
CS 4770: Cryptography

CS 6750: Cryptography and Communication Security

Alina Oprea Associate Professor, CCIS Northeastern University

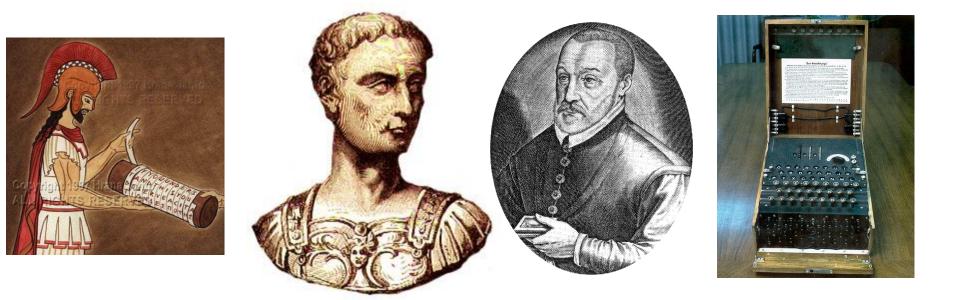
January 8 2018

Introductions

Background

- Ph.D. at CMU
 - Research in storage security
- RSA Laboratories
 - Cloud security, applied cryptography, security analytics
 - Worked with Prof. Rivest ("R" in RSA)
 - Practical research in industry lab
- NEU CCIS joined Fall 2016
 - Machine learning for security
 - Adversarial machine learning
 - Privacy-preserving analytics

Class Introductions


- Graduate class enrollment 22
- Undergraduate class enrollment 6

Cryptography

- What is *cryptography*?
 - The art of writing or solving codes (Concise Oxford Dictionary)
 - Historically adopted only by military organizations and governments
- Modern cryptography
 - Ubiquitous on the Internet
 - Secure communication and systems across the globe
 - The study of mathematical techniques for securing digital information, systems, and distributed computations against adversarial attacks

Historical cryptography

Cryptography ≈ Encryption Main applications: **military and diplomacy**

ancient times

world war II

Modern cryptography

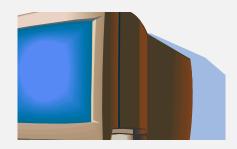
Cryptography based on rigorous science/math

multiparty-computations zero-knowledge threshold crypto electronic auctions electronic voting crypto currencies private info public-key cryptography retreival signature schemes computation in cloud rigorous definitions

now

7

information theory


post-war

sevenites

What happened?


Technology

Afforadable Increased computational power Cloud computing

<u>Demand</u>

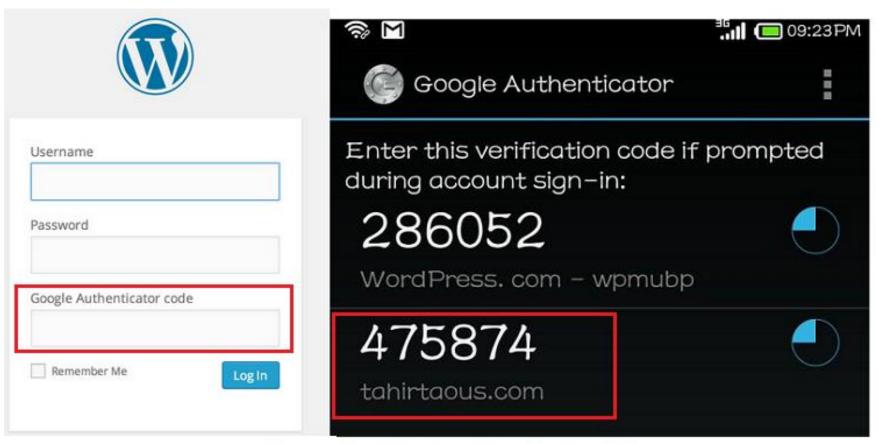
Companies and individuals start to do business electronically

