/22
- Location 97 Cargill, 3-4:30pm
- Prof Mike Reiter, UNC Chappel Hill
- Title: "Side channels in multi-tenant environments"
- Extra credit for next homework: submit a paragraph about his talk
- If anyone is interested in meeting him 4:30-5pm, please email me

Recap

- Collision-resistant hash functions are useful for many tasks
- Constructing hash functions using MerkleDaamgard paradigm
- Traditional designs: MD5, SHA-1, SHA-2
- SHA-3 is the new standard
- Explicit collision found in MD5
- Structural waeknesses in SHA-1
- Birthday paradox implies $\mathrm{n} / 2$ level of security for n-bit hash function in best case

Outline

- Birthday attack
- Prove lower bound
- Generic attack on hash functions
- Construction of HMAC
- More efficient than CBC-MAC
- Applications of hash functions
- Merkle trees
- Introduction to number theory

Collision-resistant hash functions

short $\mathrm{H}(\mathrm{m})$

a hash function
 $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

collision-resistance
a "collision"

Requirement: it should be hard to find a pair (m, m^{\prime}) such that $H(m)=H\left(m^{\prime}\right)$

Hash functions - the security definition

H is a collision-resistant hash function if

polynomial-time adversary A
$\operatorname{Pr}\left[A\right.$ outputs m, m^{\prime} such that $\left.H(m)=H\left(m^{\prime}\right)\right]$ is negligible

Birthday paradox

- If we choose q elements $y_{1}, \ldots y_{q}$ at random from $\{1, \ldots, \mathrm{~N}\}$, what is the probability that there exists i and j such that $y_{i}=y_{j}$?

365 possible days

What is the probability that two people have the same birthday?

Upper bound

- If we choose $y_{1}, \ldots y_{q}$ uniformly at random from $\{1, \ldots, N\}$, the probability of collision is upper bounded by:

$$
\operatorname{Coll}(q, N) \leq \frac{q(q-1)}{2 N}
$$

- Proof: (Union bound)

$$
\begin{aligned}
& \operatorname{Pr}[\operatorname{Coll}(q, N)]=\operatorname{Pr}\left[\exists i, j \text { st } y_{i}=y_{j}\right] \\
& \leq \sum_{i, j} \operatorname{Pr}\left[y_{i}=y_{j}\right]=\binom{q}{2} \frac{1}{N}=\frac{q(q-1)}{2 N}
\end{aligned}
$$

Lower bound

- If we choose $y_{1}, \ldots y_{q}$ uniformly at random from $\{1, \ldots, \mathrm{~N}\}$ and $q \leq \sqrt{ } 2 N$, the probability of collision is lower bounded by:

$$
\operatorname{Coll}(q, N) \geq 1-e^{-\frac{q(q-1)}{2 N}} \geq \frac{q(q-1)}{4 N}
$$

- Proof: NoColl $_{i}=$ Event no collision in $y_{1}, \ldots y_{i}$ $\operatorname{Pr}\left[\mathrm{NoColl}_{q}\right]=\operatorname{Pr}\left[\mathrm{NoColl}_{1}\right] \operatorname{Pr}\left[\mathrm{NoColl}_{2} \mid \mathrm{NoColl}_{1}\right] \ldots$ $\operatorname{Pr}\left[\mathrm{NoColl}_{\mathrm{q}} \mid\right.$ NoColl $\left._{\mathrm{q}-1}\right]$
$\operatorname{Pr}\left[\mathrm{NoColl}_{1}\right]=1$
$\operatorname{Pr}\left[\right.$ NoColl $_{\mathrm{i}} \mid$ NoColli $\left._{\mathrm{i}-1}\right]=1-(\mathrm{i}-1) / \mathrm{N}$

