CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

February 15 2018

Announcements

Schedule

- Next week vacation on Monday (President's Day)
- Class canceled on Thursday 02/22
- Normal schedule on Monday 02/26
- Assignments
 - Programming project Thu 02/15 Mon 02/26
- Midterm exam
 - Thursday 03/01
 - Topics
 - Notions of security for encryption (PS, EAV, CPA, CCA)
 - Modes of operation for encryption (CBC, CTR)
 - PRG, PRF, PRP
 - MAC for integrity
 - Authenticated encryption

Recap

- Integrity vs confidentiality
 - Complementary properties
 - Both are needed in practice
- Message Authentication Codes (MAC)
 - Secret key needed for integrity
 - Security definition
 - Encryption not sufficient for integrity
- Constructions
 - MACs on single block (e.g., 128-bit) can be built from PRFs
 - CBC-MAC for integrity on longer messages

Message Authentication Codes

Eve should not be able to compute a valid tag t' on any other message m'.

Security experiment for MAC

- Experiment $\text{Exp}_{\Pi,A}^{\text{MAC}}(n)$:
 - 1. Choose $k \leftarrow Gen(n)$
 - 2. $m,t \leftarrow A^{Tag()}(n)$
 - Output 1 if Ver(*m*,*t*) = 1 and *m* was not queried to the Tag() oracle
 - 4. Output 0 otherwise

(Gen,Tag,Ver) is a secure (existential unforgeable) MAC if:

For every **PPT** adversary *A*: **Pr[** $\exp_{\Pi,A}^{MAC}(n) = 1$] is negligible in n

CBC-MAC

Theorem

Assuming that $F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **pseudorandom** function and messages of fixed length are tagged, then CBC-MAC construction is secure.

CBC-MAC vs CBC-Enc

- Different security properties
 - CBC-Enc is CPA secure encryption
 - CBC-MAC is secure MAC
- Initialization
 - CBC-Enc uses random IV
 - CBC-MAC uses first block fixed at 0
 - CBC-MAC with random IV is insecure!
- Output
 - CBC-Enc outputs all intermediate blocks (to decrypt)
 - CBC-MAC outputs only last block

CBC-MAC for variable length messages

 $F: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n - a \mathsf{PRF}$

CBC-MAC analysis

Theorem: For any L>0,

For every PPT q-query PRF adversary A attacking the CBC-MAC

there exists a PPT adversary B for F s.t.:

 $\begin{aligned} & \mathsf{Pr}[\mathrm{Exp}_{\mathsf{CBC}_\mathsf{MAC},A}^{\mathsf{MAC}}(n) = \mathbf{1}] \leq \mathrm{Adv}_{F,B}^{\mathsf{PRF}}(n) + 2 \mathsf{q}^2 / 2^n \\ & \mathsf{CBC}\text{-}\mathsf{MAC} \text{ is secure as long as } \mathsf{q} << 1 / 2^{n/2} \end{aligned}$

What if msg. len. is not multiple of block-size?

CBC MAC padding

Bad idea: pad m with 0's

 $m[0] \qquad m[1] \qquad \longrightarrow \qquad m[0] \qquad m[1] \qquad 0000$

Is the resulting MAC secure?

Yes, the MAC is secure

It depends on the underlying MAC

No, given tag on msg **m** attacker obtains tag on **mll0**

Problem: pad(m) = pad(mll0)

Collision in padding function

CBC MAC padding

For security, padding must be invertible !

$$m_0 \neq m_1 \implies pad(m_0) \neq pad(m_1)$$

<u>ISO</u>: pad with "1000...00". Add new dummy block if needed.

The "1" indicates beginning of pad.

Warning: MACs do not offer protection against the "replay attacks".

This problem has to be solved by the higher-level application (methods: time-stamping, sequence numbers...).

Authenticated encryption

- Combine confidentiality and integrity
- Security properties
 - Confidentiality: CCA security
 - *Integrity*: attacker cannot create new ciphertexts that decrypt properly
- Decryption returns either
 - Valid messages
 - Or invalid symbol (when ciphertext is not valid)

Some history

Authenticated Encryption (AE): introduced in 2000 [KY'00, BN'00]

Crypto APIs before then: (e.g. MS-CAPI)

- Provide API for CPA-secure encryption (e.g. CBC with rand. IV)
- Provide API for MAC (e.g. HMAC)

Every project had to combine the two itself without a well defined goal

• Not all combinations provide AE ...