Theory

Information theory + computational complexity

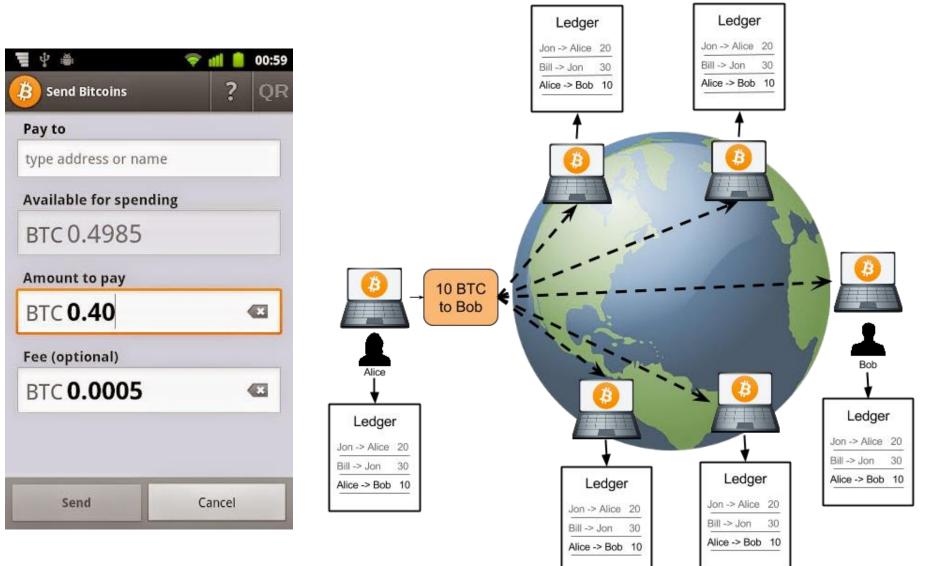
Can reason about security in a **formal way**.

Modern cryptography


- Rigorous definitions of what it means to have secure encryption, signatures, authentication
- Precise assumptions
 - Factoring large numbers is "computationally hard"
 - Vetted over years
- Proofs of security
 - Construction satisfies definition under assumption
- Challenges
 - Create realistic models of adversarial capabilities
 - Find minimal assumptions
- Enables a number of emerging applications

Electronic commerce

•	Am	azon.com C	heckout Sign In - Fire	
<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks	<u>T</u> ools <u>H</u> elp			
💠 • 🔿 · 🎅 💿 🟠 💷	https://www.amazon.com/gp/cart/view.htm	ml/ref=pd_luc	_mri	
🌮 Getting Started 🔂 Latest BBC	Headlines			
Homepage for CSE 207	Amazon.com Checkout Sig			
	amazon.con		SHIPPING & PAYMENT	
Ordering from A	mazon.com is quick and easy			
	Enter your e-mail address:			
	۴	I am a new customer. (You'll create a password later)		


- https invokes the Secure Socket Layer (SSL) communication security protocol to securely transmit your credit card number to the server
- SSL uses cryptography

Multi-factor authentication

Google Authenticator WordPress Plugin

Crypto-currencies

Course objectives

- Introduction to basic cryptographic primitives
 - Secret-key cryptography
 - Public-key cryptography
 - Threat models
- Modern cryptographic protocol design
 - Sound, rigorous proofs of security
 - Understand fundamental assumptions
- Applications
 - Secure network communication, secure computation, crypto currencies

CS 4770, CS 6750: Syllabus

- Symmetric-key primitives
 - Block ciphers, symmetric-key encryption
 - Pseudorandom functions and pseudorandom generators
 - MACs and authenticated encryption
- Hash functions
 - Integrity schemes
- Public-key cryptography
 - Public-key encryption and signatures
 - Key exchange
- Applications
 - Secure network communication, secure computation, crypto currencies

Textbook: Introduction to Modern Cryptography. J. Katz and Y. Lindell

Policies

- Instructors
 - Alina Oprea
 - TA: Sourabh Marathe
- Schedule
 - Mon, Thu 11:45am 1:25pm, Robinson 107
 - Office hours:
 - Alina: Thu 4:00 6:00 pm (ISEC 625)
 - Sourabh: Tue 2-3pm (TBD)
- Your responsibilities
 - Please be on time and attend classes
 - Participate in interactive discussion
 - Submit assignments/ programming projects on time
- Late days for assignments
 - 5 total late days, after that loose 20% for every late day
 - Assignments are due at 11:59pm on the specified date
- Respect university code of conduct
 - No collaboration on homework / programming projects
 - <u>http://www.northeastern.edu/osccr/academic-integrity-policy/</u>