Lower bound

- If we choose $y_{1}, \ldots y_{q}$ uniformly at random from $\{1, \ldots, \mathrm{~N}\}$ and $q \leq \sqrt{2 N}$, the probability of collision is lower bounded by:

$$
\operatorname{Coll}(q, N) \geq 1-e^{-\frac{q(q-1)}{2 N}} \geq \frac{q(q-1)}{4 N}
$$

- Proof: NoColl $_{\mathrm{i}}=$ Event no collision in $y_{1}, \ldots y_{i}$

$$
\begin{gathered}
\operatorname{Pr}\left[\mathrm{NoColl}_{\mathrm{q}}\right]=\Pi(1-\mathrm{i} / \mathrm{N}) \\
\operatorname{Pr}\left[\mathrm{NoColl}_{\mathrm{q}}\right] \leq \prod_{\mathrm{i}} \mathrm{e}^{-\mathrm{i} / \mathrm{N}} \leq \mathrm{e}^{-\Sigma \mathrm{i} / \mathrm{N}}=\mathrm{e}^{-\mathrm{q}(q-1) / 2 \mathrm{~N}} \\
1-\operatorname{Pr}\left[\mathrm{NoColl}_{\mathrm{q}}\right] \geq 1-\mathrm{e}^{-\mathrm{q}(\mathrm{q}-1) / 2 \mathrm{~N}} \\
\geq \mathrm{q}(\mathrm{q}-1) / 4 \mathrm{~N}
\end{gathered}
$$

Lower bound

- If we choose $y_{1}, \ldots y_{q}$ uniformly at random from $\{1, \ldots, \mathrm{~N}\}$ and $q \leq \sqrt{ } 2 N$, the probability of collision is lower bounded by:

$$
\frac{q(q-1)}{4 N} \leq \operatorname{Coll}(q, N) \leq \frac{q(q-1)}{2 N}
$$

If $q=\Theta(\sqrt{N})$, then $\operatorname{Coll}(q, N)$ is approx. $1 / 2$
Birthday paradox: $\mathrm{N}=365, \mathrm{q}=23$
Hash functions: $N=2^{n}, q=2^{n / 2}$

Collision probability

Generic attack on collision resistant hash functions

Let $\mathrm{H}: \mathrm{M} \rightarrow\{0,1\}^{\mathrm{n}}$ be a hash function ($|M| \gg 2^{n}$)
Generic alg. to find a collision in time $\mathbf{O}\left(\mathbf{2}^{n / 2}\right)$ hashes
Algorithm:

1. Choose $2^{n / 2}$ random messages in M : $\mathrm{m}_{1}, \ldots, \mathrm{~m}_{2^{n / 2}}$ (distinct w.h.p)
2. For $i=1, \ldots, 2^{n / 2}$ compute $t_{i}=H\left(m_{i}\right)$
3. Look for a collision ($t_{i}=t_{j}$)
4. If not found, got back to step 1

Running time: $\mathbf{O}\left(\mathbf{2}^{\boldsymbol{n} / \mathbf{2}}\right) \quad\left(\right.$ space $\left.\mathbf{O}\left(\mathbf{2}^{\boldsymbol{n} / \mathbf{2}}\right)\right)$

Sample C.R. hash functions:

AMD Opteron, 2.2 GHz (Linux)

Best known collision finder for SHA-1 requires 2^{51} hash evaluations

Security experiment for MAC

- Experiment $\operatorname{Exp}_{\Pi, A}^{\mathrm{MAC}}(n)$:

1. Choose $k \leftarrow \operatorname{Gen}(n)$
2. $m, t \leftarrow A^{\operatorname{Tag}()}(n)$
3. Output 1 if $\operatorname{Ver}(m, t)=1$ and m was not queried to the $\operatorname{Tag}()$ oracle
4. Output 0 otherwise

We say that (Gen, Tag,Ver) is a secure MAC if:
For every PPT adversary $A=\left(A_{1}, A_{2}\right)$:
$\operatorname{Pr}\left[\operatorname{Exp}_{\Pi, A}^{\mathrm{MAC}}(n)=1\right]$ is negligible in n

MACs from Collision Resistance

Let (Tag,Ver) be a MAC for short messages over (K,M)
Let $\mathrm{H}: \mathrm{M}^{\prime} \rightarrow \mathrm{M}$ be a collision resistant hash function
Def: (Tag', Ver') over (K, M ') as:

```
Tag'(k,m) = Tag(k,H(m))\quadVer'(k,m,t)=\operatorname{Ver}(k,H(m),t)
```

Thm: If (Tag,Ver) is a secure MAC and H is collision resistant then (Tag', Ver') is a secure MAC.