- Tag does not protect confidentiality of message
 - Could output first message bit, for example
- If adversary gets Enc(k₁, m) and Tag(k₂, m), he can distinguish encryption of two messages in challenge phase

Insecurity of Encrypt-and-MAC

- Assume that (Tag, Ver) is a secure MAC
 - Define Tag'_k(m)=(m[1]||Tag_k(m)) and m[1] first bit of m. Ver' runs Ver and checks first bit of m.

- Then (Tag',Ver') is a secure MAC

- Consider Encrypt-and-MAC scheme
 - $-c = Enc_{k_1}(m), t = Tag'_k(m) = m[1]||Tag_k(m)|$
 - Attacker can break security of encryption
 - How?
 - Not even EAV secure!

MAC-then-Enc

Let (Enc,Dec) be CPA secure encryption and (Tag,Ver) secure MAC. Then:

MAC-then-Encrypt (SSL): is not always secure $t = Tag_{k_2}(m), c = Enc_{k_1}(m||t),$

Properties:

- Vulnerable to padding oracle attack if CBC encryption is used
- If no padding oracle, Mac-then-Encrypt provides A.E. when when (Enc,Dec) is rand-CTR mode or rand-CBC

Encrypt-then-MAC

Let (Enc,Dec) be CPA secure encryption and (Tag,Ver) secure MAC. Then:

Encrypt-then-MAC (IPSec): always provides A.E.

$$c = Enc_{k_1}(m), t = Tag_{k_2}(c)$$

Intuition:

- Adv. can not modify valid ciphertext and still get a valid Tag (by unforgeability of MAC)
- All queries to Dec oracle will return valid for c returned from Enc oracle; or invalid otherwise
- Dec oracle is not useful, CCA security reduces to CPA security

A.E. Theorems

Let (Enc,Dec) be CPA secure encryption and (Tag,Ver) secure MAC. Then:

- **1. Encrypt-then-MAC** (IPSec): always provides A.E.
- MAC-then-encrypt (SSL): may be insecure against CCA attacks

However: when (Enc,Dec) is rand-CTR mode or rand-CBC and no padding oracle available, Mac-then-Encrypt provides A.E.

Important: Encryption and MAC keys need to be independent

Counter-example for same key

- F a secure PRP
- Enc_k(m) = F_k(m || r) for r a random number
 CPA secure
- $MAC_{k}(c) = F_{k}^{-1}(c)$
 - $-F_k^{-1}$ is also a PRP
 - MAC is secure
 - But $MAC_k(c) = m | | r$ (because same key is used)
- Enc_k(m), MAC_k(c) is not secure A.E.!

Standards (at a high level)

- GCM: CTR mode encryption then CW-MAC
 (accelerated via Intel's PCLMULQDQ instruction)
- CCM: CBC-MAC then CTR mode encryption (802.11i)
- **EAX**: CTR mode encryption then CMAC

All support AEAD: (authenticated encryption with associated data) All are nonce-based

An example API (OpenSSL)

unsigned char *key, unsigned int klen)

OCB: a direct construction from a PRP

More efficient authenticated encryption

- one Enc() operation per block
- Parallelizable

Performance: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

NIST standards	<u>Cipher</u>	code <u>size</u>	Speed		
	AES/GCM	large	108	AES/CTR	139
	AES/CCM	smaller	61	AES/CBC	109
	AES/EAX	smaller	61	AES/CMAC	109
	AES/OCB		129	HMAC/SHA	1 147

Further reading

- The Order of Encryption and Authentication for Protecting Communications. H. Krawczyk, Crypto 2001.
- Authenticated-Encryption with Associated-Data. P. Rogaway, Proc. of CCS 2002.
- Password Interception in a SSL/TLS Channel.
 B. Canvel, A. Hiltgen, S. Vaudenay, M. Vuagnoux, Crypto 2003.
- Plaintext Recovery Attacks Against SSH.
 M. Albrecht, K. Paterson and G. Watson, IEEE S&P 2009
- Problem areas for the IP security protocols.
 S. Bellovin, Usenix Security 1996.

Review secret-key cryptography

- Stream ciphers
 - PRG
- Block ciphers
 - PRF, PRP
 - Modes of operation to encrypt longer messages
- Integrity
 - Message Authentication Codes
- Authenticated encryption
 - Encrypt-then-MAC always secure
 - MAC-then-Encrypt secure only sometimes
- Practical attacks

Padding oracle has serious security implications

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used slides from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/