Grading

- Written problem assignments 25%
 - 3-4 theoretical problem assignments based on studied material in class
- Programming projects 20%
 - 3 programming projects
 - Language of your choice (Java, C/C++, Python)
 - In-person grading with instructor/TA
- Exams 50%
 - Midterm 25%
 - Final exam 25%
- Class participation 5%
 - -Participate in class discussion and on Piazza

Outline

- Encryption setting
- Kerckhoff's principle
- Classical (traditional) cryptography
 - Shift cipher
 - Substitution cipher
 - Vigenere
 - Enigma

The cast

The good players

Alice

Bob

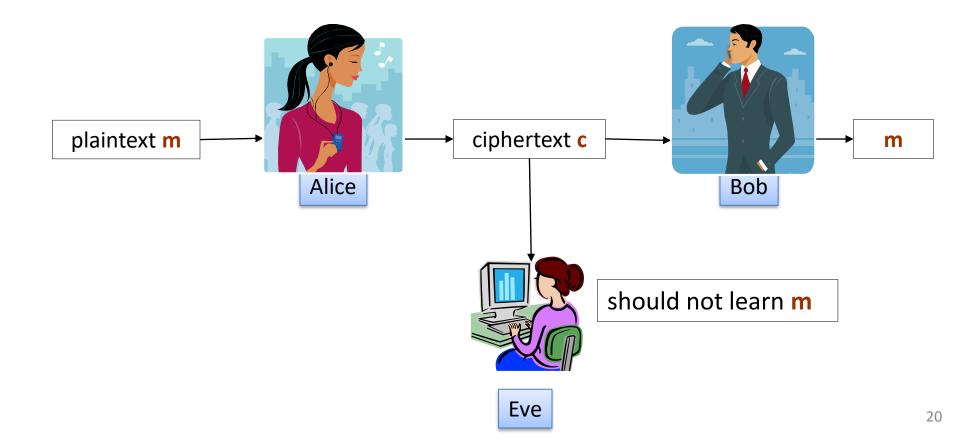
Introduced in the original RSA paper

The bad players

Eve Eavesdropper

Mallory Malicious

More application-specific malicious players


Goals and objectives

- Most basic problem
 - Ensure security of communication between parties over an insecure medium

- Basic security goals
 - Confidentiality (secrecy)
 - Only the intended recipient can see the communication
 - Authenticity (integrity)
 - Communication is generated by the alleged sender

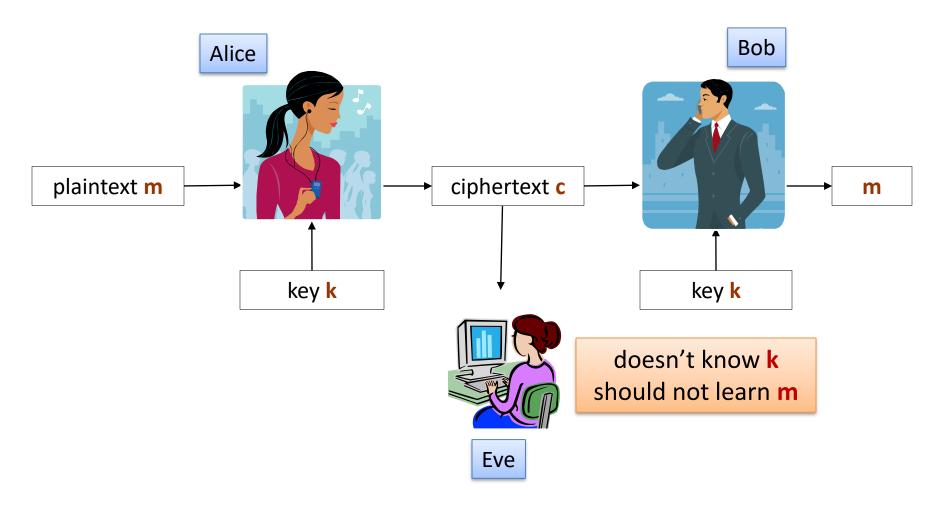
Encryption Schemes (a very general picture)

Encryption scheme = encryption & decryption procedures

Kerckhoffs' principle

Auguste Kerckhoffs (1883):

The enemy knows the system


The cipher should remain secure even if the adversary knows the specification of the cipher.