Example: $\quad(k, m)=$ CBC-MAC(k, SHA-256(m)) is a secure MAC.

MACs from Collision Resistance

$\operatorname{Tag}^{\prime}(\mathrm{k}, \mathrm{m})=\operatorname{Tag}(\mathrm{k}, \mathrm{H}(\mathrm{m})) \quad ; \quad \operatorname{Ver}^{\prime}(\mathrm{k}, \mathrm{m}, \mathrm{t})=\operatorname{Ver}(\mathrm{k}, \mathrm{H}(\mathrm{m}), \mathrm{t})$
Collision resistance is necessary for security:
Suppose adversary can find $m_{0} \neq m_{1}$ s.t. $H\left(m_{0}\right)=H\left(m_{1}\right)$
Then: (Tag',Ver') is insecure under chosen msg attack step 1: adversary asks for $\mathrm{t} \leftarrow \operatorname{Tag}\left(\mathrm{k}, \mathrm{m}_{0}\right)$ step 2: output ($\mathrm{m}_{1}, \mathrm{t}$) as forgery

The Merkle-Damgard iterated construction

Thm: h collision resistant $\Rightarrow \mathrm{H}$ collision resistant

Can we use $\mathrm{H}($.$) to directly build a MAC?$

MAC from a Merkle-Damgard Hash Function

$H: X^{\leq L} \longrightarrow T$ a C.R. Merkle-Damgard Hash Function
Attempt \#1: $\quad \operatorname{Tag}(\mathrm{k}, \mathrm{m})=\mathrm{H}(\mathrm{k} \| \mathrm{m})$
This MAC is insecure because:
Given $\mathrm{H}(\mathrm{k} \| \mathrm{m})$ can compute $\mathrm{H}(\mathrm{w}\|\mathrm{k}\| \mathrm{m} \| \mathrm{t})$ for any w . Given $\mathrm{H}(\mathrm{k} \| \mathrm{m})$ can compute $\mathrm{H}(\mathrm{k}\|\mathrm{m}\| \mathrm{w})$ for any w .
Given $\mathrm{H}(\mathrm{k} \| \mathrm{m})$ can compute $\mathrm{H}(\mathrm{k}\|\mathrm{m}\| \mathrm{I} \| \mathrm{l}$) for any w .
Anyone can compute $\mathrm{H}(\mathrm{k} \| \mathrm{m})$ for any m .

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.
$\mathrm{H}:$ hash function.
example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

$$
\text { HMAC: } \operatorname{Tag}(k, M)=H(k \oplus \text { opad, } H(k \oplus \text { ipad } \| \text { m }))
$$

HMAC in pictures

Applications of hash functions: Merkle trees

Authenticate a file using its hash

Client

Write file

$$
M=H(F)
$$

Store

Server

Read file

Check integrity

Check $M=H(F)$

How to authenticate multiple files?

Client

M_{2}
$\mathrm{M}_{\mathrm{n}} \quad M_{n}=H\left(F_{n}\right) \quad$ Check integrity

Read file

Write file

$$
\begin{aligned}
& M_{1}=H\left(F_{1}\right) \\
& M_{2}=H\left(F_{2}\right)
\end{aligned}
$$

Server

1. Compute and store a hash per file + Fast to check integrity and update file - Linear storage on client

How to authenticate multiple files?

Client

Server

Read file


```
F
```


2. Compute and store a hash for all files

+ Small storage on client
- Linear time to check integrity and update file

Merkle trees

- Introduced by Ralph Merkle, 1979
- "Classic" cryptographic construction
- Involves combining hash functions on binary tree structure
- An efficient data structure with many practical applications
- Constant amount of storage on client
- Logarithmic update and verification cost

Merkle tree data structure

- Binary tree, nodes are assigned fixed-size values
- Files associated to each leaf

How to authenticate multiple files?

Client

Server

Read/authenticate file

Client

Read file

Write/authenticate file

Client
Write file

Number theory review

Prime Numbers

- An integer $p>1$ is a prime number iff its only positive divisors are 1 and p
- E.g., 3,5,7,11,13
- Otherwise, an integer that has other divisors is called composite
- E.g., 4,6,8,10,25,39
- Theorem [Fundamental theorem of arithmetic]

Any integer a > 1 can be factored in a unique way as

$$
a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{t}^{a_{t}}
$$

where $p_{1}<p_{2}<\ldots<p_{t}$ are primes and a_{i} are positive integers

- Theorem [Infinite prime numbers]

The number of prime numbers is infinite

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation: $Z_{N}=\{0,1, \ldots N-1\}$ group of size N

Can do addition and multiplication modulo N

Modular arithmetic

Examples: let $N=12$

$$
\begin{array}{ll}
9+8=5 & \text { in } \mathbb{Z}_{12} \\
5 \times 7=11 & \text { in } \mathbb{Z}_{12} \\
5-7=10 & \text { in } \mathbb{Z}_{12}
\end{array}
$$

Arithmetic in \mathbb{Z}_{N} works as you expect, e.g $x \cdot(y+z)=x \cdot y+x \cdot z$ in \mathbb{Z}_{N}

Greatest common divisor

Def: For integers x, y : $\boldsymbol{\operatorname { g c d }}(\mathbf{x}, \mathbf{y})$ is the greatest common divisor d such that $\mathrm{d} \mid \mathrm{x}$ and $\mathrm{d} \mid \mathrm{y}$

Example: $\operatorname{gcd}(12,18)=6$

Fact: for all integers x, y there exist a, b such that

$$
a \cdot x+b \cdot y=\operatorname{gcd}(x, y)
$$

Coefficients a, b can be found efficiently using the extended Euclidean algorithm

If $\operatorname{gcd}(x, y)=1$ we say that x and y are relatively prime Example: $\operatorname{gcd}(14,25)=1$

Facts on gcd

Proposition: If $c \mid a b$ and $\operatorname{gcd}(a, c)=1$, then $c \mid b$
Proof: If $c \mid a b$, there exists a value u such that:
$\mathrm{cu}=\mathrm{ab}$
Since $\operatorname{gcd}(a, c)=1$, there exists some constants v and w such that: $a v+c w=1$
Multiply by $b: a v b+c w b=b \Rightarrow c u v+c w b=b$
$\Rightarrow c(u v+w b)=b \Rightarrow c \mid b$
Corolary: If p is prime and $p \mid a b$, then $p \mid a$ or $p \mid b$ Proof: If p prime, then $p \mid a \operatorname{or} \operatorname{gcd}(p, a)=1$. Then $p \mid a$ or $p \mid b$

Modular inversion

Over rationals, inverse of 2 is $1 / 2$. What about Z_{N} ?

Definition: The multiplicative inverse of x in Z_{N} is an element y in Z_{N} such that $\mathrm{x} \cdot y=1$ in Z_{N}
y is denoted x^{-1}
Example: Let N be an odd integer. What is the inverse of 2 in Z_{N} ?

$$
2 \cdot \frac{N+1}{2}=\mathrm{N}+1=1 \bmod \mathrm{~N}
$$

Acknowledgement

Some of the slides and slide contents are taken from
http://www.crypto.edu.pl/Dziembowski/teaching and fall under the following:
©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:
http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/