The only thing that is **secret** is a

key k

that is usually chosen uniformly at random

A more refined picture

Kerckhoff's principle: motivation

- 1. It is unrealistic to assume that the design details remain secret. Too many people need to know. Software/hardware can be **reverse-engineered!**
- 2. Pairwise-shared keys are easier to **protect**, **generate** and **replace**.
- 3. The design details can be discussed and **analyzed in public**.
 - Public competition for selection of block cipher (AES) and hash functions (SHA3)

Not respecting this principle

``security by obscurity".

A mathematical view

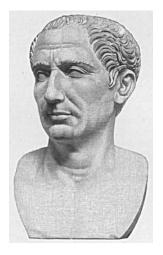
 \mathcal{K} – key space \mathcal{N} - natural numbers *M* – plaintext space

C - **ciphertext** space

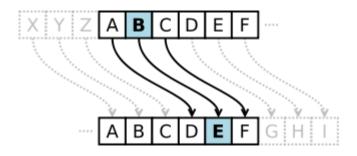
An encryption scheme is a pair (Gen, Enc, Dec), where

- Gen : N → K is a key generation algorithm,
- Enc : K × M → C is an encryption algorithm,
- Dec : K × C → M is an decryption algorithm.

We write $Enc_k(m)$ and $Dec_k(c)$ instead of Enc(k,m) and Dec(k,c).


Correctness

for every **k**, **m** we should have **Dec**_k(**Enc**_k(**m**)) = **m**.


Idea 1: Shift cipher

 \mathcal{M} = words over alphabet {A,...,Z} \approx {0,...,25} \mathcal{K} = {0,...,25}

 $Enc_k(m_0,...,m_n) = (m_0 + k \mod 26,..., m_n + k \mod 26)$

Cesar: **k** = 3

Example shift cipher

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P = CRYPTOGRAPHYISFUN K = I I C = NCJAVZRCLASJTDQFY

 $C \rightarrow 2;$ 2+11 mod 26 = 13 $\rightarrow N$ R \rightarrow 17; 17+11 mod 26 = 2 $\rightarrow C$

 $N \rightarrow 13$; 13+11 mod 26 = 24 $\rightarrow Y$

. . .

How to decrypt? $Dec_k(c_0,...,c_n) = (c_0-k \mod 26,..., c_n-k \mod 26)$

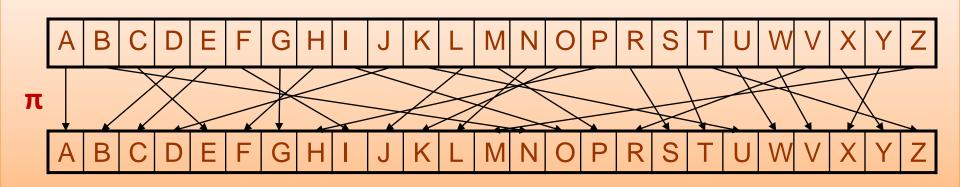
Security of the shift cipher

How to break the shift cipher? Check all possible keys!

Let **c** be a ciphertext.

For every k c {0,...,25} check if Dec_k(c) "makes sense".

Most probably only one such k exists.

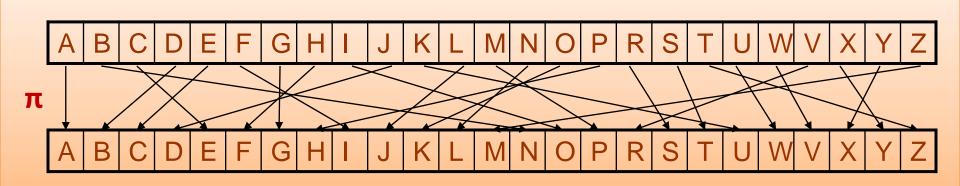

Thus **Dec_k(c)** is the message.

This is called a **brute force attack**.

Moral: the key space needs to be large!

Idea 2: Substitution cipher

 \mathcal{M} = words over alphabet {A,...,Z} \approx {0,...,25} \mathcal{K} = a set of permutations of {0,...,25}



 $Enc_{\pi}(m_0,...,m_n) = (\pi(m_0),...,\pi(m_n))$

 $Dec_{\pi}(c_0,...,c_n) = (\pi^{-1}(c_0),...,\pi^{-1}(c_n))$

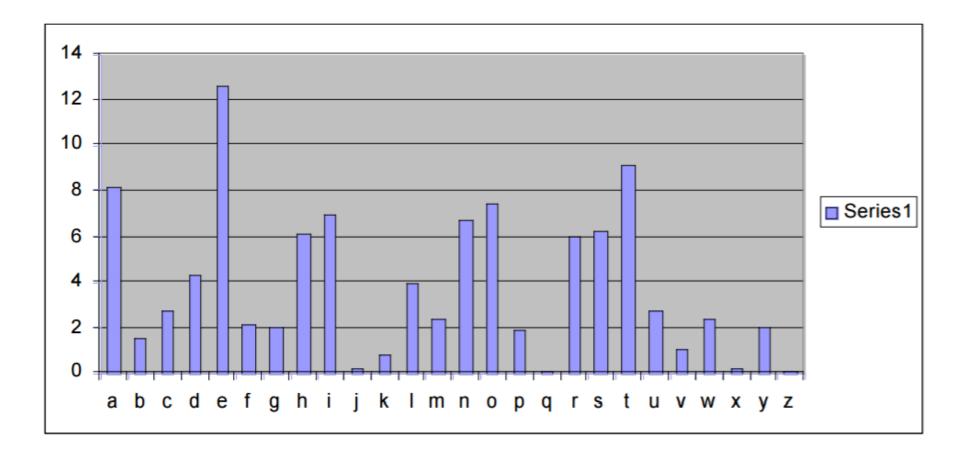
Example substitution cipher

 \mathcal{M} = words over alphabet {A,...,Z} \approx {0,...,25} \mathcal{K} = a set of permutations of {0,...,25}

P = CRYPTOGRAPHY C = ESXHZKGSAHFX

How to break the substitution cipher?

• Exhaustive search is infeasible


-Key space size is $26! \approx 2^{88}!$

- Dominated the art of secret writing throughout the first millennium A.D.
- Thought to be unbreakable by many back then
- Until frequency analysis

History of frequency analysis

- Discovered by the Arabs
 - Earliest known description of frequency analysis is in a book by the ninth-century scientist Al Kindi
- Rediscovered or introduced in the Europe during the Renaissance
- Key insights
 - Each language has distinctive features: frequency of letters and groups of two or more letters
 - Substitution ciphers preserve the language features
 - Substitution ciphers are vulnerable to frequency analysis attacks

Frequency of English letters

Other languages

French										
Ε	16.7%	Т	7.3%	С	3.5%	G	1.1%	J	0.3%	
S	8.2%	0	5.8%	Ρ	3.0%	Q	1.1%	Y	0.2%	
Α	8.0%	U	5.5%	Μ	2.9%	В	0.7%	Ζ	0.2%	
Ν	7.9%	L	4.9%	V	1.4%	X	0.6%	K	0.1%	
I	7.6%	D	3.9%	F	1.2%	Н	0.5%	W	0.0%	
R	7.4%									
German										
Е	18.0%	Т	5.7%	G	3.2%	F	1.6%	Ρ	0.8%	
Ν	10.6%	D	5.4%	0	2.7%	W	1.5%	J	0.3%	
	8.1%	U	4.6%	С	2.7%	K	1.3%	Y	0.0%	
R	7.2%	Н	4.1%	Μ	2.3%	Ζ	1.1%	Х	0.0%	
S	6.9%	L	3.3%	В	1.7%	V	0.9%	Q	0.0%	
Α	6.0%									

Other characteristics of English

- Vowels, which constitute 40% of plaintext, are often separated by consonants
- Letter A is often found in the beginning of a word or second from last
- Letter I is often third from the end of a word
- Letter Q is followed only by U
- Most common tri-gram is "the"
- And more ...

Frequency analysis in action

- The number of different ciphertext characters or combinations are counted to determine the frequency of usage
- The ciphertext is examined for patterns, repeated series, and common combinations
- Replace ciphertext characters with possible plaintext equivalents using known language characteristics
- Guesses are made until plaintext "makes sense"
- Drawback: needs longer ciphertext

Moral: large key space is not enough for secure cipher

Example

 http://crypto.interactivemaths.com/frequency-analysis-breaking-thecode.html

Example: The Culper spy ring

- American revolutionary war in 1778
- Gather information on British troop movements
- Developed Culper code book

					•		
52	but	271	hesitate	488	produce		Y
53	buy	272	history	489	prison	706	yet
54	bring	273	horrible	490	progress	707	you
55	boat	274	hospital	491	promise	708	your
56	barn	275	hurrican	492	proper	709	yesterday
57	banish	276	hypocrite	493	prosper		<u>Z</u>
58	baker	277	DOCUMENT DAMAGE	494	prospect	710	zeal
59	battle	278	DOCUMENT DAMAGE	495	punish		<u>PROPER</u> NAMES
60	better	279	DOCUMENT DAMAGE	496	pertake	711	Gen Washington

Poly-alphabetic substitution ciphers

- Main weaknesses of monoalphabetic substitution ciphers
 - Each letter in the ciphertext corresponds to only one letter in the plaintext letter
- Idea for a stronger cipher (1460 by Alberti)
 - Use more than one cipher alphabet, and switch between them when encrypting different letters
- Giovani Battista Bellaso published it in 1553
- Developed into a practical cipher by Blaise de Vigenère and published in 1586

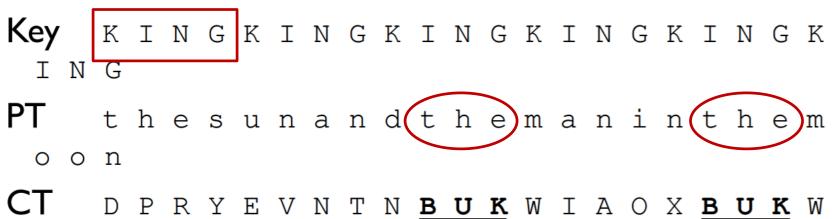
Idea 3: Vigenère cipher

 \mathcal{M} = words over alphabet {A,...,Z} \approx {0,...,25} \mathcal{K} = a set of characters {k₁,...k_t}

```
Enc<sub>k</sub>(m<sub>1</sub>,...,m<sub>n</sub>) = (m<sub>1</sub>+k<sub>1</sub>,..., m<sub>t</sub>+k<sub>t</sub>,
m<sub>t+1</sub>+k<sub>1</sub>,...m<sub>2t</sub>+k<sub>t</sub>,
....
) mod 26
```

A BCDE FG H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 **Example:** Plaintext: CRYPTOGRAPHY Key: LUCKLUCKLUCK Ciphertext: NLAZE I I BLJ J I

Security of Vigenère cipher


- Vigenère masks the frequency with which a character appears in a language
 - One letter in the ciphertext corresponds to multiple letters in the plaintext
 - Makes the use of frequency analysis more difficult
- Any message encrypted by a Vigenère cipher is a collection of as *many shift ciphers* as there are letters in the key
- How to break the cipher
 - Find the length of the key
 - Divide the message into that many shift ciphers
 - Use frequency analysis to solve the resulting shift ciphers

History of breaking Vigenère

- 1596 Cipher was published by Vigenère
- 1854 It is believed that Charles Babbage knew how to break it in 1854, but he did not published the results
- 1863 Kasisky showed how to break Vigenère
- 1920 Friedman published ``The index of coincidence and its applications to cryptography"

Method 1: Kasisky test

Period = 4

• Insight

В

W

Т

 The distance between duplicate n-grams in ciphertext is multiple of cipher period (length of secret key)

d = 8

- Algorithm
 - Search for pairs of identical segments of length at least 3
 - Record distances between the two segments $d_1, d_2, ...$
 - Period p divides gcm(d₁,d₂,...)

Method 2: Index of coincidence

Letter	p _i						
А	.082	Н	.061	0	.075	V	.010
В	.015	Ι	.070	Р	.019	W	.023
С	.028	J	.002	Q	.001	Х	.001
D	.043	K	.008	R	.060	Y	.020
Е	.127	L	.040	S	.063	Ζ	.001
F	.022	М	.024	Т	.091		
G	.020	N	.067	U	.028		

$$I_c(x) = \sum_{i=0}^{i=25} p_i^2 = 0.065$$

p_i: frequency of letter i (not considering punctuation)

Finding the key length

- Ciphertext c₁,...c_n
- Key **k**₁,...**k**_t

k_1	$\begin{bmatrix} C_1 \end{bmatrix}$	C_{t+1}	•••	C_{n-t+1}	y_1
k_2	<i>C</i> ₂	C_{t+2}	•••	C_{n-t+1} C_{n-t+2}	y_2
			•••		
k_t	C_t	C_{2t}	•••	 C _n	${\mathcal Y}_t$

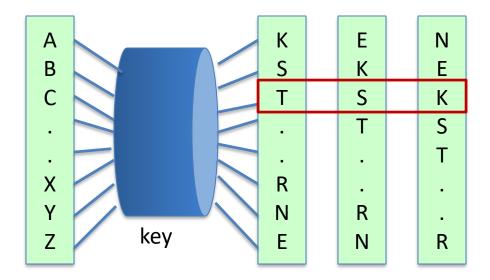
- Each y_i should respect the English language character frequency
 - Assuming sufficiently long text

Guessing the key length

If t is the key length, then each y_j looks like
 English text

$$I_c(y_j) = \sum_{i=0}^{25} p_i^2 = 0.065, \forall j \in \{1, \dots t\}$$

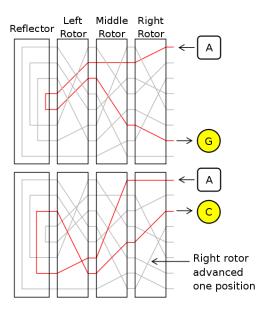
If t is not the key length, then each y_j looks like random text


$$I_c(y_j) = \sum_{i=0}^{25} 1/26^2 = 0.038 \; \forall j \in \{1, \dots t\}$$

Breaking the Vigenère cipher

- Find the length of the key t
 - Method 1: Kasisky test
 - Method 2: Index of coincidence
 - Easier to perform automatically
- Divide the message into *t* shift ciphers
- Use frequency analysis to solve the resulting shift ciphers
 - Need longer message to perform frequency analysis
- What is the right key size?
 - Short key periods provide an advantage in breaking cipher
 - Longer keys harder to store/manage

Rotor Machines (1870-1943)


Early example: the Hebern machine (single rotor)

Rotor Machines (cont.)

Most famous: the Enigma (3-5 rotors)

keys = $26^4 = 2^{18}$ (actually 2^{36} due to plugboard – swap pairs of letters)

Key takeaways

- Cryptography has evolved from narrow field to science of securing communication and interaction in digital world
- Historically, cryptography used by military and governments
 - Shift ciphers, substitution ciphers, Vigenere cipher
 - All historical ciphers have been broken
 - Security by obscurity not effective
- Modern cryptography designs rigorous primitives
 - Define realistic security model
 - Find minimal assumptions
 - Modularity in designing higher-level protocols
 - Emerging applications rely heavily on cryptographic primitives

Acknowledgement

Some of the slides and slide contents are taken from http://www.crypto.edu.pl/Dziembowski/teaching

and fall under the following:

©2012 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.

We have also used materials from Prof. Dan Boneh online cryptography course at Stanford University:

http://crypto.stanford.edu/~dabo/courses/OnlineCrypto/